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Abstract: The variational method is applied to the low-energy positron scattering and annihilation
problem. The ultimate aim of the investigation is to find a computationally economical way of
accounting for strong electron–positron correlations, including the effect of virtual positronium
formation. The method is applied to the study of elastic s-wave positron scattering from a hydrogen
atom. A generalized eigenvalue problem is set up and solved to obtain s-wave positron–hydrogen
scattering phase shifts within 8× 10−3 rad of accepted values. This is achieved using a small number
of terms in the variational wavefunction; in particular, only nine terms that depend on the electron–
positron distance are included. The annihilation parameter Zeff is also calculated and is found to be
in good agreement with benchmark calculations.

Keywords: theoretical atomic and molecular physics; positron; hydrogen; annihilation; phase shift;
scattering

1. Introduction

The aim of this paper is to explore a numerically frugal method of including important
electron–positron correlations in the calculations of positron (e+) scattering from atoms
and molecules. A good understanding of positron interactions with matter is a crucial
element in the development of current and future applications of antimatter [1,2]. It is also
important for tests of quantum electrodynamics [3] and fundamental experiments with
antihydrogen [4].

Since the prediction [5] and discovery [6] of the positron’s existence, many experimen-
tal and theoretical studies have been focussed on revealing the nature of its interactions
with atoms and molecules [7]. Measurements and calculations show that low-energy
positron interaction with atoms and molecules is characterized by strong electron–positron
correlations. The first of these correlation effects is polarization of the target electron
distribution by the positron. It gives rise to the attractive polarization potential with the
asymptotic form −αe2/2r4, where α is the dipole polarizability of the target, e is the charge
of the projectile (positron), and r is the distance between the positron and the target. This
polarization potential is similar to that which affects electron scattering.

The second correlation effect, which is specific to positrons, is virtual positronium
formation. Positronium (Ps) is a light hydrogen-like atom that consists of an electron and
a positron. Ps has a binding energy of EPs = 6.8 eV. For positron energies ε > EI − EPs,
where EI is the ionization energy of the target, Ps formation is an important ionization
channel in positron collisions. For targets with EI > EPs and ε < EI − EPs, the Ps formation
channel is closed. However, atomic electrons can still tunnel from an atom or molecule to
the positron to form a Ps-like state temporarily. This effect makes a distinct and sizeable
attractive contribution to the interaction of low-energy positrons with atoms and molecular
targets. At the same time, this contribution makes positron scattering and annihilation
calculations particularly challenging.

Amusia and co-workers [8] were probably the first to recognize the importance of vir-
tual Ps formation. They were able to incorporate this effect and gauge its magnitude using
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many-body theory calculations for He. (Very recently, this approach was used for positron
scattering from atoms with half-filled valence shells [9].) A more accurate approximation
for the Ps formation contribution to the positron–atom correlation potential [10] enabled
predictions of positron binding to neutral atoms [11] and reliable calculations of positron
scattering from noble gas atoms [12]. Ultimately, a consistent ab initio method for calculating
the Ps formation contribution was developed and tested [13]. It provided a complete and
accurate picture of positron scattering and annihilation from noble-gas atoms [14], and has
now been generalized to molecular calculations that can yield high-quality predictions of
positron–molecule binding energies [15].

Many-body theory allows one to identify the virtual Ps formation contributions with
a particular class of diagrams that contribute to the positron–target correlation potential.
When other approaches are used, the physical effect of virtual Ps formation is still present,
but it manifests itself in a different way. In single-center convergent close-coupling calcula-
tions of positron scattering from hydrogen, one observes it as slow convergence with respect
to the maximum orbital momentum of the electron and positron states used [16]. This
is also seen in configuration–interaction calculations of positron–atom bound states [17].
Such high-angular-momentum states are needed to describe an electron–positron pair (Ps)
localized some distance away from the atomic nucleus. This “problem” is immediately
removed, however, when a two-center approach is used, in which functions that depend
on the electron–positron distance (and hence, describe Ps) are included in the expansion
of the wavefunction [18]. It was also seen in Kohn-variational calculations [19,20] that the
inclusion of such “virtual Ps” terms in the wavefunction yields significant improvements
in the convergence of the scattering phase shifts and a pronounced enhancement of the
positron annihilation rate at energies just below the Ps formation threshold. Finally, when
the Schwinger multichannel method is used for positron scattering from molecules [21],
calculations are significantly improved by adding basis states on extra centers placed away
from the atomic nuclei [22]. In this case, such centers help to describe Ps formed virtually
outside the molecule. Such “ghost” centers are also used in the most sophisticated many-
body theory calculations of positron–molecule binding to enable the accurate description
of virtual Ps formation [15].

It can be seen from the above that a well-converged positron scattering calculation
should either include a large number of wavefunction terms centered on the nuclei or in-
clude terms with explicit dependence on the electron–positron distance. The first approach
is more straightforward numerically but may lead to very large basis sizes. The second one
is more economical but with an added complexity of dealing with a multicenter problem.
It is the latter approach that we want to explore, aiming to include as few correlation terms
as strictly necessary to obtain good-quality scattering and annihilation data.

In this paper, the scattering and annihilation of positrons is explored for the positron–
hydrogen system through use of the variational method with square-integrable trial wave-
functions. Important correlation effects, including that of virtual Ps formation, are ac-
counted for by including functions which depend on the electron–positron distance. The
variational method is set up as a generalized eigenvalue problem. From this, elastic s-wave
phase shifts δ and the annihilation parameter Zeff for the e+-H system are calculated at
energies below the Ps formation threshold. Good agreement with benchmark values of
both the phase shifts [23–25] and the annihilation parameter [26] is achieved using only
a small number of terms in the wavefunction. By providing evidence that this method is
a valid approach to the problem, avenues for future research are opened in which more
complex matter–antimatter interactions may be explored. It should be added that the
positron–hydrogen system has long been used as a testbed for various calculation methods,
with many accurate results available at both low and high energies (see, e.g., Refs. [27–29]).

