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Abstract: Approximation methods are unavoidable in solving a many-electron problem. One of the
most successful approximations is the random-phase approximation (RPA). Miron Amusia showed
that it can be used successfully to describe atomic photoionization processes of many-electron atomic
systems. In this article, the historical reasons behind the term “random-phase approximation” are
revisited. A brief introduction to the relativistic RPA (RRPA) developed by Walter Johnson and
colleagues is provided and some of its illustrative applications are presented.
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1. Introduction

About a half-century ago, Miron Amusia showed that the photoionization of the noble
gas atoms could be described quite accurately using the random-phase approximation
with exchange (RPAE); see [1] and references therein. RPAE includes two-particle two-hole
correlations in the initial state of the photoionization process and coupling among the
ionization channels in the final state, essentially configuration interaction in the contin-
uum. The methodology did not include relativistic interactions. Building upon Amusia’s
work, Walter Johnson and his co-workers developed a relativistic version, the relativistic-
random-phase approximation (RRPA) which is based on the Dirac equation rather than the
Schrödinger equation [2–5]. This advance allowed us to study heavier systems, where rela-
tivistic effects are large, and processes that are only possible owing to relativistic interactions.
In this paper, an exposition of the random-phase approximation is presented along with
some of the important advances using the relativistic version of Amusia’s methodology.

2. The Random-Phase Approximation

The random-phase approximation can be formulated in a few alternative ways. An ex-
tensive review of these methods and their equivalence is not attempted in this article.
Instead, we limit ourselves to comment on the expression “random-phase approximation”
and the “linearization” process that it entails. These expressions are widely used in the lit-
erature, but the historical reasons behind this terminology are seldom discussed. The scope
of this article is further limited to only illustrating some of the applications of the relativistic
RPA, RRPA, for which the earlier nonrelativistic work of [1] set the stage.

2.1. Beyond the Hartree–Fock Method

The simplest N-electron atomic problem, even if we leave out relativistic effects such
as the screen-orbit interaction, is described by the Hamiltonian
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H(N)(q1, q2, . . . , qN) =

{ N

∑
i=1

(
− h̄2

2m
∇2

i −
Ze2

ri

)}

+

{ N

∑
i<j=1

e2

rij

}
=

{ N

∑
i=1

f (~ri)

}
+

{
1
2

N

∑
i=1;i 6=j

N

∑
j=1

e2

rij

}
, (1)

consisting of one- and two- electron operators. The electron–electron Coulomb interaction
must be described formally in terms of charge densities which require the electron wave-
functions, which is to say that one needs the solution of the N-electron Schrödinger equation
even before the differential equation is formulated. The single electron atomic problem
has analytical solutions at both non-relativistic and relativistic levels, but approximation
methods are necessary to solve the N-electron problem for N ≥ 2. The many-electron
problem is a vexing one on account of two types of correlations between the electrons:
(a) statistical (also called Fermi–Dirac or exchange) correlations and (b) Coulomb correla-
tions. The Hartree–Fock self-consistent field (HF-SCF) provides an effective strategy to
obtain solutions that are excellent approximations [6–8] to the required solutions using an
antisymmetrized product of N single-electron wave wavefunctions.

The two-electron terms render the electron–electron potential non-local. The Hartree–
Fock method obtains atomic wavefunctions employing numerical procedures, using varia-
tional calculus to obtain a self-consistent field in the frozen orbital approximation.

Since the wavefunction employed in the HF method is antisymmetrized, statistical
correlations are accounted for, but not the Coulomb correlations. In fact, the Coulomb
correlations are defined to be just those that are left out of the HF method. There is no
method available to account for the Coulomb correlations exactly.

One must employ approximation methods. Various approximation methods have
been developed to address the Coulomb correlations, such as the Multi-Configuration
Hartree–Fock (MCHF), also called the Configuration Interaction (CI) method [9], diagram-
matic perturbation theory [10], Greens function method [11], etc. A very successful ap-
proximation method to treat the electron correlations is the random-phase approximation
(RPA). There are various routes to the RPA such as the method of canonical transfor-
mations [12], the equation of motion method [13], and the linearized Time-Dependent
Hartree–Fock method—commonly known as the random-phase approximation with exchange,
or RPAE, for short [1,14,15]. All of these routes to RPA are equivalent; they depend on
employing a linear approximation to the electron correlations.

We shall first briefly visit salient features of the method of canonical transformation of
the Hamiltonian employed by Bohm and Pines [12,16–19] since: (i) their method lucidly
illustrates the linear approximation to electron correlations and (ii) explains the RPA which
involves cancellation of terms associated with the term random-phase, arrived at using a
linearization process. This linearization process is the heart of the RPA. We shall then review
the linearization of the Time-Dependent Hartree–Fock system (TDHF) of equations devel-
oped by Dalgarno and Victor (1968). This approach is equivalent to that of Bohm–Pines
on account of the linearization process that drives it. It is especially insightful toward
appreciating the treatment of the many-electron system beyond the Hartree–Fock model.
The linearized TDHF thus provides the essential platform toward methods in the analysis
of atomic collisions and photoionization processes [1] employing the technique known
as the random-phase-approximation with exchange (RPAE). Finally, we shall summarize
the relativistic improvisation of the RPAE, called the relativistic-random-phase approxi-
mation (RRPA) developed by Johnson, Lin, and Dalgarno [2–5,14] which is arrived at by
linearizing the Time-Dependent Dirac–Hartree–Fock (TDDHF, often abbreviated as TDDF)
and illustrate some of its applications.
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2.2. Linear approximation to Coulomb correlations

Strong electron–electron correlations in a free electron gas were dealt with by Bohm and
Pines by subjecting the many-electron Hamiltonian to a series of canonical transformations.
These transformations result in weakly interacting elementary excitations (plasmons) which
represent collective elementary excitations of the electron gas.

