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Abstract: The parabolic quasi-Sturmian approach, recently introduced for the calculation of ion–atom
ionizing collisions, is adapted and applied here to the single ionization of helium induced by an
intermediate-energy proton impact. Within the method, the ionization amplitude is represented
as the sum of the products of the basis amplitudes associated with the asymptotic behavior of the
continuum states of the two noninteracting hydrogenic subsystems (e−, He+) and (p+, He+). The
p− e interaction is treated as a perturbation in the Lippmann–Schwinger-type (LS) equation for the
three-body system (e−, He+, p+). This LS equation is solved numerically using separable expansions
for the proton–electron potential. We examine the convergence behavior of the transition amplitude
expansion as the number of terms in the representation of the p − e interaction is increased and
find that, for some kinematic regimes, the convergence is poor. This difficulty, which is absent for a
higher proton energy impact, is solved by varying the momentum of the auxiliary proton plane wave
introduced into the basis function. Fully differential cross-sections are calculated and compared with
experimental data for 75 keV protons and the results obtained with the 3C model.

Keywords: ionization by proton impact; parabolic quasi-Sturmians; Lippmann–Schwinger equation;
convergence of the differential cross-section

1. Introduction

Ionization in the collisions of ions with simple atoms is one of the fundamental
processes of atomic dynamics and has been the focus of study for several decades. How-
ever, direct measurements of fully differential cross-sections (FDCS), which contain com-
plete collision information, became available only after the development of cold target
recoil ion momentum spectroscopy (COLTRIMS) [1–3]. For the single ionization of the
ground state of helium by high-impact proton energy (1 MeV), FDCS have been recently
measured [4] and triggered a number of theoretical calculations [4–12]. Despite some un-
explained shifts in the angular distributions, overall satisfactory agreement was found.
Moreover, those experimental data being on a relative scale, the comparison of abso-
lute theoretical FDCS does not permit us to reach a conclusive statement on the merit of
each approach. At a lower impact energy, the absolute FDCS of singly ionizing 75-keV

Atoms 2023, 11, 124. https://doi.org/10.3390/atoms11100124 https://www.mdpi.com/journal/atoms

https://doi.org/10.3390/atoms11100124
https://doi.org/10.3390/atoms11100124
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atoms
https://www.mdpi.com
https://orcid.org/0000-0003-3771-3541
https://orcid.org/0000-0002-0503-3288
https://orcid.org/0000-0001-5010-0593
https://orcid.org/0000-0002-4835-2270
https://doi.org/10.3390/atoms11100124
https://www.mdpi.com/journal/atoms
https://www.mdpi.com/article/10.3390/atoms11100124?type=check_update&version=1


Atoms 2023, 11, 124 2 of 15

p− He collisions have been measured in various kinematical regimes [13]. For these FDCS,
theoretical predictions were obtained based upon the well-known continuum distorted-
wave-eikonal initial-state (CDW-EIS) model [14,15], (a) including the projectile and residual
target ion interaction (CDW-EIS PI) [16]; (b) the two-Coulomb final wave (2C) + the initial
Coulomb projectile wave [17]; (c) the three-Coulomb wave (3C) model [18]; (d) the modified
Coulomb–Born approximation (MCB-PI) [19]; (e) the continuum correlated wave model
including the interaction between the projectile and the residual target ion (CCW-PT) [20];
(f) including the projectile target core (NN) interaction model convolved with experimental
resolution (CDW-EIS NN) [21]. Despite the sophistication of the latest approaches, none
of them has managed to reach complete agreement with the experimental data. The most
noticeable theory–experiment discrepancies are observed at large values of the transferred
momentum. In particular, the proposed theoretical models fail to adequately describe the
observed double-peak structure of the FDCS in the perpendicular plane. In the lower-
impact energy regime, the electron capture channel may be expected to play an important
role and may partially explain such discrepancies. Indeed, the FDCS could be affected,
for example, by the well-known Thomas effect [22] that appears when the electron after
the second collision with the target nucleus moves in parallel with the same speed as
the incident ion. In such a kinematic domain, the particles interact strongly, leading to a
resonant increase in the FDCS. Note that the same effect is postulated in a recent work
on the Compton disintegration of positronium [23] and is actively discussed in a publi-
cation [24] directly related to our study. As far as we know, and although it should be
properly taken into account, so far, none of the theoretical approaches modeling the 75 keV
measurements [13] have included this channel. Thus, further theoretical developments to
describe ion–atom ionizing collisions are required.