The paper is structured as follows. In Section 2, we set up the generalized eigenvalue
problem which is employed to solve the scattering problem and show how to obtain the
scattering phase shifts from bound-state calculations. In Section 3, the method is applied
to elastic s-wave scattering of a positron from a hydrogen atom. Three sets of phase shift



Atoms 2022, 10, 97 3 of 20

results are presented, beginning with a simple model and progressing toward more detailed
descriptions of the system. In Section 4, the annihilation parameter Zeff is calculated using
the same trial wavefunctions as in Section 3. Section 5 summarizes the work and indicates
its future applications.

2. Scattering as a Bound-State Problem

In this section, we recap how a simple variational method can be used to calculate
s-wave elastic scattering phase shifts for scattering from an atomic target.

2.1. Generalized Eigenvalue Problem

The method begins with the choice of a trial wavefunction. Consider a system in
the state |Ψ〉 expanded in terms of a set of linearly independent square-integrable basis
functions {|ϕi〉}N

i=1 which, in general, are neither normalized nor orthogonal:

|Ψ〉 =
N

∑
i=1

ci |ϕi〉 . (1)

This basis is chosen at the beginning of the problem, and the coefficients ci are the variational
parameters.

Central to the problem is the minimization of the energy functional,

〈E〉 = 〈Ψ| Ĥ |Ψ〉 , (2)

with respect to the parameters ci, whilst holding 〈Ψ|Ψ〉 = 1. The minimum energy calcu-
lated using a trial wavefunction provides an upper bound on the exact ground-state energy
of the system.

The normalization constraint is imposed during the minimization through use of a
Lagrange multiplier E. At the minimum (or a stationary point), we require

∂

∂ck

[
〈Ψ| Ĥ |Ψ〉 − E(〈Ψ|Ψ〉 − 1)

]
= 0, k = 1, . . . , N. (3)

Substituting the expansion of |Ψ〉 from (1) into (3) gives a system of N linear equations.
Assuming that the ci values are independent of each other, performing partial differentiation
with respect to a particular ck yields the following:

∑
j

cj 〈ϕk| Ĥ |ϕj〉+ ∑
i

ci 〈ϕi| Ĥ |ϕk〉 − E

(
∑

j
cj 〈ϕk|ϕj〉+ ∑

i
ci 〈ϕi|ϕk〉

)
= 0. (4)

Since the matrix elements of the Hamiltonian are real (assuming real basis functions |ϕi〉),
the first two sums in (4) are identical and hence may be combined. Similarly, the scalar
product of any two basis functions in our problem is real, and the second pair of sums may
also be combined. This results in the following equation:

∑
i
〈ϕk| Ĥ |ϕi〉︸ ︷︷ ︸

Hki

ci = E ∑
i
〈ϕk|ϕi〉︸ ︷︷ ︸

Qki

ci, (5)

where Hki and Qki are the elements of matrices H and Q, respectively. Hence, (5) takes the
form of a matrix equation:

Hc = EQc, (6)

where the vector c contains the ci values.
The eigenvalues En of the generalized eigenvalue problem (6) are energy eigenvalues

of the system with Hamiltonian Ĥ, with the state |Ψ〉 defined by coefficients ci, i.e., the
elements of the corresponding eigenvector. For a system that has a few bound states or no
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bound states at all, most of the energy eigenvalues will lie in the continuum. The corre-
sponding states |Ψ〉, often called pseudostates, will not be the true states of the system that
represent scattering states. However, it is possible to use the energies and wavefunctions
of the pseudostates to determine important properties of the scattering states, e.g., phase
shifts or (for positrons) the normalized annihilation rate Zeff.

In this work, the generalized eigenvalue problem is solved using Python’s eigh func-
tion [30] which, given matrices H and Q, provides the energy eigenvalues and normalized
eigenvectors of the system.

2.2. Scattering Phase Shifts

Once the energy eigenvalues have been calculated, they can be used to find the phase
shifts δ, e.g., for s-wave scattering. This assumes that the target is spherically symmetric
and states |Ψ〉 have zero total angular momentum. The method used by Gribakin and
Swann in [31] is implemented here. Firstly, the eigenvalue problem is solved for a free
particle, i.e., using a chosen basis-state expansion but neglecting the interaction between
the projectile and the target in Ĥ. The free-particle energy eigenvalues are denoted E(0)

n
and increase monotonically with n. Hence, it is possible to introduce an invertible function
f (n) such that

f (n) = E(0)
n (7)

for n = 1, . . . , N. Next, the eigenvalue problem is solved with the full Hamiltonian using
the same basis. The corresponding eigenvalues En are shifted with respect to those in
equation (7), which can be written as

En = f
(

n− δ

π

)
, (8)

where δ is the phase shift [31].
Rearranging (8), the phase shifts may be extracted as a function of the energy eigen-

values En:

δ =
[
n− f−1(En)

]
π. (9)

With the introduction of a phase shift δ, the function f (n) must now be defined for real
values of n, and equivalently, its inverse must be defined for values of energy other than
the free-particle energy eigenvalues. The value of f−1(E) for these intermediate values
of energy may be found by interpolating between the free-particle energy eigenvalues.
However, for particular bases, e.g., those using even-tempered exponents, the function f (n)
varies rapidly and is difficult to interpolate accurately. In this case, a new function g(ln E)
can be defined, such that f−1(E) ≡ g(ln E); this function changes more slowly, making
accurate interpolation possible. In the problems that follow, this interpolation is completed
using a cubic spline fit to the data for integer n. The phase shift may then be calculated as

δ = [n− g(ln En)]π. (10)

In the following analysis, the phase shift will be considered as a function of momentum
k =
√

2E rather than energy E, where we use atomic units and assume that the projectile
(positron) has a unit mass and set E = 0 at the continuum threshold.

