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Abstract: Pulsed gas injection in a plasma can affect many fundamentals, including electron heating
and losses. The case of an asymmetric RF magnetron plasma with a pulsed argon injection is analyzed
by optical emission spectroscopy of argon 2p-to-1s transitions coupled with collisional-radiative
modeling. For a fully detailed population model of argon 2p levels accounting for direct and stepwise
electron-impact excitation in optically thick conditions, a rapid decrease in the electron temperature,
Te, is observed during each gas injection with the sudden pressure rise. The opposite trend, with
unrealistic Te values before and after each pulse, is observed for analysis based on simple corona
models, thus emphasizing the importance of stepwise excitation processes and radiation trapping.
Time-resolved electron temperature variations are directly linked to the operating parameters of the
pulsed gas injection, in particular the injection frequency. Based on the complete set of data, it is
shown that the instantaneous electron temperature monotonously decreases with increasing pressure,
with values consistent with those expected for plasmas in which charged species are produced by
electron-impact ionization of ground state argon atoms and lost by diffusion and recombination on
plasma reactor walls.

Keywords: optical emission spectroscopy; collisional radiative modeling; RF plasma; magnetron
discharges; pulsed gas injection

1. Introduction

Pulsed matter injection is an appealing method in many plasma devices. It consists
of the pulsed injection of gases, liquids, aerosols, or sprays. This can be done by gas
puffing or supersonic flows [1,2], by gas or liquid valves, by ink-jet printer heads [3–5]
or by direct liquid injection [6–8]. Pulsed gas injection enables to control the discharge
physics. As an example, long term discharges in fusion devices can be sustained by the
pulsed injection of fuel gas [9,10]. For supersonic gas injection, a significant increase in
the fueling efficiency is observed due to the short injection time and the prompt cooling of
the plasma edge consecutive to the massive injection of matter [9]. In RF discharges used
for sputtering applications, pulsed injection of N2 in Ne can induce a transition between
two excitation mechanisms of plasma particles, from Penning reaction to electron-impact
excitation [11,12]. Pulsed gas injection also enables to control the gas fluid dynamics. For
example, a continuous injection of gases in a given reactor can produce an asymmetric
flow and, consequently, an asymmetric distribution of the plasma parameters that pulsed
plasma operation can avoid. Indeed, during the afterglow between pulses, species can
efficiently diffuse in the plasma volume yielding to uniform power deposition [13]. The
gas flow can also be efficiently guided to regions of interest, for example near a substrate or
a target [14].
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Pulsed gas injection further enables to control the plasma chemistry. First, depending
on the operating conditions (gas pressure, reactor dimensions, power, etc.), it can affect
the reaction kinetics involved in the plasma volume and at the plasma reactors walls [15].
For example, the production of metal-carbon clusters of higher masses is improved with
the pulsed injection of He/CH4 gas mixtures in arc discharges [16]. In addition, a pulsed
injection of organosilicon precursors in an asymmetric RF plasma allows to combine
plasma-enhanced chemical vapor deposition and physical vapor deposition without target
poisoning [17]. Such conditions can further induce nucleation of nanoparticles in the
plasma volume [18]. It is also possible to design the region of reactive species production.
For example, a selective production of the precursors and deposition can be achieved by
isolating spatially and temporally the injected gases from the plasma zone using a pulsed
gas injection coupled with a pulsed injection of power [13,19]. In addition, many reactive
precursors can be introduced in a pulsed mode. It allows to manipulate complex precursors
such as liquids, metalorganic compounds diluted in solvents [20], as well as to introduce
liquid dispersions of nanoparticles [8]. The latter is an attractive method for the formation
of nanocomposite coatings based on at least one nanometer-sized (less than 100 nm) phase.
The properties of such materials can be tailored by the chemical composition, crystal
structure, and morphology of the matrix, but also by the nature, size, form, volume fraction,
and distance between each nanometric inclusions (particles, filaments, tubes) [21,22]. Many
studies are devoted to plasma processes with pulsed gas injection [23]. A new “hybrid”
method based on a pulsed injection mode has been recently proposed [24]. It consists of a
Direct Liquid Reactor-Injector (DLRI) in which nanoparticles are synthesized by mixing a
liquid and a gaseous precursor prior to their injection in a pulsed mode in the plasma. The
nanoparticles as well as the solvent are then injected in the plasma as a gas pulse with a
duration and a frequency set by the chemical reaction kinetics.