Recently [5], some of us proposed the parabolic convoluted quasi-Sturmian (CQS)
approach to the FDCS calculation for the ionization process under consideration. The
method was successfully tested at high projectile energy, namely with protons at 1 MeV.
The results were in good agreement with other theories, and especially with the absolute
scale of the WP-CCC approach [25]. In this work, we wish to explore other kinematical
situations. We extend the absolute scale comparison with the theoretical predictions of the
WP-CCC approach [25] for protons incident at 0.5 and 2 MeV and momentum transfers
varying from 0.5 to 1.75 a.u. More importantly, the main aim of this manuscript is to test
the applicability and robustness of the CQS approach to a lower incident energy regime
(75 keV) for which the absolute measurements [13] offer a serious challenge. In its present
version, the CQS approach does not yet include the capture channel, so its application in
the lower-energy regime will allow us to compare the cross-sections with those of other
theoretical approaches having the same weakness. Clearly, if our CQS approach yields an
overall similar picture and if unexplained features (in shape and/or absolute scale) subsist,
the inclusion of the capture channel will be identified as the next necessary ingredient to be
included in our approach.

Briefly, in the CQS approach [5], one treats the problem in parabolic coordinates with
the ẑ axis chosen along the incident proton momentum K0. The ionization amplitude is
represented as an expansion in the so-called basis amplitudes associated with the asymptotic
behavior of the Green’s functions of the two subsystems (e−, He+) and (p+, He+). In both
cases, the object of action of the Green’s function operator is the orthogonal complements to
the square integrable Sturmian basic functions of the parabolic coordinates. The transition
amplitude expansion coefficients are obtained as a solution to the Lippmann–Schwinger
(LS) type equation for the final-state three-body system (e−, He+, p+), in which the proton–
electron interaction is considered as a perturbation. In order to properly take into account
the p− e potential in the intermediate-energy regime under consideration, we introduce into
the Sturmian basis functions an auxiliary proton plane wave with a momentum Q = εK0,
with ε ≤ 1. Contrary to the original implementation proposed in [5], the quantity Q is
treated here as a variational parameter that is chosen according to the kinematical values
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under scrutiny. This modification in the CQS approach is necessary to obtain converged
FDCS that can be compared to the 75 keV measurements.

The paper is organized as follows. In Section 2, taking into account the asymptotic
behavior of the Green’s function of the Coulomb three-body system (e−, He+, p+) and
making the approximation of the frozen-core model for the residual helium ion, we present
the main equation of the method. Section 2.1 proposes a representation of its solution in
the form of an expansion in terms of convolutions of quasi-Sturmian functions correspond-
ing to noninteracting subsystems (e−, He+) and (p+, He+). From this expansion, which
presumably converges in the high-energy regime, we deduce the corresponding expansion
of the ionization amplitude in terms of the basis amplitudes. In Section 2.2, the matrix
representation of the equation for the expansion coefficients of the ionization amplitude
is discussed. In particular, the role of the additional pole, which owes its origin to the
modification of the exponents of the Sturmian basis functions by introducing the auxiliary
proton plane wave Q in the calculation of the matrix element of the Green’s function, is
clarified. We show that by varying Q, we can influence the accuracy of the description of
the proton–electron interaction within the framework of this approach. In Section 3, the
results of our numerical calculations are presented. First, we examine the convergence
issues of the differential ionization cross-sections, particularly with respect to the number
of terms in the representation of the proton–electron interaction and the stabilizing role
played by the variational parameter Q. Then, we make a comparison with the 75 keV
experimental data and theoretical cross-sections obtained by other authors. We also present
CQS predictions for FDCS for the cases of 0.5 and 2 MeV protons and compare them with
the results of the WP-CCC calculations [25]. Finally, Section 4 provides a summary of
this work.