3. Calculation of Elastic s-Wave Positron–Hydrogen Phase Shifts

In this section, the variational method is used to calculate elastic scattering phase shifts
for a positron scattering from a hydrogen atom. The calculation is restricted to s-wave
scattering which dominates at low positron energies.
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3.1. One-Particle Problem

To test the method, we consider the simple problem of positron scattering from a
“frozen” hydrogen atom. In this case, the wavefunction depends only on the distance
between the positron and the nucleus. Figure 1 contains a schematic diagram of the system
with the interparticle distances labeled.

r12r1

r2

e−

e+p+

Figure 1. A diagram of the positron–hydrogen system with the interparticle distances labeled.

In the frozen-target approximation, the electron moves in the field of the nucleus
(considered infinitely massive) and is “fixed” in the ground (1s) state of the atom. The
dependence of the wavefunction on r12 is neglected. Hence, the total wavefunction becomes
a product of the 1s electron wavefunction and the unknown positron wavefunction, which
we denote Ψ(r), with r ≡ r2. Considering Ψ(r) as the wavefunction of the radial motion,
the boundary condition at the origin Ψ(0) = 0 is imposed. In this problem, we select a trial
wavefunction of the form

Ψ(r) = r
N

∑
i=1

ci exp(−βir), (11)

where ci are variational parameters and βi are chosen real exponents. The corresponding
basis functions are

ϕi(r) = r exp(−βir), i = 1, . . . , N. (12)

In the following calculations, the exponents βi are chosen as

βi = β1ζ i−1, i = 1, . . . , N, (13)

i.e., forming an even-tempered basis, with ζ = 1.5, N = 20 and β1 = 0.01.
The elements of matrix Q are calculated as follows:

Qij =
∫ ∞

0
ϕi(r)ϕj(r)dr =

2
(βi + β j)3 . (14)

Next, the Hamiltonian for the system is considered1. The electrostatic potential of the
ground-state hydrogen atom is (see, e.g., Ref. [32], §36, Problem 2):

Û =
1
r
+ φe(r) =

(
1
r
+ 1
)

e−2r, (15)

where φe(r) is the mean-field potential of the electron cloud and the 1/r term accounts for
the positron-nucleus interaction.

In addition to Û, the Hamiltonian of the radial motion of the positron contains its
kinetic energy, hence

Ĥ = −1
2

d2

dr2 +

(
1
r
+ 1
)

e−2r. (16)
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The Hamiltonian matrix elements are calculated as follows:

Hij =
∫ ∞

0
ϕi(r)

(
−1

2
d2 ϕj(r)

dr2

)
dr +

∫ ∞

0
ϕi(r)

(
1
r
+ 1
)

e−2r ϕj(r)dr,

= −1
2

βiβ j

(βi + β j)3 +
βi + β j + 4

(βi + β j + 2)3 . (17)

The generalized eigenvalue problem (6) for the matrices (14) and (17) was then solved using
a simple Python code, and the phase shifts were calculated as described in Section 2.2.

Figure 2 is a plot of n against ln E for the basis (13). It explains how the phase shifts
are found from the pseudostate energy eigenvalues. By construction, for the free-positron
eigenvalues E(0)

n (obtained using Ĥ = − 1
2 d2/dr2), the function g(ln E(0)

n ) takes integer
values, but for the eigenvalues En of the positron in the static hydrogen potential, this
function takes non-integer values n− δ/π, which yield δ for specific positron energies En.

12 10 8 6 4 2 0 2 4 6 8
ln(E)

0
2
4
6
8

10
12
14
16
18
20

n

Figure 2. Red circles: values of n = 1, 2, . . . plotted against ln E(0)
n . Black line: the function n = g(ln E)

obtained using cubic-spline interpolation between the free-particle eigenvalue data. Yellow circles:
the points on the interpolated curve for the positron energies En in the static hydrogen potential.
From this, it can be seen that ln En corresponds to non-integer ordinates n− δ/π.

The phase shifts for low-momentum positrons were compared to those obtained from
a numerical solution of the radial Schrödinger equation in the static hydrogen potential
(obtained using the codes described in [33]). This comparison is displayed in Figure 3. There
is a good agreement between these sets of data, especially at low momenta k, providing
evidence that the present variational method allows one to extract the scattering phase
shifts from a simple bound-state calculation.
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k/a.u.

0.4

0.3

0.2

0.1

0.0

/ra
d

Figure 3. Positron–hydrogen s-wave scattering phase shifts in the static approximation. Red data
points: phase shifts obtained using the present variational method. Black line: data obtained by
solving the radial Schrödinger equation using the suite of codes described in [33].

3.2. Two-Particle Problem

In this section, a full two-particle dynamics of positron scattering from a hydrogen
atom is considered. Here, the electron is no longer fixed in the 1s state of the hydrogen
atom and generally, the wavefunction for this system will depend on the distances between
all three pairs of particles2, as labeled in Figure 1. A wavefunction of the following form
will be considered:

Ψ(r1, r2, r12) =
N

∑
i=1

ci exp(−αir1 − βir2 + γir12), (18)

where the values of coefficients αi, βi and γi are chosen and the constants ci are the
variational parameters. The integrals to be evaluated in this section are greatly simplified
by using the elliptic (Hylleraas [34]) coordinate system (s = r1 + r2, t = r1 − r2, u = r12), so
these coordinates are employed to carry out all of the calculations. The full set of standard
integrals used is found in Appendix A. Our calculations begin with a simplified version
of (18) using a single value of αi = 1 and γi = 0, i.e., equivalent to the frozen-target
approximation of Section 3.1, gradually building toward the more general case. With each
added element of flexibility in the wavefunction, a more accurate solution to the scattering
problem is obtained.