Using the second quantized notation [20] for the electron creation (c†) and annihilation
operator (c), the Schrödinger equation for an N-electron free electron gas is

∂

∂t
|Ψ(t)〉 =

[
∑

i
∑

j
c†

i 〈i| f |j〉cj

+
1
2 ∑

i
∑

j
∑
k

∑
l

c†
i c†

j 〈ij|v|kl〉clck

]
|Ψ(t)〉, (2a)

where
〈ij|v|kl〉 =

∫
dq1

∫
dq2ψ∗i (q1)ψ

∗
j (q2)v(q1, q2)ψk(q1)ψl(q2), (2b)

with the subscripts i, j, k, l denoting the set of four one-electron quantum numbers and the
arguments (qr) denoting the four coordinates of the rth electron, three of which being the
space coordinates and the fourth being the spin coordinate. The operator f is a single-electron
operator, similar to that in Equation (1), but consisting of only the kinetic energy terms,
the electrons being free. In Equation (2b), a typical spin-orbital is represented by

ψi(q) = ψi(~r)χi(ζ), (2c)

wherein the spin part is either

χi(ζ) = α =

[
1
0

]
, (2d)

for msi = + 1
2 i.e., ↑, or

χi(ζ) = β =

[
0
1

]
, (2e)

for msi = − 1
2 i.e., ↓.

The second quantized Hamiltonian in Equation (2a) is equivalently written as

H =

[
∑
i,α

∑
j,β

c†
iα

( ∫
ψ∗iα(q) f (q)ψ∗jβ(q)dq

)
cjβ

+
1
2 ∑

iα
∑
jβ

∑
kγ

∑
lδ

c†
iαc†

jβ

×
( ∫

dqdq′ψ∗iα(q)ψ
∗
jβ(q)v(q, q′)ψlδ(q)ψkγ(q)

)
ckγclδ

]
, (3a)

or more compactly using the Dirac notation for the integrals as

H = ∑
i,α

∑
j,β

c†
iα〈iα| f |jβ〉cjβ +

1
2 ∑

iα
∑
jβ

∑
kγ

∑
lδ

c†
iαc†

jβ

×〈iα, jβ|v|lδ, kγ〉ckγclδ. (3b)

Without compromising the above Hamiltonian in any way, we can place the most part
of the two-electron interactions
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{
1
2

N

∑
i=1;i 6=j

N

∑
j=1

v(~ri,~rj)

}

in Equation (1) in a one-electron operator{ N

∑
i=1

F(~ri)

}
by writing

H(N)(q1, q2, . . . , qN) =
N

∑
i=1

f (~ri) +
N

∑
i=1

F(~ri)

+
1
2

N

∑
i=1;i 6=j

N

∑
j=1

v(~ri,~rj)−
N

∑
i=1

F(~ri), (4a)

or briefly as

H(N)(q1, q2, . . . , qN) =

( f + F) + (H2 − F) = O1 + O′, (4b)

where O1 is a one-electron operator and O′ is only a small part of the full Hamiltonian.
The notations employed in Equations (4a) and (4b) are self-explanatory. Essentially, the N-
electron Hamiltonian is re-written such that it can be approximated by ( f + F), since{

1
2

N

∑
i=1;i 6=j

N

∑
j=1

v(~ri,~rj)−
N

∑
i=1

F(~ri)

}

is small; we shall treat it perturbatively. The choice of the operator F is so made that the
total energy functional

E(N) = 〈Ψ(N)|H(N)|Ψ(N)〉, (5)

is minimized.
When O′ is neglected, the unperturbed ground state wavefunction of the N-electron

system is expressible as a determinant:

Φ(N) =
1√
N!


ψ1↑(1) . . . . . . ψ1↑(N)
ψ1↓(1) . . . . . . ψ1↓(N)

. . . . . . . . . . . .
ψ N

2 ↑
(1) . . . . . . ψ N

2 ↑
(N)

ψ N
2 ↓
(1) . . . . . . ψ N

2 ↓
(N)


N×N

=

1√
N!


ψ1(1) . . . . . . ψ1(N)
ψ1(1) . . . . . . ψ1(N)

. . . . . . . . . . . .
ψN−1(1) . . . . . . ψN−1(N)

ψN(1) . . . . . . ψN(N)


N×N

, (6)

wherein [
f (~r) + F(~r)

]
ψiσ(~r) = εiψiσ(~r), (7)

with ψiσ(~r) = ψi↓(~r) or ψi↑(~r). Observe that the one-particle eigenvalue εi is doubly degener-
ate with the spin-orbitals for spin up and down being linearly independent. In the second
determinant in Equation (6), we have only re-designated the single-electron spin-orbitals.
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Φ(N) =
1√
N!