Atomic units (a.u.) in which h̄ = e = me = 1 are used throughout, unless otherwise
specified.

2. Theory

We wish to study the ionization process

He(1s2) + p+ → e− + p+ + He+(1s) (1)

in which a proton with momentum K0 ionizes the target, ejecting an electron with mo-
mentum ke and energy k2

e /2. The helium nucleus will be considered at rest, and R will
denote the relative coordinate of the proton, which, in the final state, has momentum K.
In our model, we take a good ground state representation Φ(0)(r, r′) of the helium target
and make the frozen-core approximation for the residual helium ion. In the parabolic CQS
approach, the calculation of the amplitude of the ionization process reduces to solving the
inhomogeneous equation [

E− Ĥ
]∣∣∣Φ(+)

〉
= |K0, F〉. (2)

The right-hand side of (2) is the product of the plane wave

〈R |K0〉 = eiK0·R (3)

for the projectile and the matrix element

F(R, r) =
〈

ψHe+
1s

∣∣V̂i
∣∣Φ(0)

〉
(4)

of the incident channel interaction

Vi =
2
R
− 1
|R− r| −

1
|R− r′| (5)
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between the frozen electron wave function ψHe+
1s (r′) and a helium wave function Φ(0)(r, r′).

The final three-body channel Hamiltonian

Ĥ = Ĥ0 + Û (6)

is split into a separable part

Ĥ0 = − 1
2mp
∇2

R −
1
2
∇2

r +
1
R
− 1

r
(7)

and the proton–electron interaction

Û = − 1
|R− r| (8)

considered as a perturbation.
The ionization amplitude TK,ke is contained in the leading asymptotic form (for large

values of the hyperradius ρ =
√

mpR2 + r2) of the solution to the driven Equation (2):

Φ(+)(R, r) '
mp

(2π)2
(2E)3/4e

iπ
4

(2π)1/2

exp
{

i
[√

2Eρ + W0(R, r)
]}

ρ5/2
1√
2

TK,ke , (9)

where W0 is the Coulomb phase defined by [26]

W0(R, r) = − ρ√
2E

(
1
R
− 1

r
− 1
|R− r|

)
ln
(

2
√

2Eρ
)

. (10)

2.1. Parabolic Sturmians

We consider the representation of Equation (2) in the square-integrable Sturmians
defined by [27]

〈ξ, η, φ |n, m,κ〉 = eiκφ

√
2π

ϕ
|κ|
n (ξ) ϕ

|κ|
m (η), (11)

where

ϕλ
n(ρ) =

√
2bn!

(n + λ)!
(2bρ)λ/2e−bρLλ

n(2bρ), λ = |κ|, (12)

with the basis scale parameter b. The basis vectors are represented by products

|Q,N〉 ≡ |Q, n〉|m〉 (13)

of an auxiliary proton plane wave |Q〉 and two Sturmians

|n〉 ≡ |n1, n2,κ〉, |m〉 ≡ |m1, m2,−κ〉 (14)

of the parabolic coordinates ξ1, η1, φ1 and ξ2, η2, φ2 corresponding to the proton R and
electron r position vectors, respectively. Note that the introduced projectile plane wave
(it may be compared with the impact parameter model [28], where the proton part of the
wave function is approximated in a similar way) is a key ingredient of the approach, as it
allows us—albeit partially—to compensate for the oscillating term on the right-hand side
of Equation (2). In addition, as will be shown below, we exploit the freedom to choose the
value of Q in such a way as to optimize our numerical treatment of the p− e interaction.