Labeling the basis functions

ϕi(r1, r2, r12) = exp(−αir1 − βir2 + γir12), (19)

elements of the overlap matrix Q are calculated as follows:

Qij =
∫

ϕi ϕjdτ, (20)

where dτ = π2(s2 − t2)uds dt du is the volume element, and the integration is over 0 ≤ s <
∞, 0 ≤ u ≤ s, −u ≤ t ≤ u. Substituting ϕi from (19) into (20), we find the overlap integral
in the form

Qij =
∫

exp
[
2(−Aijs− Bijt + Γiju)

]
dτ, (21)
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where

Aij =
1
4
(αi + βi + αj + β j), (22)

Bij =
1
4
(αi − βi + αj − β j), (23)

Γij =
1
2
(γi + γj). (24)

This integral shares its structure with the standard integral Ĩ1 from Appendix A; hence,

Qij = Ĩ1(Aij, Γij, Bij). (25)

The Hamiltonian operator of the system is given by

Ĥ = −1
2
∇2

1 −
1
2
∇2

2 −
1
r1

+
1
r2
− 1

r12
. (26)

The first two terms represent the kinetic energy of the electron and positron T̂. The third
and fourth terms describe the interaction of the electron and positron with the nucleus Û,
and the final term represents the electron–positron interaction V̂. Hence, the Hamiltonian
matrix element Hij is considered as the sum of three contributions:

Hij = Tij + Uij + Vij. (27)

In the elliptic coordinates, the expectation value of the kinetic energy takes the form

〈Ψ| T̂ |Ψ〉 =
∫ {(

∂Ψ
∂s

)2
+

(
∂Ψ
∂t

)2
+

(
∂Ψ
∂u

)2

+
2

u(s2 − t2)

∂Ψ
∂u

[
s(u2 − t2)

∂Ψ
∂s

+ t(s2 − u2)
∂Ψ
∂t

]}
dτ. (28)

Replacing one of the Ψ by φi and the other by φj, and mapping the integrals that arise to
the set of standard integrals in Appendix A, one obtains

Tij =
1
4
[
(αi + βi)(αj + β j) + (αi − βi)(αj − β j) + 4γiγj

]
Ĩ1(Aij, Γij, Bij)

−γi
[
(αj + β j) Ĩ2(Aij, Γij, Bij) + (αj − β j) Ĩ3(Aij, Γij, Bij)

]
. (29)

The matrix element of the electron and positron interaction with the nucleus is

Uij =
∫

ϕi

[
− 2

s + t
+

2
s− t

]
ϕjdτ. (30)

This integral is reduced to the standard integrals J̃1 and J̃3 (Appendix A), which gives

Uij = −2[ J̃1(Aij, Γij, Bij)− J̃3(Aij, Γij, Bij)] + 2[ J̃1(Aij, Γij, Bij) + J̃3(Aij, Γij, Bij)]. (31)

Clearly, the J̃1 terms will cancel here. However, when calculating the free-positron energy
eigenvalues, only the first bracketed term on the right-hand side of this equation is required,
since the positron–nucleus interaction (second term) is not included in the free-positron
Hamiltonian. When both of the Coulomb terms are included, the expression simplifies to

Uij = 4 J̃3(Aij, Γij, Bij). (32)
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Lastly, the matrix element of the electron–positron Coulomb interaction is given by

Vij = −
∫

ϕi
1
u

ϕjdτ. (33)

This integral reduces to the standard integral J̃2 in Appendix A to give

Vij = − J̃2(Aij, Γij, Bij). (34)

Combining the results in (29), (32) and (34), an expression for the Hamiltonian matrix
element is obtained:

Hij =
1
4
[
(αi + βi)(αj + β j) + (αi − βi)(αj − β j) + 4γiγj

]
Ĩ1(Aij, Γij, Bij)

− γi
[
(αj + β j) Ĩ2(Aij, Γij, Bij) + (αj − β j) Ĩ3(Aij, Γij, Bij)

]
+ 4 J̃3(Aij, Γij, Bij)− J̃2(Aij, Γij, Bij). (35)

Note that for γi 6= 0, the matrix element (35) derived using equation (28) is not symmetric,
i.e., Hij 6= Hji. Hence, Hij must be replaced by the symmetrized combination

H′ij =
1
2
(Hij + Hji), (36)

before solving the generalized eigenvalue problem (6), which is consistent with the deriva-
tion in Section 2.1.

After setting up the Hamiltonian and overlap matrices, the generalized eigenvalue
problem (6) is solved for the energy eigenvalues and eigenvectors. The eigenvalues for
the free positron (omitting the positron–nucleus and positron–electron interaction terms)
and those for the full Hamiltonian are analyzed to extract the phase shifts, as outlined
in Section 2.2. It is noted here that solving (6) provides energy eigenvalues of the whole
system. Hence, to obtain the positron energies E(0)

n and En, the energy of the ground-state
hydrogen atom (−0.5 a.u.) must be subtracted from the eigenvalues.