In contrast to usual plasmas operating under constant pressure, the conception of
advanced plasma processes with a pulsed gas injection inevitably implies a complex tem-
poral dynamic associated with sudden pressure and plasma phase composition variations.
Such feature can induce multiscale variations of the fundamental plasma properties, in-
cluding electron density and temperature, number density of excited species, neutral gas
temperature, etc. [18,25]. During nanocomposite thin film deposition using a DLRI, this
can play an important role (i) on the dissociation kinetics of the matrix precursor [26],
(ii) on the charging and transport dynamics of nanoparticles in the plasma [27], (iii) on
the plasma-substrate interaction during thin film deposition [28], and therefore, (iv) on
the physical and chemical properties of the coatings [29]. As a building block towards a
better understanding of plasma processes using the DLRI, the objective of this study is to
gain insights into the physics driving low-pressure RF plasmas with pulsed gas injection.
Experiments are done in the specific case of a magnetron RF plasma operated in argon [30].
Optical emission spectroscopy combined with collisional-radiative modelling of Ar 2p-to-1s
transitions is used to analyze the electron kinetics over a wide range of DLRI conditions.

2. Experimental Setup
2.1. Plasma Reactor and Pulsed Gas Injection

A schematic of the RF (13.56 MHz) magnetron plasma reactor used in this work
is presented in Figure 1. The system consists of a 28 cm × 28 cm (diameter × height)
cylindrical stainless-steel chamber with grounded walls. A two-stage pumping system
ensures a residual vacuum of 10−5 Torr. Argon is fed into the reactor using an Atokit from
Kemstream® plugged on the injection ring surrounding the top electrode. The injection
parameters for the set of experiments reported in this work are the opening time of the
first valve before the mixing chamber (5 ms), the opening time of the outer valve leading
to the injection ring (10 ms), and the offset time between the closure of the two valves
(2 ms). In these experiments, the frequency of the Ar injection pulses is varied and sets
sequentially at f = 0.1, 0.5 and 1 Hz. Pulsed gas injection is producing an overpressure, ∆p,
in the plasma chamber. Values of ∆p are mainly controlled by the injection parameters and
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the base pressure, p0. The latter is adjusted using a throttle valve located at the entrance of
the pumping system.
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Figure 1. Overview of the experimental set up from (a) a side view and (b) a top view.

The RF power is fed to the top stainless-steel electrode (5 cm diameter), while the
bottom electrode (10 cm diameter) is grounded. This results in an asymmetrical RF plasma
with an inter-electrode gap of 5 cm. A matching box set between the RF power supply and
the reactor is used to minimize the reflected power. For the experiments reported in this
work, a nominal power of 100 W is sent to the plasma and the reflected power is oscillating
with the gas pulses between 3 and 7 W.

2.2. Optical Emission Spectroscopy Measurements

As shown in Figure 1b, optical emission spectroscopy (OES) measurements are taken
from a port and a collimator located on the side of the reactor. They are recorded over the
700–900 nm wavelength range with an AVANTES spectrometer (AVASpec-3648-2-USB)
having a spectral resolution of ~0.16 nm (full width at half maximum). A typical spectrum
depicting most of the intense Ar 2p-to-1s transitions (corrected for both background noise
and apparatus spectral response) from a plasma generated at 5 mTorr and 100 W is shown
in Figure 2.
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Figure 2. Typical optical emission spectrum of the argon plasma examined in this work.