Further, we propose to look for the solution Φ(+) in the form of an expansion∣∣∣Φ(+)
〉
= ∑

N

CN

∣∣∣S (+)
Q,N

〉
(15)
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in terms of CQS functions whose number is determined by some limits M and N to the
ranges |κ| ≤ M and nj, mj < N, j = 1, 2. The CQS functions are constructed in such a way
as to convey the asymptotic behavior (9) to the solution as completely as possible, namely∣∣∣S (+)

Q,N

〉
= Ĝ(+)

0 (E)
∣∣∣Q, Ñ

〉
, (16)

where Ĝ(+)
0 (E) =

[
E− Ĥ0

]−1 and
∣∣∣Q, Ñ

〉
= |Q, ñ〉|m̃〉 is the orthogonal complement to

the basis vectors |Q,N〉.
Here, the orthogonal complement

∣∣∣̃l〉 to each Sturmian

|l〉 = |n, m,κ〉, (17)

is defined by 〈
ξ, η, φ

∣∣∣̃l〉 =
4

ξ + η
〈ξ, η, φ|n, m,κ 〉. (18)

By comparing the CQS (16) asymptotic behavior with (9), it has been found that the
amplitude TK,ke is expressed (up to a phase factor) in terms of so-called basis amplitudes

A(+)
n and A(+)

m [5,29]:

TK,ke =
√

22π ∑
N

CNeiκ(φp−φe)A(+)
n (βp, K, Q; θp)A(+)

m (βe, ke, 0; θe), (19)

where βp =
mp
K and βe = − 1

ke
are the Sommerfeld parameters for the two subsystems

(p+, He+) and (e−, He+). Explicit analytical expressions for these basis amplitudes are
provided in [5,29]. The main numerical task consists then of calculating the coefficients CN.

2.2. Matrix Equation for the Coefficients CN

Inserting the expansion (15) into (2), and projecting by 〈Q,N|, gives the following
matrix equation:

∑
N′

[
δN,N′ −∑

M

〈N|Û|M〉
〈

Q, M̃
∣∣∣Ĝ(+)

0 (E)
∣∣∣Q, Ñ′

〉]
CN′ = 〈N|K0 −Q, F〉. (20)

In our approach, the p− e potential (8) is treated as a perturbation (in the high-energy
regime) and is approximated by a truncated Sturmian basis set (13) expansion

ÛN0 = ∑
N,M

∣∣∣Ñ〉〈N|Û|M〉〈M̃∣∣∣, (21)

whose size N0 = (2M0 + 1)N4
0 is determined by the limits M0 and N0 to the ranges

|κ| ≤ M0 and nj, mj < N0 (j = 1, 2).
It is intuitively clear that, in the general case, the LS-type equation is inapplica-

ble when taking into account the interaction Û, which is negligible compared to the
energy E. On the other hand, the presence of the proton plane wave |Q〉 in the basis
function (13) leads to the appearance of the term− Q2

2mp
in the matrix element of the operator

E− Ĥ0. Roughly speaking, the use of these modified basis functions transforms the energy
E → Ee f f = E− Q2

2mp
; as a consequence, the values of the matrix elements of the Green’s

function operator are increased. Thus, one might expect that there is an optimal value of Q
for which the p− e potential can be properly described when using the LS equation.
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The matrix elements of the Green’s function are evaluated (numerically) employing
the convolution integral representation [30,31]〈

Q, Ñ
∣∣∣Ĝ(+)

0 (E)
∣∣∣Q, Ñ′

〉
= 1

2πi
∫
C

dE〈m̃|Ĝ(+)
C (−1, 1; E)

∣∣∣m̃′〉
×〈Q, ñ|Ĝ(+)

C (1, mp; E− E)
∣∣∣Q, ñ′

〉
,

(22)

where the path of integration C is obtained by a rotation of the contour C0 through a
negative angle ϕ about some point E0 on the positive real axis (see Figure 1). In (22), Ĝ(+)

C

denotes the Green’s function Ĝ(+)
C (Z, M; E) =

[
E − ĤC

]−1 for a Coulomb system with the
Hamiltonian

ĤC = − 1
2M
∇2

X +
Z
X

, (23)

where X is the position vector.

E
e

C

E
0

C
0

E

EE
p

E  E
0

C'

Figure 1. The contour C0 goes from ∞ to −∞ just above the real axis in the electron complex energy

plane Ee. The bound-state poles of Ĝ(+)
C (−1, 1; Ee) are shown by filled circles. The integration path C

in Equation (22) is obtained by a negative angle ϕ rotation of C0, about some point E0 on the positive
real axis. C ′ is the image of the rotated contour C on the proton energy plane Ep. The unitarity branch

cuts of Ĝ(+)
C (−1, 1; Ee) and Ĝ(+)

C (1, mp; Ep) are depicted by the zigzag lines. The symbols × show the

superfluous poles E± in the matrix elements of the proton Green’s function Ĝ(+)
C (1, mp; Ep) calculated

in the basis (13).