3.2.1. Reproducing the Frozen-Target Results.

In the first instance, the frozen-target problem is revisited to check that the two-
particle code produces the same results as the one-particle code. The dependence of the
wavefunction on r12 is eliminated by setting γi = 0. In addition, the electron is fixed in the
ground state by setting αi = 1. These restrictions will subsequently be lifted to allow the
electron to move and to account for the electron–positron correlations. As before, describing
the positron requires a wide range of exponents βi, which are defined as in (13).

Taking all of this into account, we have the following wavefunction:

Ψ(r1, r2) =
N

∑
i=1

ci exp[−r1 − βir2]. (37)

Figure 4 shows that the corresponding phase shifts match those from the one-particle
problem 3.1. Figure 4 also shows the phase shifts over a larger range of positron momenta.
As expected, at large projectile energies, the scattering phase shift tends to zero. Note also
that the phase shift is negative at all energies. This is a consequence of the positron–atom
interaction being repulsive in the frozen-target approximation.
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Figure 4. Positron–hydrogen s-wave scattering phase shifts in the static approximation calculated
using a two-particle model (red circles), plotted over two contrasting ranges of k. The meaning of the
black curve is the same as in Figure 3. Agreement with Figure 3 can be noted.

3.2.2. Variation of α: Radial Correlations.

To probe the effect of electron–positron radial correlations, the wavefunction is aug-
mented by including extra terms with αi 6= 1. Physically, this adjustment allows the
incident positron to cause displacement of the atomic electron in the radial direction due
to the attraction between the two particles. Inclusion of a term, or several terms, in the
wavefunction with αi = 0.5 will facilitate this type of distortion. The wavefunction in this
case is written as

Ψ(r1, r2) =
N

∑
i=1

ci exp[−αir1 − βir2]. (38)

For now, the restriction on the γi parameters remains in place, in that γi = 0 and the
dependence of the wavefunction on the electron–positron distance is neglected. Note that
this approximation corresponds to the so-called Temkin–Poet model that was used earlier
to test electron–hydrogen and positron–hydrogen scattering [35].

Firstly, a single term is added with αi = 0.5 and βi = 0.4. This value of βi is chosen
because we expect radial correlations to be important when the positron is close to the
hydrogen atom. At such distances, it is most likely to attract the electron sufficiently to
cause significant distortion. Terms with αi = 0.5 and a full range of βi values are not
immediately introduced because we aim to achieve good accuracy with as few correlation
terms as possible. Hence, extra terms are introduced individually to test their importance: if
a notable change in the phase shift is seen by adding a particular term, the term is retained
and used in the basis. If not, the term is discarded and a different choice is made.

Phase shifts were obtained for various sets of parameters, using up to 20 additional
terms. It was found that overall, the effect on the phase shift from adding these terms is
small. In Figure 5, a set of results is displayed for a calculation with just three additional
terms in the basis, which were found to generate a close-to-maximum shift from the
frozen-target results (with αi = 0.5 and βi = 0.2, 0.4, 1.0).

A comparison of Figure 5 with Figure 4 shows that the phase shifts have become
slightly less negative due to the addition of the extra terms. This means that electron–
positron correlations make the positron–atom interaction less repulsive than in the frozen-
target case. However, the overall effect of allowing for the radial correlations between the
electron and positron remains very small.
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Figure 5. Phase shifts obtained by addition of three terms with αi 6= 1 to the basis. Black line:
numerical solution of the radial Schrödinger equation in the static potential of the hydrogen atom
included for comparison.

3.2.3. Nonzero γ: Effect of Angular Correlations.

In this section, the flexibility of the wavefunction is increased further by allowing for
nonzero values of γi, so that the wavefunction takes the most general form

Ψ(r1, r2, r12) =
N

∑
i=1

ci exp(−αir1 − βir2 + γir12). (39)

The addition of r12-dependence to the wavefunction allows for much stronger correlation
between the positron and the electron. Physically, these terms account for effects such as
virtual Ps formation and polarization of the atom by the positron. In particular, setting
γi = −0.5 corresponds to the ground-state Ps wavefunction, allowing the calculation to
account for the effect of virtual positronium formation. Note that formation of “real”, free
Ps is not possible in the chosen energy range, as the incident positron momenta are kept
below the Ps formation threshold.

In general, terms with any values of βi and γi may be used, provided that

βi − γi > 0, (40)

to ensure that Ψ(r1, r2, r12)→ 0 for r2 → ∞.
Taking all of this into consideration, an initial basis was set up identically to that in

the frozen-target problem with all values of γi = 0 and αi = 1. The nonzero γi terms were
added one by one. Quasi-optimal values of the parameters for these extra terms were
selected by completing the calculations for different sets of exponents and keeping the
term which caused the largest upward change in the phase shifts overall. In the present
approach, larger phase shifts are obtained when the energy eigenvalues En are lower
relative to E(0)

n . In a variational calculation, lower energy eigenvalues are obtained when
better wavefunctions are used. Hence, it is correct to assume that the best possible choice
of terms to add to the basis is that which yields the largest values for the phase shifts.
Physically, including electron–positron correlations allows for positron attraction to the
atom, increasing the value of the phase shift. Small adjustments are made to all three
parameters near the optimum to ensure the best possible value of each parameter, correct
to two decimal places.

For a single correlation term, the optimal values of α, β and γ were found to be
α = 0.80, β = 0.04 and γ = −0.54. Once the first term had been optimized, a second
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was added. The values of the parameters for this term were also selected in the manner
described above. With each additional term, an improvement (i.e., increase) in the phase
shift values is seen.

This process of adding an individual term may be continued for as many terms as
required to reach a desired level of accuracy. However, our aim was to achieve good
accuracy using as few terms as possible. Hence, the process was terminated after including
a maximum of nine additional terms, yielding a basis with a total of 29 functions.