ψ1(1) . . . . . . . . . ψ1(N)
ψ1(1) . . . . . . . . . ψ1(N)

. . . . . . . . . 〈j|i〉 = ψi(qj) . . .
ψN−1(1) . . . . . . . . . ψN−1(N)

ψN(1) . . . . . . . . . ψN(N)


N×N

. (8)

Re-designation of the single-electron spin-orbitals in Equation (6) is appropriate for
closed shell atoms for which the random-phase approximation is applicable. Wave func-
tions of the excited unperturbed states are also Nth order determinants made up of eigen-
functions of Equation (7), but with one or more εi > εN/2. In an ordered set of spin-orbitals,
let us denote p ≤ N and q > N. Thus, we denote a typical spin-orbital in the ground
state Slater determinant by p and an excited state spin-orbital corresponding to a single
excitation by q. The operator ( f + F) is diagonal with respect to one-electron functions, and
q 6= p. The choice of the operator F(~r) which makes the energy functional (Equation (5)) a
minimal is the one for which the matrix element

〈q|F|p〉 =
N

∑
i=1

[
〈iq|v|ip〉 − 〈qi|v|ip〉

]
, (9)

as can be shown using a variational method under the frozen orbital approximation; i.e., for
the excited state we use a Slater determinant only the pth spin-orbital replaced by the
excited qth—all other spin-orbitals in the Slater determinant (8) retain their occupancies.

The one-electron Hartree–Fock equation satisfied by the SCF ground-state spin-orbitals is[(
− h̄2

2m
∇2 − Ze2

r

)
ψp(ξ)

+
N

∑
i=1

[ ∫
d4V′

ψ∗i (ξ
′)ψi(ξ

′)ψp(ξ)e2

~r−~r′

]

−
N

∑
i=1

δ(msp , msi )

[ ∫
d4V′

ψ∗i (ξ
′)
(
ψp(ξ ′)ψi(ξ)

)
e2

~r−~r′

]]
=

εpψp(ξ). (10a)

The four-dimensional integration
∫

d4V′ in Equation (10a) includes integration over the
three (continuous) space coordinates and the discrete summation over the spin-coordinate.
The second and the third terms on the left-hand side of Equation (10a) involve two-electron
terms; the second is the Coulomb term and the third is the exchange term. We consider non-
ferromagnetic systems so that the number of spin-up and -down terms is equal. The energies
εp are doubly degenerate with two linearly independent functions corresponding to up- and
down-spins. Carrying out the summation over the spin variable, Equation (10a) simplifies to[(

− h̄2

2m
∇2 − Ze2

r

)
ψp(~r)

+2
N/2

∑
i=1

[ ∫
dV′|ψi(~r′)|2v(~r,~r′)

]
ψp(~r)

−
N/2

∑
i=1

ψi(~r)
[ ∫

dV′ψ∗i (~r′)ψp(~r′)v(~r,~r′)
]]

=

εpψp(~r), (10b)

in which we have written the inter-electron Coulomb interaction as

e2

~r−~r′ = v(~r,~r′). (11)
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Now,

Fψp(~r2) =

2
N/2

∑
i=1

∫
d3~r1|ψi(~r1)|2v(~r1, ~r2)ψp(~r2)

−
N/2

∑
i=1

∫
d3~r1ψ∗i (~r1)v(~r1, ~r2)ψp(~r1)ψi(~r2),

hence the HF SCF equation becomes[(
− h̄2

2m
∇2 − Ze2

r

)
ψp(~r) + Fψp(~r) =

( f + F)ψp(~r) = εpψp(~r). (12)

We write the momentum-dependent energies as ε(~k) or equivalently as ε(~k), since
~p = h̄~k. The free electron gas is the only many-electron system for which the HF SCF
equation can be obtained analytically. The linearization of the Coulomb approximation was
developed by Bohm and Pines [17] in which the positive charges of the nuclei were consid-
ered to be spread out uniformly over a volume V as jellium (Figure 1). The electron gas is
also spread out over the volume V in which the electron wavefunction is box-normalized.

Figure 1. The uniform spread of the potential generated by the positive nuclei as a jellium.

Adding the jellium potential V(~r) in the HF SCF equation we get[
− h̄2

2m
∇2ψp(~r) +���

��V(~r)ψp(~r)

+
((((

((((
(((

((((
(

2
N/2

∑
i=1

[ ∫
dV′|ψi(~r′)|2v(~r,~r′)

]
ψp(~r)

−
N/2

∑
i=1

ψi(~r)
[ ∫

dV′ψ∗i (~r′)ψp(~r′)v(~r,~r′)
]]

=

εpψp(~r). (13)

The attractive jellium potential (second term on the left-hand side of Equation (13))
exactly cancels the electron–electron Coulomb repulsion term (third term). We are then left
with [

− h̄2

2m
∇2 −Vexchange(q)