The integration contours C and C ′ in the electron and proton complex energy planes Ee
and Ep, respectively, are presented in Figure 1. Note that the use of the modified exponents
b− i Q

2 and b + i Q
2 in the proton basis functions ϕλ

n1
(ξ1) and ϕλ

n2
(η1), respectively, leads to

the appearance of pole singularities in the matrix elements of the proton Green’s function



Atoms 2023, 11, 124 7 of 15

at momenta P± = ±Q − 2ib. The question arises as to how one should deal with the
contribution to the contour integral (22) from the superfluous ‘resonance’ pole at

E− =
P2
−

2mp
=

Q2 − 4b2

2mp
− i

2Qb
mp

, (24)

which lies on the unphysical sheet: −2π ≤ arg(Ep) < 0. The criterion here can be the

condition that the matrix of the Green’s function operator Ĝ(+)
0 must be inverse to the matrix

representation of the operator E− Ĥ0 in the basis set (13). Our numerical calculations show
that this condition is satisfied if the residue of this pole is included in the integral. The
simplest way to ensure this is to choose a sufficiently small absolute value of the contour
rotation angle:

|ϕ| < tan−1 4Qb
Q2 − 4b2 − 2mp(E− E0)

(25)

(see Figure 1). We found that in the energy regime considered in the numerical applications,
for Q ≤ K0, the residue of the pole constitutes the lion’s share of the integral (22).

From the above, it follows that the optimal choice for Q, which provides the most
accurate account of the proton–electron interaction achievable within our approach, is the
admissible value closest to K0. Above such upper bound Q0, the p − e potential can no
longer be considered as a perturbation (compared with Ee f f ), thus resulting in the very poor
convergence of the FDCS as more terms are included in the Sturmian representation (21).

2.3. Numerical Scheme

In summary, the CQS approach to calculating FDCS follows schematically the fol-
lowing steps. First, we set the limits M0 and N0 for the expansion (21) used to represent
the perturbation Û. We also calculate, for a given energy E, the Green’s function ma-
trix elements (22) by adequately choosing Q. With these elements, we solve the matrix
Equation (20) and obtain the coefficients CN. Next, we set the limits M and N for the
expansion (15) in CQS and, for given kinematical and geometrical configurations, we sum
the basis amplitudes according to (19) and obtain the ionization amplitude TK,ke . Finally,
we calculate the FDCS, which, in the laboratory frame, reads

d5σ

dEedΩedΩp
= ke

m2
p

(2π)5
K
K0
|TK,ke |

2. (26)

3. Results

All FDCS presented hereafter are on absolute scale.
We start by discussing our CQS results for the FDCS for a proton incident energy of

75 keV and ejected electrons of 5.4 eV, corresponding to the experimental situation [13].
The experimental FDCS values were measured in absolute scale for electron ejection both
into the scattering and into the perpendicular plane at different values of the transverse
momentum transfer [13], noted here η as in the paper [21].

The CQS calculations have been carried out using a quite accurate ground-state wave
function Φ(0)(r, r′) obtained by diagonalizing the helium Hamiltonian matrix representa-
tion in the complete square-integrable Laguerre basis set [32]. In this case, the ground-state
energy is E0 = −2.9033 a.u. For the value of the basis (13) scale parameter b = 1, the limits
M = 3 and N = 21 to the ranges |κ| ≤ M and nj, mj < N, j = 1, 2 are sufficient to reach
convergence for the 2C-like amplitude, i.e., the ionization amplitude (19) calculated with
the p − e potential switched off. In doing this, we put Q = 0. Then, we switch on the
p− e interaction and set the value Q = K0: it was found that for the transverse transferred
momenta η = 0.13, 0.41, 0.73, and 1.38, the FDCS diverges with the increasing size of the
matrix representation (21) of the proton–electron interaction. We thus searched for a more
adequate Q value, for each transferred momentum. Figure 2 presents the FDCS for M0 = 3
and increasing values of N0 from 5 to 9. It can be seen that the FDCS convergence for
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η = 0.13 and η = 0.41 is achieved at K0 − Q = 4, while, for η = 0.73, it is required to in-
crease K0 −Q to 5. Finally, for the largest η = 1.38, a further increase in K0 −Q is necessary.
In particular, Figure 2 shows the convergence behavior for η = 1.38 at K0 −Q = 7.