For all conditions reported in this work, the measured line intensities are compared to
those computed from a collisional-radiative model based on Donnelly’s trace-rare-gases
optical emission spectroscopy method [31] in order to determine time-resolved electron
temperature in these pulsed injection conditions. As discussed previously [18,32,33], the
model is however adapted with respect to Donnelly’s work to account for radiation trapping
and stepwise excitation through resonant 1s levels.
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3. Results and Discussion
3.1. Influence of the Pressure Pulses

Optical emission spectra are recorded along a pulse of gas injection for an injection
frequency of 0.1 Hz. Figure 3 shows the evolutions of the operating pressure (blue plot)
and the Ar 811 nm emission line intensity during a period of injection (red plot) and for
two conditions of base pressure set to p0 ~5 mTorr (a) and 160 mTorr (b)—the constant
pressure rise being of ∆p ~70 mTorr during each cycle.
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an overpressure ∆p ~70 mTorr. In (a), the base pressure is set at p0 ~5 mTorr and in (b) at p0 ~160 mTorr.

Clearly, for both conditions presented in Figure 3, there is a synchronized evolution
of the Ar 811 nm emission line intensity with the pressure pulse. In the case of the lower
pressure condition, the sudden rise and slow drop in pressure led to a similar evolution of
the line intensity. However, the opposite behaviour is observed at higher pressure, although
the variations appear to be less pronounced than in the first condition. To understand these
apparently conflicting results, it is worth looking first at the well-known equation for the
measured intensity of a given emission line Iλ:

Iλ = f (λ)Aijniθij (1)

where f(λ) is the apparatus function at the wavelength λ of interest, Aij is the Einstein
coefficient for spontaneous emission of the transition, ni is the number density of the Ar
emitting level, and θij is the escape factor of the transition. In optically thin media (θij = 1),
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given that f (λ) is measurable and that Aij is a known constant, the line emission intensity
therefore only depends on the number density of the emitting level. In complex media
such as non-equilibrium plasmas, ni cannot simply be calculated assuming a Boltzmann
equilibrium (as in equilibrium plasmas), but requires a full description of its population
and depopulation mechanisms through a particle balance equation. A schematic of the Ar
2p-to-1s transitions with the dominant population and depopulation mechanisms of Ar 2p
states is presented in Figure 4.
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Figure 4. Schematic of the reactions considered in the CR model of argon 2p states.

As a first approximation, assuming that the Ar 2p level is mostly populated by electron
impact on both ground-state argon atoms (direct excitation) and Ar 1s states (stepwise
excitation via metastable and resonant levels), while only lost by spontaneous emission,
the steady-state ni can be written as:

ni =
kground−i nArne + kstep−i nArm ne

∑j Aij
(2)

where kground-I and kstep-I are the reaction rates for direct and stepwise excitation, respectively,
nAr is the number density of argon atoms in the ground state level, nArm is the number
density of argon atoms in a metastable or resonant state, ne is the electron number density,
and ∑j Aij is the sum of the Einstein coefficients corresponding to the allowed radiative
transitions from the corresponding emitting level. Therefore, based on Equation (2), the
opposing trends observed in Figure 3 can a priori be linked to changes in nArm , nAr, ne, Te
or a combination of all these. This readily justifies the use of a detailed collisional-radiative
model for all emitting 2p states to gain further insights into the physics driving such
transient plasmas.

3.2. Results from the Collisional Radiative Model and Comparison with the Experiments

The collisional radiative model used in this work is based on the resolution of the par-
ticle balance equations of all Ar 2p levels using Te and ne as the only adjustable parameters.
More specifically, for each (Te, ne) pair, it calculates a theoretical spectrum by solving the
ten Ar 2p balance equations (see Figure 4) and computing the resulting intensity of relevant
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emission lines using Equation (1). The considered population mechanisms are direct and
stepwise electron impact excitation using cascading cross-sections (in order to account
for the contribution of higher-energy levels [31]), while the depopulation mechanisms
are radiative transitions (mitigated by radiative trapping of the lines, when applicable)
and quenching reactions by collisions with neutral argon atoms (see Figure 4). It is worth
mentioning that the four Ar 1s levels balance equations are also simultaneously solved to
account for stepwise excitation and radiation trapping. More details can be found in [34].
Once the theoretical emission line intensities are obtained for every (Te, ne) pair, they
are compared to the experimental (measured) ones by calculating a percentage standard
deviation and the Te and ne values resulting in the best fit are assumed to correspond to
the real plasma parameters. In order to run, the model requires input parameters such as
the operating pressure and the neutral gas temperature (to calculate the number density
of argon atoms in the ground state via the ideal gas law), as well as the absorption length
along the line of sight of the optical emission spectroscopy measurement to account for
optically thick Ar 2p-1s transitions [18,32,33].