]
ψp(q) =

εpψp(~r), (14)
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where

Vexchange(q)ψp(q) =
N

∑
i=1

Vexchange
i (q)ψp(q) =

N

∑
i=1

ψi(q)
[ ∫

dq′
ψ∗i (q

′)ψp(q′)

|~r−~r′|

]
, (15a)

i.e.,

Vexchange(q)ψp(q) =
N/2

∑
i=1

ψi(~r)
[

ψ∗i (~r′)ψp(~r′)v(~r,~r′)
]

. (15b)

Using (i) box-normalized wavefunctions

ψ~kσ
(~r) = L−3/2ei~k·~rχσ(ζ), (16)

and (ii)

φ(~r1) =
∫

d3~r2
ei(~k−~k′)·~r2

r12
=

4πei(~k−~k′)·~r1

|~k− ~k′|2
, (17)

the Hartree–Fock equation for the free-electron gas (with exchange) in the positive jellium
potential becomes

− h̄2

2m
∇2ψ~k(~r1) + ε~kψ~k(~r1) = ε(~k)ψ~k(~r1), (18)

with the exchange term given by

ε~k =
4πe2

L3 ∑
~k′

1

|~k− ~k′|2
. (19)

It follows that

ε(~p) =
p2

2m
εexchange(~p), (20)

where

εexchange(~p) =
−e2 p f

h̄π

[
1 +

p2
f − p2

2p f p
ln
∣∣∣∣ p + p f

p− p f

∣∣∣∣], (21)

p f being the electron momentum at the highest occupied energy level; viz., Fermi level.
Whereas the HF SCF energy of an atom described by the Hamiltonian (Equation (1)) is

Eatom
HF = 〈ψ(N)|H|ψ(N)〉 =

N

∑
i=1
〈i| f |i〉+ 1

2

N

∑
j=1

N

∑
i=1

[
〈ij|g|ij〉 − 〈ij|g|ji〉

]
, (22)

that of an electron gas in the jellium potential of the positive charges is

Eelectron gas in jellium potential
HF = EKE + Eexchange correlation, (23)
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where

EKE = 2
L3

(2πh̄2)

∫ p=p f

p=0
p2dp

∫ θ=π

θ=0
sinθdθ

×
∫ φ=2π

φ=0
dφ
[~p.~p

2m
]
=

h̄2L3

10π2m
k5

f , (24)

with

k f =

(
3π2N

V

) 1
3

, (25)

and

Eexchange correlation = 2
L3

(2πh̄2)

×
∫ p=p f

p=0
p2dp

∫ θ=π

θ=0
sinθdθ

∫ φ=2π

φ=0
dφ
[1

2
εexchange(~p)

]
=

h̄2L3

10π2m
k5

f , (26a)

Eexchange correlation = −Ve2

4π3

∫ k=k f

k=0
dk
[

2k f k2

+k(k2
f − k2)ln

( k f + k
k f − k

)]
. (26b)

If we now consider the entire physical volume under consideration to consist of spheres
of radius rs (Seitz parameter in Bohr units), each having one unit of electron charge, then

N ×
(

4
3

πr3
s

)
= V =

3π2N
k3

f
, (27)

then the K.E. contribution to the average HF ground state energy per electron in a free-
electron gas is

EKE
N

=
3h̄2

10m

(
9π

4

) 2
3 1

r2
s
=

2.21
r2

s
Ryd, (28a)

and the exchange correlation energy per electron is

Eexchange correlation

N
= −0.916

rs
Ryd. (28b)

Thus, for electron gas in the SCF jellium potential, the average Hartree–Fock energy
per electron is

EHF
N

=

(
2.21
r2

s
− 0.916

rs

)
Ryd. (29)

A first order perturbative treatment gives essentially the same result as above. electron–
electron exchange interactions reduce the energy below that of the Sommerfeld gas in a
positive jellium potential; exchange energy is negative.

In the mid-1950s, Bohm and Pines improvised on the above model by considering a
random mutual displacement of the centers of the positive and negative charge densities
(Figure 2). In the jellium potential, these are coincident; their mutual displacement can be
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considered to have been triggered by a random event, but once displaced, the positive and
negative charges are set in oscillations of the plasma as the system seeks its original config-
uration. Bohm and Pines modeled these oscillations using a harmonic oscillator potential,
inclusive of a dispersive wavelength-dependent frequency of the plasma oscillations.

The Hamiltonian for N electrons in a volume V together with a uniform positive
charge background jellium distribution is

H0 = Hel + Hb + Hel−b, (30)

where

HEL =
N

∑
i=1

p2
i

2m
+

1
2

e2
N

∑
j=1;j 6=i

N

∑
i=1

exp(−µ|~ri −~rj|)
|~ri −~rj|

, (31)

represents the many-electron part,

Hb =
1
2

e2
∫ ∫ ∫

d3~x
∫ ∫ ∫

d3~x′
ρ+~x ρ+~x′

exp(−µ|~x− ~x′|)
|~x− ~x′|

, (32)

represents the jellium background and

Hel−b = −e2
N

∑
i=1

∫ ∫ ∫
d3~x

ρ+~x exp(−µ|~x−~ri|)
|~x−~ri|

, (33)

represents the interaction between the electrons and the jellium background.The N-electron
system in the jellium background potential constitutes an electrically neutral system, but
the relative displacements of the positive and negative charges allow for plasma oscillations
of the electron gas. A mathematical device using the coefficient µ in the exponential terms
in Equations (31)–(33) is introduced to avoid some divergences; solutions are finally sought
in the limit µ → 0. As a result of carrying out the integrals in Equations (32) and (33),
the Hamiltonian (Equation (30)) turns out to be

H = Hel −
1
2

e2 N2

V
4π

µ2 , (34)

which manifestly diverges in the limit µ → 0. This is commonly referred to as the µ2-
divergence.