 

 

 

 N
0
 = 9

 N
0
 

 N
0
 

 N
0
 

 N
0
 

 2C-like

Q = K
0

Q = K
0

 

 

 Q = K
0

 

 

 

FD
C

S 
( 1

0-1
2  c

m
2  / 

sr
2  / 

eV
 )

Q = K
0

 

 

e degrees
Figure 2. Convergence behavior of FDCS as more terms are included in the Sturmian representation (21)
of the proton–electron potential. The kinematic conditions are Ep = 75 keV, and electrons ejected in the
scattering plane with Ee = 5.4 eV. The arrow indicates the direction of the momentum transfer q.

Figures 3 and 4 show our converged CQS results for the ionization FDCS for the
collision and perpendicular planes in comparison with the experimental data [13] and the
3C calculations [33]. These 3C results were obtained with a strongly correlated function
(CF) [33]; however, we recall that it was found that the 3C predictions for the FDCS depend
weakly on the wave function of the helium ground state. The comparison between our CQS
and the 3C model calculations is made here in order to focus on the effect of the phase factor
(corresponding to the Coulomb proton–electron interaction), which is explicitly present in
the 3C wave function.

One can observe that, for all the cases, both the experimental FDCS and the theoretical
ones (see also [16,18–21]) in the scattering plane exhibit a strong peak near the direction
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of the momentum transfer (indicated in each panel by the arrow). At the same time, the
theoretical prediction for the binary peak position is shifted towards smaller angles relative
to the experimentally observed value for all momentum transfers, except for η = 1.38.

In the perpendicular plane, the double-peak structure of the measured FDCS at
η = 1.38 is reproduced in the 3C model calculations only qualitatively (see also [18]).
Similar results were obtained in the MDC-PI [19] and CCW-PT [20] calculations. On the
other hand, our CQS calculations (see also Figure 4) do not predict this FDCS feature.

 

 

 

 

 

 

 

 
 

FD
C

S 
( 1

0-1
2  c

m
2  / 

sr
2  / 

eV
 )

 

 

e degrees
Figure 3. FDCS for electrons with an energy of 5.4 eV ejected into the scattering plane in 75-keV
p + He. Solid lines present the CQS results. Dashed lines present 3C calculations. Experiment: • from
Ref. [13]. The arrow indicates the direction of the momentum transfer q.

It should be noted that for a proper comparison between the theory and experiments,
and between theories, in Figures 2–4, all theoretical calculations and the measurements are
presented on an absolute scale. This is not the case in some other papers in which scaling
factors were purposely used to focus on shapes’ comparison. One should also keep in
mind that the calculations do not account for the uncertainties due to the finite energy and
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angular resolutions of the experiment. Overall, the magnitude of the binary peak in the
eight panels is not unreasonable. Another observation is the fact that the recoil to binary
peak ratios for the CQS approach are always larger than with the 3C model, except for
η = 1.38 and in the scattering plane (see also [18,21]). The absence of experimental points
in this angular region, however, does not permit us to favor one approach with respect to
the other.

 

 

 

 

 

 

 

 
 

FD
C

S 
( 1

0-1
2  c

m
2  / 

sr
2  / 

eV
 )

 

 

e degrees
Figure 4. Same as Figure 3 but for electrons ejected into the perpendicular plane.