Figure 5a shows typical percentage standard deviation plots calculated on a set of
emission bands as a function of Te for three ne values of interest for lowest base pressure
condition, p0 ~5 mTorr. For these experimental conditions, a minimum of the percent-
age standard deviation is observed for an electron temperature of 2.6 eV no matter the
value of the electron number density. Here, the chosen range of electron number density
(1014–1016 m−3) is based on Langmuir probe measurements done in similar experimental
conditions [30]. Figure 5b confirms the optimal agreement between the theoretical and
experimental spectra as found by the CR model for Te = 2.6 eV. Similar electron temperature
values were obtained by Langmuir probes for low-pressure argon RF plasmas sustained
in comparable experimental conditions (pressure, reactor dimensions) [30]. Such little
influence of the electron density on the optimal Te value observed in Figure 5a implies
that the CR model is mostly independent of the electron number density over the range of
experimental conditions investigated. Two physical possibilities could lead to this result:
either stepwise excitation processes have no contribution on the population kinetics of
the Ar 2p levels, or the stepwise processes do indeed contribute but all the other pop-
ulation/depopulation mechanisms also have an electron number density dependency,
resulting in its vanishing from the particle balance equations of Ar 1s states. To verify
which of these two hypotheses applies to the present situation, a corona model based on
the work of Huddlestone et al. [35] and in which stepwise processes are neglected is also
calculated.
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3.3. Impact of Stepwise Excitation Processes on the Study of the Electron Temperature

To determine the role of stepwise excitation processes over the range of experimental
conditions examined, two separate cases were considered. First, the CR model is computed
using all mechanisms that could play a role in the Ar 2p and 1s kinetics, a scenario we shall
refer to as the standard CR model. Second, the same CR model is computed but all the
stepwise processes are neglected, which in the end means it is considered that nArm = 0
and all the optical transition are optically thin. This scenario, based on the steady-state
corona model, will be referred to as the Corona model. The temporal evolution of the
electron temperature over the injection period is reported in Figure 6 for both scenarios.
The evolution of the pressure drop is also reported.
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In the case of the standard CR model, a decrease in Te of about 1 eV is observed
in Figure 6 concomitantly with the gas pulse, reaching a minimum of 1.4 eV and then
increasing back to 2.5 eV as the pressure lowers back to its initial value. This trend agrees
with the calculations of Liebermann et al. [36] as well as with the results reported by
Maaloul et al. [30]. On the other hand, the opposite trend is observed in the case of the
Corona model since the electron temperature rises to 1 eV and drops back to 0.5 eV as the
pressure also rises and drops. More interestingly, both of the models clearly do not agree
on the electron temperature at any given time of the pulse except at the close end of the
pulse, where Te (CR) is minimal and Te (Corona) is maximal.

To verify which model better depicts the physics driving the temporal evolution of
the plasma, the temporal evolution of the percentage standard deviation in both cases is
analyzed; the results are shown in Figure 7a. As can be seen, the standard CR model always
better describes the experimental data than the Corona model. Moreover, at the beginning
of the pulse, an almost match of the electron temperature (at ~1 s) also corresponds to the
time where the percentage standard deviations are equals. Therefore, even if the Corona
model is less relevant to simulate the optical emission spectra, it becomes almost as accurate
as the standard CR model during the gas pulse. The reason behind this similarity is due
to radiation trapping, as shown in Figure 7b. Indeed, it shows the temporal evolution
of the self-absorption percentage of the Ar 811 nm emission line, as calculated by the
standard CR model. Self-absorption is at a minimum (~20%) directly after the beginning of
the gas pulse. Since, as mentioned before, neglecting stepwise excitation processes in the
Corona model implied neglecting self-absorption of argon 2p-1s transitions, it thus explains
(1) why the two models almost agree when radiation trapping becomes less important,
(2) why the standard CR model is systematically better at simulating the measured spectra
since radiation trapping is found to be an important mechanism over an important part
of the pulse cycle, and (3) why the temporal evolution of the standard deviation as well
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as of the electron temperature share an evolution closer to the form of the pressure pulse.
Therefore, radiation trapping plays an important role in the kinetics of Ar 2p states and
must imperatively be considered to obtain a correct temporal evolution of the electron
temperature. Additionally, it means that processes involving Ar 1s levels do contribute
to the population kinetics of the Ar 2p levels but, as mentioned before, due to all the
other mechanisms also having a ne dependency, the model is in the end independent from
the electron density. Finally, a decrease in the radiation trapping with an increase in the
pressure makes sense since the lower electron temperature and the additional quenching
reactions by neutral argon atoms can only result in lower Ar 1s number densities and thus
less self-absorption of the lines linked to 2p-to-1s transitions.
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3.4. Effect of the Pulsed Gas Injection Parameters