Figure 6 is an overview of the phase shifts obtained using one, three, five and nine
additional terms. These results are also shown in Table 1. Details of the parameters used in
these calculations can be found in Appendix B. The results obtained here can be compared to
the accurate phase shifts, such as those calculated by Schwartz [23] or, later, by Humberston
et al. [24]. In Figure 6, the frozen-target phase shifts are also plotted as a lower bound, while
the accurate results from a Kohn variational calculation by Humberston et al. [24] provide
an upper bound. It is remarkable that including a single well-chosen correlation term with
α = 0.80, β = 0.04 and γ = −0.54 provides about 80% of the increase in the phase shift
with respect to the uncorrelated frozen-target result. Adding the next few correlation terms
brings the variational phase shift to within 0.01 rad of the benchmark result.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
k / a.u.

0.3

0.2

0.1

0.0

0.1

0.2

 / 
ra

d

Figure 6. Positron–hydrogen s-wave scattering phase shifts obtained using various numbers of terms
with γi 6= 0 in the wavefunction (colored circles, blue: one term, green: three terms, yellow: five terms,
red: nine terms). Details of the parameters used in each wavefunction can be found in Appendix B.
Pink circles are the Kohn variational calculations of Humberston et al. [24], which are connected by
the dashed line to guide the eye. The black solid line is the result of the frozen-target approximation.

In Figure 7, the final phase shifts obtained using all nine correlation (i.e., nonzero γi)
terms are displayed. Compared with an interpolation of the Kohn variational results of
Humberston et al. [24], agreement is seen to within 8× 10−3 rad. In Table 2, the present
results obtained with nine correlation terms are shown alongside the results of Ref. [24]
interpolated to the same momentum values. This level of agreement provides evidence
that the method employed here is a valid approach to the positron scattering problem, and
that it is possible to obtain good-quality scattering data from a bound-state-type calculation
that contains only a small number of correlation terms in the wavefunction.
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Table 1. Results from positron–hydrogen s-wave phase shift calculations with wavefunctions con-
taining NE = 1, 3, 5 and 9 terms with nonzero γi to describe electron–positron correlations (see
Appendix B). Phase shift values are shown for the first 11 eigenvalues En.

NE 1 3 5 9

n k/a.u. δ/rad k/a.u. δ/rad k/a.u. δ/rad k/a.u. δ/rad

1 0.0046 0.0049 0.0046 0.0063 0.0046 0.0075 0.0046 0.0082
2 0.0104 0.0115 0.0104 0.0145 0.0104 0.0176 0.0104 0.0189
3 0.0183 0.0201 0.0183 0.0257 0.0183 0.0307 0.0183 0.0334
4 0.0299 0.0326 0.0299 0.0415 0.0299 0.0494 0.0299 0.0526
5 0.0470 0.0504 0.0470 0.0638 0.0470 0.0752 0.0470 0.0807
6 0.0725 0.0748 0.0725 0.0938 0.0725 0.1086 0.0725 0.1130
7 0.1107 0.1051 0.1107 0.1296 0.1107 0.1449 0.1107 0.1509
8 0.1680 0.1335 0.1680 0.1597 0.1680 0.1725 0.1680 0.1770
9 0.2540 0.1384 0.2540 0.1593 0.2540 0.1713 0.2540 0.1791

10 0.3834 0.0841 0.3834 0.0957 0.3834 0.1176 0.3833 0.1204
11 0.5782 −0.0512 0.5782 −0.0378 0.5782 −0.0163 0.5781 0.0120

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
k/a.u.

0.05

0.00

0.05

0.10

0.15

/ra
d

Figure 7. Positron–hydrogen s-wave scattering phase shifts obtained using nine nonzero γi terms in
the wavefunction with various αi, βi and γi values (red circles). Details of the parameters used in this
wavefunction can be found in Appendix B. Pink circles connected by the dashed line are calculations
of Humberston et al. [24].

Table 2. Results from positron–hydrogen s-wave phase shift calculations with nine γi 6= 0 terms
in the wavefunction (see Appendix B) for the first 11 energy eigenvalues En. The phase shifts of
Humberston et al. [24] δH interpolated to the same values of k are also shown.

n k/a.u. δ/rad δH/rad Error/rad

1 0.0046 0.0082 0.0100 0.0018
2 0.0104 0.0189 0.0219 0.0030
3 0.0183 0.0334 0.0375 0.0041
4 0.0299 0.0526 0.0586 0.0059
5 0.0470 0.0807 0.0862 0.0055
6 0.0725 0.1130 0.1202 0.0071
7 0.1107 0.1509 0.1564 0.0055
8 0.1680 0.1770 0.1835 0.0065
9 0.2540 0.1791 0.1815 0.0024
10 0.3833 0.1204 0.1287 0.0083
11 0.5781 0.0120 0.0163 0.0043
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4. Calculation of the Annihilation Parameter

In this section, the quality of the variational wavefunctions constructed as described in
Section 3 is probed by calculating the normalized annihilation rate, Zeff. Zeff is the effective
number of electrons available to the positron for annihilation [36]. For a positron incident
on the hydrogen atom, it is given by [13]:

Zeff =
∫∫

δ(r1 − r2)|Ψk(r1, r2)|2d3r1d3r2, (41)

where the wavefunction is normalized to the incident positron plane wave, i.e., Ψk(r1, r2) '
ψ1s(r1) exp(ik · r2), or, for s-wave positron scattering, Ψk(r1, r2) ' ψ1s(r1) sin(kr2 + δ)/kr2.