To conclude, we briefly return to the choice of the proton Q value and the convergence
problem discussed above. We suspect that the difficulty arises at relatively large proton
scattering angles θp and not only at large transferred momenta. For example, the value
η = 1.38 in the case considered in the experiments corresponds to θp = 0.43 mrad. If
we consider the kinematic ionization regimes with impact energies of 0.5 and 2 MeV
(as in [25]), then θp does not exceed 0.21 and 0.11 mrad, respectively. In this case, we found
convergence of the FDCS already at Q = K0. Thus, within the framework of our approach,
it seems that it is the value of the proton scattering angle that is critically important for an
adequate description of the proton–electron interaction. Figures 5 and 6 show the CQS
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and WP-CCC [25] results at, respectively, 2 and 0.5 MeV protons, for a selection of ejected
energies and transferred momenta, noted here q = K0 −K. Since this is not always the
case when comparing calculations of different theoretical models, it is worth noting that,
here, the absolute scale is very similar; the same was observed at 1 MeV [5]. The largest
differences are observed at large values of the transferred momentum. It is especially
noteworthy that the FDCS obtained by the WP-CCC method does not give the usual sharp
two-peak structure, e.g., for q = 1.75 at E = 2.5 or 5 or 10 eV. In the CQS results, the main
peak is always surrounded by two clear minima (which are practically zero FDCS). Note
that from the discussion presented above, in our calculations, the p− e potential is taken
into account with the best accuracy achievable within the framework of our approach.
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Figure 5. FDCS for single ionization of helium by 2-MeV protons in different kinematical regimes in
the scattering plane. The ejected electron energies and momentum transfer q values are indicated in
the legend. Solid curves show the results obtained with our CQS method. The dotted lines represent
the WP-CCC results [25].
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Figure 6. Same as Figure 5 but for the incident proton energy Ep = 0.5 MeV.

4. Summary

In this paper, the CQS approach is applied to the calculation of the FDCS for
proton–helium ionization at an impact energy of 75 keV. In contrast to the case of
high projectile energy, in this intermediate regime, we are faced with the problem of
adequately describing the p− e interaction when using the LS-type equation for the three-
body system (e−, He+, p+). Specifically, in the general case, the transition amplitudes
show a lack of convergence as the number of terms in the Sturmian representation of
the proton–electron potential is increased. In order to improve the convergence rate
for small η and achieve convergence in the case of large η values, we use the auxiliary
proton plane wave momentum Q as a variable parameter, the optimal choice of which
allows us to solve this problem.

From the performed calculations, we deduced that the critically important parameter
affecting the rate of convergence of the cross-section with an increase in the size of the
p− e interaction matrix representation is not the transferred momentum η itself, but the
value of the proton scattering angle θp. To test this hypothesis, we also calculated the FDCS
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for the incident proton energies of 0.5 and 2 MeV explored in [25]. For these values, in
spite of rather significant transferred momenta, there was no need to resort to varying
the parameter Q in the CQS approach, since the FDCS convergence is already achieved
at Q = K0. As for the 1 MeV case analyzed in [5], we compared our CQS cross-sections
for 0.5 and 2 MeV with the WP-CCC predictions; globally, the shapes and the magnitudes
are quite similar, but, for specific kinematic regimes, some discrepancies are observed,
particularly in the recoil region.

For the 75 keV kinematics, considerable discrepancies in the shape of the angular
distributions are observed between the experimental data and our calculated FDCS, both
in the scattering and in the perpendicular plane. A similar overall picture is found when
comparing the measured FDCS with other theoretical predictions. It follows from our
calculations that the proper treatment of the Coulomb proton–electron potential plays a
key role at intermediate energies of the incident proton. In particular, at such energies, the
discussed ionization channel competes with the electron capture channel. This indicates
that some loosely accounted features of the dynamics in the (e−, p+) subsystem, such as
contributions to the FDCS from virtual proton–electron bound states, might be responsible
for the observed discrepancies between our CQS calculations and experiment. Thus, the
goal of our further research will be to develop our approach by improving the description
of proton–electron dynamics. The first step in this direction will be the explicit inclusion of
the proton–electron states, similar to what the authors of Ref. [34] intend to do. Specifically,
we are going to redesign the present formulation so that the role of ‘perturbation’ is played
by the interaction between the projectile and the residual ion, rather than the projectile–
electron potential (8), while the spectra of subsystems (e−, He+) and (e−, p+) are taken
into account completely in terms of the corresponding CQS functions.
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