It is most convenient to: (i) use the second quantized representations of the Hamiltonian for
the bulk electron gas in a uniform positive background jellium potential (Equation (30)) using
electron creation operator c†

~kiσi
and the annihilation operator c~kiσi

, ~kiσi being the momentum (in

units of h̄) and spin quantum numbers; (ii) employ the Fourier representation of the screened
Coulomb interaction that appears in Equations (31)–(33); and finally (iii) seek the limits (L3 =
V)→ ∞ (specifically in this order, with L−1 << µ). Using the three steps described, after some
tedious algebra, one finds that terms corresponding to momentum transfer~q in the two-electron
interactions term for which~q =~0 in the Hel part of the Hamiltonian cancels the abovementioned
µ2-divergence, and along with the limits sought as per (iii), the Hamiltonian in the second
quantized notation is

H0 = ∑
~k

∑
σ

h̄2~k2

2m
c†
~kσ

c~kσ

+
1
2

e2

V ∑
~k,σ1

∑
~p,σ2

∑
~q 6=~0

(
4π

q2 c†
~k+~qσ1

c†
~p−~qσ2

c~pσ2
c~kσ1

)
. (35)
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Scaling

~̃k = rs~k, (36a)

~̃p = rs~p, (36b)

Ṽ =
V
r3

s
, (36c)

and

q̃ = rsq. (36d)

allows us to write the Hamiltonian as

H0 =

(
e2

a0r2
0

)[
∑̃
~k

∑
σ

~̃k2

2
c†
~̃kσ

c~̃kσ

+
1
2

r0

Ṽ ∑̃
~k

∑̃
~p

∑̃
~q 6=~0

∑
σ1

∑
σ2

(
4π

q̃2 c†
~̃k+~̃qσ1

c†
~̃p−~̃qσ2

c~̃pσ2
c~̃kσ1

)]
, (37)

where we have introduced a dimensionless variable r0 = rs
a0

, a0 being the Bohr radius.
In the high density limit r0 → ∞, the second term in Equation (37) can be treated using
first order perturbation theory even if the electron–electron interactions in the second
term are quite strong. The result in the first order turns out to be essentially the same
as in Equation (29), but higher order perturbation theory does not converge. Therefore,
Bohm and Pines developed a non-perturbative approximation by carrying out canonical
transformation of the Hamiltonian to represent pseudoparticles (elementary excitations of
the many-electron gas) called plasmons which represent collective oscillations of the electron
gas. The approximation involves linearization of the Hamiltonian concomitant with the
neglect of certain terms whose phases are random and hence cancelable. Prior to discussing
the canonical transformation of the Hamiltonian, we briefly visit their earlier semi-classical
model which helps build insight in the linearization process and also in the approximation
involved in the concomitant cancellation of terms having random phases.

In the semi-classical model, both the electron gas and the positive charge in the bulk
medium are considered to be uniformly spread over the entire volume with their collective
centers coincident. An incidental movement of the electron density ρ (Figure 2) sets in
oscillations of the electron gas described by the classical equation of motion:

m
d2ξ

dt2 =

(
1
ε0

eρ̄ξ

)
(−e), (38)

wherein eρ̄ξ denotes the surface charge density σ, the static average volume charge density
being written as

ρ̄ =
N

N 4
3 πr3

s
=

3
4πr3

s
. (39)

The zero-point energy of the plasma oscillations is 1
2 h̄ωp wherein the natural frequency

of the plasma oscillations is

ωp =

√
ρ̄e2

mε0
=

√
3e2

mr3
s

. (40)
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Figure 2. The ‘jellium model’ considers the collection of positive nuclear charges and negative
electron charges smeared out uniformly across the region of a metal; the centers of positive and
negative charges being coincident. A slight relative displacement of the centers of positive and
negative parts of the total charge density sets in plasma oscillations.

Using the Fourier decomposition of the inter-electron interaction,

e2

rij
=

1
V ∑

~k

c~kei~k·(~ri−~ri),

the potential energy of the ith electron due to one electron charge uniformly smeared through-

out the box is e2
∫∫∫

d3~rj, i.e., e2 ∑
~k

c~k
{ 1

V

∫∫∫
d3~rjei~k·(~ri−~ri)

}
.