Carrying out the integration over r1 and renaming r2 ≡ r gives

Zeff =
∫
|Ψk(r, r)|2d3r. (42)

In this integral, |Ψk(r, r)|2 is the electron–positron contact density localized near the atom.
Unlike the scattering phase shifts which characterize the wavefunction at large positron
distances, the Zeff parameter probes the wavefunction at small positron–atom separa-
tions. Here, the bound-state-type variational wavefunction Ψ is proportional to the true
continuous spectrum wavefunction Ψk, i.e., we have

Ψ(r1, r2) =
A√
4π

Ψk(r1, r2), (43)

where A is a normalization constant. For s-wave scattering, the normalization constant is
obtained from the energy eigenvalue spectrum as (see Ref. [31] for details)

A2 =
2
√

2E
π

dE
dn

. (44)

The wavefunctions Ψ generated by solving the generalized eigenvalue problem (as
outlined in Section 3) are automatically normalized to unity. Hence, to achieve the correct
normalization, these wavefunctions must be divided by A when calculating Zeff from (42).
The value of A is calculated for each eigenfunction by substituting the corresponding energy
eigenvalue into (44). The derivative dE/dn is evaluated using the function n = g(ln E)
from Section 3 and the fact that

dE
dn

= E
d ln E

dn
. (45)

This facilitates a more accurate calculation of the derivative than that obtained by directly
calculating dE/dn.

The annihilation parameter is first calculated in the frozen-target approximation, after
which the two-particle problem is considered to include electron–positron correlations.

4.1. One-Particle Calculation

In the one-particle frozen-target calculation, the wavefunction only depends on the
positron radial coordinate r. The trial wavefunction (11) is employed for this calculation.
The ci values calculated previously are used again here, but each eigenfunction is divided
by A to fulfill the normalization condition (43).

In Figure 8, the eigenfunctions obtained using the present method are divided by A
and multiplied by

√
k/π, and they are compared to the true continuous-spectrum radial

function Pk(r) obtained by solving the radial Schrödinger equation [33] and normalized as

Pk(r) '
sin(kr + δ)√

πk
. (46)
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For small r, these were found to be in good agreement. As the energy eigenvalues increase,
the range of r over which the wavefunctions closely match decreases. However, there is
always a very good match at r ∼ 1 a.u., which dominates in the calculation of Zeff.
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Figure 8. Eigenfunctions obtained from solving the generalized eigenvalue problem (6) in the static
approximation (red) and those obtained using the atomic codes [33] (black) for n = 2, 4, 6 and 8.

The following integral is used to evaluate Zeff in this problem [13]:

Zeff =
1

A2

∫ ∞

0
P2

1s(r)Ψ
2(r)r−2dr, (47)

where P1s(r) = 2re−r is the ground-state radial wavefunction of the hydrogen atom.
Substituting (11) into (47) gives the following expression for the annihilation parameter:

Zeff =
8

A2

N

∑
i,j=1

cicj

(2 + αi + αj)3 . (48)

Figure 9 shows the corresponding frozen-target Zeff values and compares them with those
obtained using true continuous-spectrum positron states in the same approximation [13,33].
Apart from some “noise” related to inaccuracies in the calculation of the normalization con-
stant A at low energies, there is a good general agreement between the two sets of results.
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Figure 9. Red circles: values of Zeff obtained in the one-particle model with variational wavefunctions
from (48). Black line: Zeff data obtained for the frozen-target model from atomic codes [13,33].

4.2. Two-Particle Calculation

In this section, the annihilation parameter is calculated for the two-particle problem.
Firstly, the frozen-target results are reproduced by the two-particle code, using a wave-
function with the form of (39) with all αi = 1 and γi = 0. After verifying that the results
match those from the one-particle calculation, these restrictions on the αi and γi values are
lifted, and the full correlated wavefunction is used, subject to (40). Here, it is noted that
r12 = 0 in the Zeff calculation, so exp(γir12) = 1 for each of the γi. In addition, r1 = r2 ≡ r
is required, and the wavefunction takes the form

Ψ(r, r, 0) =
N

∑
i=1

ci exp[−(αi + βi)r]. (49)

As before, the ci coefficients are calculated such that the eigenfunctions are normalized to
unity. Hence, the normalization must be corrected to satisfy (43) using the value of A for
each eigenfunction.

In this case, evaluation of the integral (42) with the wavefunction (49) yields the
following expression for Zeff:

Zeff =
16π2

A2

∫ ∞

0
|Ψ(r, r, 0)|2r2dr =

32π2

A2

N

∑
i,j=1

cicj

(αi + αj + βi + β j)3 . (50)

The coefficients ci in this calculation differ from those in the one-particle calculation by
a factor of 1/2π. Taking this into account, the equivalence of the one- and two-particle re-
sults can be verified by setting αi = αj = 1 in (50) to recover the result from the frozen-target
approximation (48). Here, however, the focus is on including terms in the wavefunction to
describe electron–positron correlations.

When incorporating correlation terms, the same sets of αi, βi and γi parameters are
used in the basis as for the phase shift calculations in Section 3.2.3 (the values of which are
listed in Appendix B). The accuracy of the Zeff calculation does not increase monotonically
with the number of correlation terms included the wavefunction, unlike the case of the
phase shifts determined by the energy eigenvalues alone. This is shown in Figure 10,
where the overall results obtained using one correlation term are more accurate than
those obtained using three correlation terms. However, the most accurate set of values
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was obtained for the wavefunction with the maximum (nine) correlation terms included.
The Zeff values from [26] are used as benchmark values to evaluate the accuracy of our
calculation. The results from the final calculation are displayed in Table 3 alongside those
from [26] interpolated to the same values of momentum.