Experiments with injection frequencies from 0.1 to 1 Hz are also carried out. For a
fixed pumping valve position, the frequency reduces the overpressure from 65 to <1 mTorr
when increasing the frequency (Figure 8). Spectra are analyzed in such conditions with the
standard CR model. The temporal evolutions of the electron temperature are reported in
Figure 8 for the four conditions. For an injection frequency of 0.1 Hz (p0 ~160 mTorr), the
electron temperature is, as in lower pressure condition (Figure 6), following the opposite
trend of the pressure, but on a much smaller scale (Figure 8a). The experiment carried out
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with an injection frequency of 0.5Hz (p0 ~110 mTorr) result in barely noticeable variation of
the electron temperature with the pressure pulse (Figure 8b). Therefore, it can be concluded
that the base pressure, p0, more than the temporal variation, ∆p, is determinant in fixing the
electron temperature: this parameter being particularly sensible to temporal variations at
low pressure. To verify this claim, measurements are recorded with an injection frequency
of 1 Hz and two different base pressure of p0 ~70 and 240 mTorr (Figure 8c,d). Clearly, the
higher-pressure results in the lower electron temperature, confirming precedent conclusion
in agreement with previous works at constant pressures [30].
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3.5. Global Trend and Comparison with Reference Measurements

Figure 9 shows all the electron temperatures obtained from the comparison between
measured and simulated (CR model) line emission intensities of Ar 2p-to-1s transitions
under the different experimental conditions and reports them as a function of pressure.
Clearly, a global trend emerges from this graph, which can be compared to a scaling
law (curve). This scaling law is based on the resolution of the particle balance equation
of charged species in which electrons and ions are mostly produced by electron-impact
ionization of ground state argon atoms and lost by ambipolar diffusion and recombination
on plasma reactor walls. In such model, the electron temperature becomes solely governed
by the number density of ground state argon atoms (linked to the pressure via the ideal
gas law) and the reactor dimensions. Here, the particle balance equation is solved for
a cylindrical geometry with a length of 5 cm and a radius of 14 cm. Similar values are
obtained from the heuristic global model reported in [36]. Based on this complete set of
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data, it is now clear that small variations of the pressure on the low-pressure side will affect
more significantly the electron temperature than small variations of the pressure on the
high-pressure side.
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4. Conclusions and Perspectives

Optical emission spectroscopy measurement of the Ar 2p-to-1s transitions used in
combination with a collisional-radiative model of the Ar 2p levels evidence that pulsed gas
injections at low frequency (0.1–1 Hz) in a low-pressure capacitively coupled plasma reactor
significantly affect the discharge. A decrease in the electron temperature following the
pressure pulse is observed. A comparison of this result to that of a corona model highlight
the importance of considering mechanisms involving Ar 1s levels, and especially radiation
trapping, in the particle balance equation of Ar 2p and 1s states. Additionally, a global trend
comparable to a scaling law is evidenced, linking an increase in the real-time operating
pressure to a decrease in the electron temperature. Pressure variations on the low-pressure
side have been observed to more importantly influence the electron temperature. This
work is a first and necessary step to describe more complex plasmas in the presence of
pulses of gaseous or liquid precursors with or without nanoparticles for deposition of
nanocomposite coatings using the DLRI. Indeed, in such case, the role of precursors (liquid
or gases) and/or nanoparticles can highly affect the plasma behavior and, especially, the
electron temperature [18].
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