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Abstract: The rigorous two-center approach based on the dual-kinetically balanced finite-basis-set
expansion is applied to one-electron, heteronuclear diatomic Bi-Au, U-Pb, and Cf-U quasimolecules.
The obtained 1σ ground-state energies are compared with previous calculations, when possible.
Upon analysis of three different placements of the coordinate system’s origin in the monopole
approximation of the two-center potential: (1) in the middle, between the nuclei, (2) in the center
of the heavy nucleus, and (3) in the center of the light nucleus, a substantial difference between the
results is found. The leading contributions of one-electron quantum electrodynamics (self-energy
and vacuum polarization) are evaluated within the monopole approximation as well.
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1. Introduction

Heavy ion and atom encounters lead to the short-time formation of diatomic quasi-
molecules. Presently, collisions of highly charged ions with neutral atoms, e.g., Xe54+–Xe,
are available for experimental investigation at the GSI Helmholtz Center for Heavy Ion
Research [1–5]. The upcoming experiments at NICA [6], HIAF [7], and GSI/FAIR [8] will
allow for an observation of heavy few-electron systems’ collisions up to bare nuclei, such
as U92+–U92+.

The theoretical prediction of quasimolecular spectra plays an important role in both
the study of critical phenomena in bound-state quantum electrodynamics (BS-QED) and
the interpretation of experimental data. A number of theoretical approaches have been
developed to investigate the relativistic dynamics of these systems; see Refs. [9–18] and
references therein. Within the Born–Oppenheimer approximation, the Dirac problem of
quasimolecular systems has also been investigated in a number of works [9,14,19–35]. While
most of these approaches rely on the partial-wave expansion of the two-center potential,
several works have investigated the usage of the Cassini coordinate system [30] and the
Dirac–Fock–Sturm method [32,33].

Previously, we considered the one- and two-electron homonuclear quasimolecules
of xenon, lead, and uranium in both the rigorous two-center approach and the monopole
approximation within the dual-kinetically balanced finite-basis-set approach [36,37]. We
showed that the obtained solution is in good agreement with other independent calcu-
lations of the energy spectra. In Ref. [37], it was shown that an analysis of different
placements of the coordinate system’s origin (c.s.o.) can provide an estimation of the
non-monopole correction to contributions that are not presently available for rigorous
two-center evaluation.

In the present work, we extend our approach to the case of one-electron heteronuclear
quasimolecules: Bi–Au, U–Pb, and Cf–U. The ground-state energy is evaluated in a wide
range of internuclear distances, up to 1000 fm, in both two-center and monopole potentials.
Moreover, we consider three different monopole potentials, depending on the placement of
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the c.s.o. For the heavy quasimolecules under consideration, the QED effects also play an
important role. We consider the leading self-energy and vacuum polarization contributions
within the monopole approximation.

The relativistic units, h̄ = c = m = 1, and the Heaviside charge unit, α = e2/(4π)
(fine-structure constant), are used throughout the paper.

2. Method

We start with the Born–Oppenheimer approximation, in which the electron is described
by the two-center Dirac equation,[

~α · ~p + β + V(~r)
]
Ψn(~r) = EnΨn(~r) , (1)

V(~r) = VA
nucl(|~r− ~RA|) + VB

nucl(|~r− ~RB|) , (2)

where ~r and ~RA,B are the position vectors of the electron and the nuclei, respectively;
VA,B

nucl(r) are the spherically symmetric binding potentials generated by the nuclei; ~p is the
momentum operator;~α and β are the standard 4× 4 Dirac matrices. The distance between
the nuclei is denoted by D = |~RA − ~RB|. In this work, we use the Fermi model of the
nuclear-charge distribution. The corresponding explicit formulas are well-known and can
be found, e.g., in Ref. [38].

The two-center (TC) potential is axially symmetric with respect to the internuclear
axis. In the spherical coordinate system (r, θ, ϕ) with the polar angle θ measured from this
axis, the potential can be expanded into the following series:

V(r, θ) = ∑
l

Vl(r)Pl(cos θ); Vl(r) =
2l + 1

2

π∫
0

V(r, θ)Pl(cos θ) sin θdθ. (3)

The first term in this series, V0(r), corresponds to the widely used monopole approximation
(MA). Within this approximation, the initial axially symmetric problem is reduced to the
spherically symmetric one. Numerous methods developed for the atomic problem can be
applied to solve the corresponding Dirac equation. We use the dual-kinetically balanced
finite-basis-set approach for both the TC and MA potentials; see Refs. [36,37,39,40] for
more details.

The spherical coordinates are used with three different placements of the c.s.o., namely:
(1) in the middle between the nuclei, (2) in the center of the heavy nucleus, and (3) in the
center of the light nucleus. Whereas the TC approach provides the same results within
numerical error bars, the MA values for the three different c.s.o. denoted by MA(1), MA(2),
and MA(3), respectively, differ significantly. At large distances, the TC and different MA
values often diverge qualitatively, while at D → 0 they formally tend to the same limit.

In addition to the Dirac energies, we also evaluate the leading QED corrections—
self-energy and vacuum polarization. These terms are only treated within the monopole
approximation; that is, the MA(1) potential is used in this case. The computations follow the
procedures discussed, e.g., in Refs. [41–46]. They are based on the expansion of the electron
propagator in powers of the binding potential in order to isolate ultraviolet divergences
and perform renormalization.