Table 3. Zeff values obtained using a wavefunction with nine nonzero γi terms (Appendix B) to
describe electron–positron correlations and the benchmark results from [26] (Zeff,H) interpolated to
the same values of momentum.

k/a.u. Zeff Zeff,H Error

0.0046 9.2538 9.6013 0.3475
0.0104 8.1989 9.4644 1.2655
0.0183 8.4351 9.2767 0.8416
0.0299 8.2262 9.0083 0.7821
0.0470 8.0325 8.6212 0.5887
0.0725 7.6456 8.0667 0.4211
0.1107 6.9813 7.2876 0.3063
0.1680 6.0719 6.2319 0.1600
0.2540 4.8017 4.8951 0.0934
0.3833 3.6024 3.4371 −0.1653
0.5781 2.0695 2.3833 0.3138
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Figure 10. Zeff values obtained in the two-particle model using one (green), three (yellow), five (pink)
and nine (red) terms in the wavefunction to describe correlations between the electron and positron.
Black circles and line: results from [26] and their interpolation using cubic splines.

Overall, good agreement between our results and the benchmark values is found in
the range k = 0.1–0.6 a.u. using a trial wavefunction with nine nonzero γi terms. Apart
from two data points, the accuracy of our variational calculation is better than 10%, which
is evidence of the good quality of the wavefunction that incudes only a small number of
correlation terms.
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5. Conclusions

The variational method was explored as a means of studying positron–hydrogen
scattering and annihilation using square-integrable trial wavefunctions. By setting up and
solving a generalized eigenvalue problem, s-wave elastic phase shifts and Zeff values for
the positron–hydrogen system were obtained in good agreement with benchmark values.
Importantly, this was achieved using only a small number of correlation terms in the
trial wavefunction, indicating that processes such as virtual positronium formation and
polarization of the hydrogen atom can be accounted for using this approach.

Looking forward, this method could facilitate the study of more complex interactions,
such as the interaction of positrons with molecules. The key benefit of our approach is the
small number of terms required to describe strong electron–positron correlations, meaning
that the method is quite economical. To improve upon the current approach, a formal
optimization of the trial wavefunction parameters could be performed to increase the
accuracy of the calculation. With such a process in place, it would become possible to carry
out more complex calculations efficiently.
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Appendix A. Standard Integrals

This appendix contains results for the six standard integrals employed throughout
our calculations. These are evaluated using the elliptic coordinate system: s = r1 + r2,
t = r1 − r2 and u = r12:

Ĩ1(a, b, g) = π2
∫ ∞

0
ds e−2as

∫ s

0
du ue2bu

∫ u

−u
dt e−2gt(s2 − t2)

= π2 8a3 − 13a2b + 6ab2 − b3 + bg2

8a3((a− b)2 − g2)3 , (A1)

Ĩ2(a, b, g) = π2
∫ ∞

0
ds se−2as

∫ s

0
du e2bu

∫ u

−u
dt e−2gt(u2 − t2)

= π2 5a2 − 6ab + b2 − g2

8a2((a− b)2 − g2)3 , (A2)

Ĩ3(a, b, g) = π2
∫ ∞

0
ds e−2as

∫ s

0
du (s2 − u2)e2bu

∫ u

−u
dt te−2gt

= π2 g(−5a2 + 6ab− b2 + g2)

8a3((a− b)2 − g2)3 , (A3)

J̃1(a, b, g) = π2
∫ ∞

0
ds se−2as

∫ s

0
du ue2bu

∫ u

−u
dt e−2gt

= π2 (a− b)2(4a− b)g + bg3

8a2g((a− b)2 − g2)3 , (A4)
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J̃2(a, b, g) = π2
∫ ∞

0
ds e−2as

∫ s

0
du e2bu

∫ u

−u
dt e−2gt(s2 − t2)

= −π2−5a2 + 4ab− b2 + g2

8a3((a− b)2 − g2)2 , (A5)

J̃3(a, b, g) = π2
∫ ∞

0
ds e−2as

∫ s

0
du ue2bu

∫ u

−u
dt te−2gt

= −π2 (a− b)g
2a((a− b)2 − g2)3 . (A6)

Appendix B. Parameters for Positron-Scattering Wavefunction Bases

The positron–hydrogen wavefunctions used in Sections 3.2 and 4.2 all contain the 20
basis functions defined by (13) with n = 20, ζ = 1.5 and β1 = 0.01 (where all αi = 1 and
γi = 0). Additional terms with varying αi and nonzero γi values were then incorporated
to account for electron–positron correlations. The table below contains the sets of quasi-
optimal values for the parameters obtained using the method described in Section 3.2.
These values are displayed for wavefunctions containing one, three, five and nine terms
with nonzero γi where NE denotes the number of nonzero γi terms.

Table A1. Parameters used for the electron–positron correlation terms, i.e, terms with nonzero γi, in
positron–hydrogen wavefunctions with NE = 1, 3, 5 and 9 such terms.

NE α β γ NE α β γ

1 0.80 0.04 −0.54 9 0.79 0.06 −0.53
3 0.80 0.05 −0.56 0.99 0.40 0.11

0.88 0.45 0.10 1.00 0.14 −0.03
0.97 0.28 −0.46 0.40 0.04 −0.38

5 0.80 0.05 −0.54 0.85 0.88 −0.38
0.98 0.46 0.06 0.29 0.40 −0.70
0.99 0.14 −0.11 0.85 0.50 −0.27
0.45 0.12 −0.67 0.84 −0.20 −0.65
0.86 0.93 −0.31 0.99 0.67 −0.01

Notes
1 Atomic units are used throughout (in which e = m = h̄ = 1, where e is the elementary charge and m is the electron or positron

mass).
2 For a state with a zero total angular momentum, the wavefunction is spherically symmetric, so there is no dependence on the

directions of r1 and r2, except the angle between them, i.e., dependence on r12.
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