Hence, the potential energy due to all the electrons is:

P(~ri) =
N

∑
j=1
j 6=i

e2

rij
=

1
V

N

∑
j=1
j 6=i

∑
~k

c~kei~k·(~ri−~ri), (41a)

where c~k = 4πe2∣∣~k2
∣∣ , except for~k =~0. The term corresponding to~k =~0 cancels the positive

jellium; hence the potential energy of the ith electron due to all the electrons and the positive
background is

U(~ri) =
1
V

N

∑
j=1
j 6=i

∑
~k

~k 6=~0

4πe2

k2 ei~k·(~ri−~ri). (41b)

Now, in terms of the electron field operators, the total number of electrons is

N = ∑
ζ

∫∫∫
d3~rψ†(q)ψ(q) = ∑

ζ

∫∫∫
d3~rρ(q) =

∫∫∫
d3~rρ(~r) =

N

∑
i=1

∫∫∫
d3~rδ(~r−~ri), (42)

and the electron density is

ρ(~r) =
N

∑
i=1

δ(~r−~ri) =
1
V

N

∑
k=1

ρ~kei~k·~r, (43)

wherein we have used the Fourier expansion of the charge density with the Fourier compo-
nents being given by

ρ~k =
N

∑
i=1

e−i~k·~ri . (44)

Identifying the force on the electron force as the negative gradient of the potential
in Equation (41b), we arrive at the semi-classical equation of motion for the harmonic
oscillator

m~̈ri = m~̇vi = − ~∇iU(~ri),
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which translates to the equation of motion for density fluctuations of the Fourier compo-
nents in Equation (43):

ρ̈~k =
(
−

N

∑
i=1

(
~k · ~̇ri

)2e−i~k·~ri − 1
V

4πNe2

m
ρ~k −

1
V

4πe2

m ∑
~k′ 6=~k
~k′ 6=~0

ρ~k′
(
ρ~k − ρ~k′

)
. (45)

The first term in Equation (45) is quadratic in k. It can be ignored if
〈(
~k · ~̇ri

)2〉
average �

ω2
p; i.e., if one limits k to be small. The ‘upper bound’ on the wave number, denoted by kc,

of the plasma oscillations is

kmax = kc ≈
ωp

v f
. (46)

Now, the integral of the charge density over the entire space adds up to the total
number of electrons N, i.e.,∫∫∫

d3~rρ(~r) =
N

∑
i=1

∫∫∫
d3~rδ(~r−~ri) = N, (47a)

corresponding to

ρ(~r) =
N

∑
i=1

δ(~r−~ri). (47b)

Using the fact that the Fourier expansion of the charge density

ρ(~r) =
1
V

N

∑
~k=1

ρ~kei~k·~r, (48)

with ρ~k =
N

∑
i=1

e−i~k·~ri and ρ∗~k =
N

∑
j=1

e+i~k·~rj .

In the third term on the right-hand side of Equation (45), we have ρ~k =
N

∑
i=1

e−i~k·~ri and

ρ~k−~k′ =
N

∑
i=1

ei~k′−~k·~ri , which involve oscillatory terms consisting of phase factors of modulus

unity. It is like carrying out a sum of vectors in a complex plane whose directions are
random, and one expects this to be a zero-sum addition. Thus: (i) neglecting the first term
(enabled by placing an upper limit on k) and (ii) linearizing Equation (45) (i.e., neglecting the
quadratic terms, taking advantage of the random-phases), we obtain

ρ̈~k = −
4πρ̄e2

m
ρ~k = ω2

pρk, (49)

which essentially is an equation of motion for a simple harmonic oscillator. Quantized
collective excitations of this system are elementary excitations. They are pseudo-particles
called plasmons. The frequency of plasma oscillations is

ωp =

√
4πρ̄e2

m
=

√√√√4π
(

3
4πr3

s

)
e2

m
=

√
3e2

mr3
s

. (50a)

The zero-point energy of the plasma oscillations is 1
2 h̄ωp , where

h̄ωp =
2
√

3

r
3
2
s

Ryd. (50b)
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In the Bohm–Pines method of canonical transformation of the Hamiltonian discussed
below, the significance of the approximation involving linearization of the Hamiltonian
concomitant with the neglect of terms having random phases gets further accentuated.

We have seen that the Hamiltonian for a bulk electron gas in a uniform positive
background jellium potential is

H0 =
N

∑
i=1

p2
i

2m
+

1
2

e2

V

N

∑
j=1
j 6=i

N

∑
i=1

∑
~k

~k 6=~0

4πe2

k2 ei~k·(~ri−~ri), (51a)

and noting that the j = i term adds up to N, the total number of electrons, we arrive at

H0 =
N

∑
i=1

p2
i

2m
+

2πe2

V ∑
~k

~k 6=~0

1
k2

N

∑
i=1

ei~k·~ri
N

∑
j=1
j 6=i

e−i~k·~rj =
N

∑
i=1

p2
i

2m
+

2πe2

V ∑
~k

~k 6=~0

1
k2

(
ρ∗~k ρ~k − N

)
, (51b)

where the last form is obtained by adding and subtracting the term corresponding to the
j = i.