3. Results

In Figure 1, the ground-state energies of the Cf–U quasimolecule evaluated with the
TC, MA(1), MA(2), and MA(3) potentials are presented. Even though one may expect that
all three monopole approximations converge at small internuclear distances, the obtained
results show that the MA(1) energies are in fact much closer to the TC ones. Nevertheless,
the deviation between the TC and MA(1) grows towards the larger internuclear distances.
Furthermore, we note an almost constant difference between the MA(2) and the MA(3)
results within the presented range.
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There are two main sources for the total uncertainty of the obtained results: (1) the
numerical error of the computational scheme, which is determined by the quality of the
finite basis set employed in the practical calculations (basis-set error) and (2) the error
associated with the uncertainties of the nuclear model and the root-mean-square radii
(nuclear error). The nuclear error provides the main contribution to the total uncertainty at
the small internuclear distances and rapidly decreases towards the larger D. Meanwhile,
the basis-set error is rather small, and its value, e.g., for the U–Pb quasimolecule, does not
exceed 10 eV in entire studied range. Therefore, the total uncertainty at the small D (up to
300 fm) is almost completely determined by the nuclear error, while at the larger D (from
500 to 1000 fm), it is determined by the basis-set error.
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Figure 1. The ground-state Dirac energy of the U–Pb quasimolecule evaluated with the TC, MA(1),
MA(2), and MA(3) potentials. E∗1σ corresponds to the data from Ref. [35].

In Figure 2, we compare the ground-state energies for the U–Pb quasimolecule eval-
uated using the TC approach with the available data [35]. All the values are in good
agreement, except for the one with D = 50 fm. For this internuclear distance, we estimate
our total numerical error to be ±30 eV, which is three times smaller than the corresponding
uncertainty presented in Ref. [35]. The reasons for this deviation are unclear to us.

The numerical data, including the self-energy and vacuum polarization contributions
of all the quasimolecules under consideration can be found in Table 1. We note that the
difference between TC and MA(1) for the binding energies is significantly larger, more than
an order of magnitude in most cases, than the total QED correction. Thus, an evaluation
of the Dirac energy within the rigorous two-center approach is crucial for the accurate
determination of the electronic spectra.
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Figure 2. The ground-state binding energies (in eV) for the U–Pb quasimolecule from Ref. [35] relative
to the results obtained in the present work, ∆E = ERef.[35]

1σ − ETC
1σ . See the text for details.

Table 1. The ground-state Dirac energy, self-energy, and vacuum polarization contributions (in eV)
for the one-electron Bi–Au, U–Pb, and Cf–U quasimolecules at different internuclear distances.

D, fm ETC
1σ EMA(1)

1s EMA(2)
1s EMA(3)

1s SEMA(1)
1s VPMA(1)

1s

Bi–Au

15 −237,546 −234,358 −196,293 −192,512 6900 −6025
25 −171,018 −164,778 −128,136 −123,948 5236 −3830
50 −79,797 −70,861 −39,310 −34,999 3376 −1849
100 6199 16,418 44,424 48,863 2071 −827
300 137,579 150,276 173,231 178,322 800 −187
500 198,231 213,083 230,800 236,409 451 −81
700 237,280 254,069 266,215 272,260 290 −43
1000 276,703 296,127 300,037 306,662 169 −21

U–Pb

25 −399,528 −386,390 −325,462 −307,855 7378 −6230
50 −235,560 −218,680 −175,040 −158,648 4446 −2722
100 −100,275 −83,130 −50,315 −35,068 2570 −1113
300 78,437 96,786 117,862 133,471 928 −227
500 153,372 173,899 186,844 203,557 512 −95
700 199,857 222,639 227,866 245,689 325 −50
1000 245,476 271,658 265,930 285,332 188 −24

Cf–U

50 −491,640 −459,027 −383,320 −366,680 6003 −4189
80 −329,591 −298,922 −242,676 −228,241 4007 −2162
100 −263,819 −234,379 −184,810 −171,155 3285 −1566
200 −91,283 −64,537 −30,027 −17,722 1701 −551
250 −43,071 −16,584 13,759 25,933 1349 −386
500 91,335 119,363 134,508 147,097 594 −115
700 149,097 179,309 184,223 197,470 372 −59
1000 204,297 238,194 229,390 243,724 212 −28
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4. Conclusions

In this work, the ground-state energies of the Bi–Au, U–Pb, and Cf–U quasimolecules
at different internuclear distances, up to 1000 fm, were evaluated within the rigorous
two-center approach. The monopole approximation was also considered using three
different placements of the coordinate system’s origin: (1) in the middle between the
nuclei, (2) in the center of the heavy nucleus, and (3) in the center of the light nucleus. The
results obtained within the two-center approach were found to be in good agreement with
previous independent calculations for the Bi–Au and U–Pb quasimolecules. The leading
QED contributions, self-energy and vacuum polarization, were also evaluated within the
monopole approximation. Accurate theoretical predictions of the quasimolecular spectra
require further development of the presented methods, including rigorous two-center
evaluation of the QED contributions.
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