The quantum problem to be solved for the above Hamiltonian is

H0ψ = Eψ. (52)

Bohm and Pines recognized that the classical model which yielded plasma oscillations
described by Equation (49) would be an approximation to a quantum model. One ought
to seek a transformation of the Hamiltonian (Equations (51a) and (51b)) such that plasma
oscillations appear explicitly as a set of Hamiltonians for simple harmonic oscillators for various
~k values limited by Equation (46). They therefore proposed canonical transformations
(q, p)→ (Q, P) of the Hamiltonian in Equations (51a) and (51b) to a new set of generalized
coordinates Q and momenta P such that the new quantum Hamiltonian would have
the form

Hk =
P†

k Pk

2
+

1
2

ω2Q†
k Qk, (53a)

which is characteristic of the Hamiltonian for a simple harmonic oscillator represented by
the Hamiltonian (in units of m = 1)

hSHO =
p2

2
+

1
2

ω2q2. (53b)

The transformation we seek is not inspired by actual measurements of the new coordi-
nates and momenta; it is motivated only by seeking the form in Equation (53a). Hence, the
operators Q & P need not necessarily be Hermitian. The Bohm–Pines strategy consists of
starting with an auxiliary Hamiltonian

H1 = ∑
~k

~k<~kc

1
2

P†
~k

P~k −MkP†
~k

ρ~k, (54a)

with

Mk =

√
4πe2

Vk2 . (54b)

We do not demand the operators Q & P to be Hermitian. Instead, by choosing

P†
~k
= P−~k, (55a)
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and

Q†
~k
= Q−~k, (55b)

we see on recognizing that the summation over~k and that over −~k is equivalent consid-
ering the symmetry in the momentum space that, H1 is Hermitian, even if Q and P are
not. The wavefunction depends only on the original set of electron coordinates; it can-
not depend on any additional degrees of freedom. It is therefore judicious to employ
subsidiary conditions

∂ψ

∂Q~k
= 0, (56a)

however, limited by k < kc. The derivative operator is the momentum,

Pk = −ih̄
∂

∂Q~k
, (56b)

hence

Pkψ = 0 for k < kc, (56c)

and
[Qk, Pk′ ] = ih̄δk,k′ , (57)

which is just the uncertainty relation for canonically conjugate coordinates and momenta.
Use of Equation (56c) in Equation (54a) ensures that

(H0 + H1)ψ = Eψ, (58)

and the Hamiltonian (H0 + H1) describes the same quantum system. We seek a transfor-
mation affected by an operator

U = e
i
h̄ s, (59a)

with

S = ∑
~k;~k<~kc

MkQ~kρ~k, (59b)

and

S† = ∑
~k;~k<~kc

MkQ†
~k

ρ∗~k = ∑
~k;~k<~kc

MkQ−~kρ−~k = S, (59c)

which gives

U† = e−
i
h̄ s = U−1, (59d)

and we see that the transformation is unitary. It follows that

(Pk)new = U−1
(
− ih̄

∂U
∂Q~k

+ UPk

)
= Pk − ih̄U−1 ∂U

∂Q~k
= Pk + U−1[Pk, U]− = Pk + Mkρ~k, (60a)

and the ith component of the operator is

(~pi)new = ~pi − i ∑
~k;~k<~kc

M~kQ~k
~kei~k·~ri . (60b)
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Essentially, under the transformation under consideration, the operators ~ri, Q~k, ρ~k
remain invariant, but (~p)new and (Pk)new are different. We now ask what the transformed
Hamiltonian,

Hnew = U−1(H0 + H1)U, (61)

is. After some tedious algebra, it turns out to be

H = Hnew =
N

∑
i=1

p2
i

2m
+ ∑

~k
~k<~kc

1
2
(

P†
~k

P~k + ω2
pQ†

~k
Q~k

)
− ∑

~k;~k 6=~0

2πe2

Vk2 N + Hs.r. + Hint + K, (62)

where

Hs.r. =
1
2 ∑
~k;~k 6=~0,~k>~kc

(
ρ∗~k ρ~k − N

)
, (63)

Hint = −
i

2m ∑
j

∑
~k

~k 6=~0

M~kQ~k
~k · (2~pj + h̄~k)e−i~k·~rj , (64)

and

K =
1

2m

k 6=l

∑
−~k

~k<~kc

∑
~l

~l<~kc

M−~k M~k(
~k ·~l)

{
∑

j

(
Q−~ke+i~k·~rj ×Q~ke−i~k·~rj

)}
, (65)

The new Hamiltonian has a manifestly complicated form. The term K (Equation (65))
is quadratic in the new coordinates and has random phases which would cancel out in a
linearization process, as explained earlier in the context of the classical model and arrived at
Equation (49). Linearization of the H = Hnew makes it possible to drop the operator K and
justifies the term random-phase approximation. The rest of the Hamiltonian is

H = Hnew =
N

∑
i=1

p2
i

2m
+ ∑

~k
~k<~kc

1
2
(

P†
~k

P~k + ω2
pQ†

~k
Q~k

)
− N

V ∑
~k;~k 6=~0

2πe2

k2 + Hs.r. + Hint, (66)

in which Hs.r. (Equation (63)) represents a set of quasi-particles interacting via short-range
screened-Coulomb potential and given by

Hs.r. =
1
V ∑

~k;~k 6=~0,~k>~kc

2πe2

k2

(
ρ∗~k ρ~k − N

)
, (67)

and

− N
V ∑

~k;~k 6=~0

2πe2

k2 (68)

is the self-energy of the electron gas.
Hint is accounted for by a further canonical transformation of the Hamiltonian (in

which K is ignored) written in terms of transformed coordinates and momenta. Using the
random-phase approximation concomitant with linearization of the transformed Hamiltonian (i.e.,
neglect of quadratic terms in the newer set of coordinates), the Hint term gets dropped,
but in the process, the first two terms get somewhat modified, and the new approximate
Hamiltonian becomes

H = Hnew = { ∑
~k;~k<~kc

1
2
(P†

~k
P~k + ω2

pQ†
~k

Q~k)}+ {
N

∑
i=1

p2
i

2m
(1− β2

6
) + Hs.r.} − { ∑

~k;~k 6=~0

2πe2

Vk2 N}, (69)
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where
β =

kc

kF
, (70)

and
ω2

k = ω2
p +

2
m

EFk2 (71)

expresses a weak k-dependent dispersion of the plasma frequency.
We have another subsidiary condition, similar to Equation (56c):

(Pk + MKρ~k)ψnew = 0 for k < kc. (72)

The kinetic energy part in the newer Hamiltonian is diminished by the factor (1− β2

6 );
actual calculations show that β ' 0.7 and hence the kinetic energy part is reduced by
about 8%. The long-range part of the interaction is what leads to the plasma oscillations
corresponding to the first curly bracket in Equation (69). Hs.r. denotes the short-range
screened-Coulomb interaction between the new pseudo-particles, which are elementary
excitations called plasmons. The Hartree–Fock approximation accounted for only the static
part of the density fluctuations of the collective behavior of an electron gas. The frozen-
orbital approximation that leads us to the Koopmans theorem highlights this approximation
which limits it to the neglect of the Coulomb correlations. The method of canonical
transformation of the Hamiltonian enables us address the Coulomb correlations albeit in an
approximate manner by systematic and straightforward interpretation of Equation (69) in
which the first curly bracket represents the collective oscillations of the electron gas resulting
from the long-range part of the Coulomb interaction. A quantum of these oscillations is the
plasmon. The second curly bracket represents the Hamiltonian for the screened Coulomb
interaction, and the third represents the self-energy of the electron gas.

EBP =
2.21
r2

s
− 0.916

rs
+

√
3

2r3/2
s

β2 − 0.916
rs

( β2

2
− β4

48

)
.

The Bohm–Pines method elucidates the physical content of the random-phase approxi-
mation (RPA) and the linearization process it involves. There are other methods of arriving at
the RPA, such as the Equation of Motion method [13] and the Greens function method [11].
The approximation is equivalent to summing over all the ring diagrams (along with the
diagrams for the exchange interaction corresponding to each Coulomb term) in Feynman
diagrammatic perturbation theory. Another equivalent approach to the RPA(E) results
from the linearization of the Time-Dependent Hartree–Fock (TDHF) method developed
by Dalgarno and Victor [14] and Amusia [15], and its relativistic version, namely the lin-
earized Time Dependent Dirac–Hartree–Fock (TDDHF, often briefly denoted as TDDF)
developed by Johnson and Lin [4]. In the next section, we summarize the linearized
TDHF/TDDF approximations.

2.3. Linearization of TDHF and that of TDDF Formalism

The Hartree–Fock self-consistent field (HF-SCF) method accounts for correlations in
many-electron dynamics that result by demanding that a many-fermion wavefunction
must be anti-symmetric with respect to every exchange of pairs of the elementary par-
ticles. These correlations are therefore equivalently referred to as exchange correlations
or as statistical (Fermi–Dirac) correlations. The Pauli Exclusion Principle automatically
follows from it; hence, they are also sometimes called the Pauli correlations. The HF-SCF,
however, only accounts for a static average of the density fluctuations of the many-electron
system and thus leaves out what are known as Coulomb correlations. In the previous section,
we discussed the RPA which employs a linearization technique and provides for a very
successful methodology to account for the Coulomb correlations. We now proceed to
discuss the RRPA [4], which is essentially based on linearization of the Time-Dependent
Dirac–Hartree–Fock (TD-DHF, or just TDDF) family of coupled integro-differential equa-
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tions. The linearized TDHF (RPAE) approximation [Amusia] was the precursor to the
RRPA; it employs the linearization of the TDHF family of equations. The RPAE employs
two-component spin-orbitals obtained as SCF solutions to the non-relativistic Schrödinger
equation for the many-electron system. These spin-orbitals go into the construct of the
Slater determinantal single-configuration wavefunctions. The RRPA is the relativistic exten-
sion of the RPAE. It employs four-component bi-spinor SCF solutions to the Dirac equation
for the many-electron system which appear in the Slater determinant. The bi-spinors
(spin-orbitals) are, however, admittedly time-dependent allowing for density fluctuations
of the many-electron system. The resulting TD-DHF (TDHF) equations are non-linear;
making a linear approximation to the TD-DHF (TDHF) equations result in the RRPA (RPAE).

The time-independent DHF equations for an N-electron closed-shell atomic system are

(h0 + VDHF)ui = εiui . . . i = 1, 2, . . . , N, (73)

where ui represent the four-component bispinor, h0 represents the Dirac Hamiltonian,

h0 =~α · ~p + βm− Ze2

r
(h̄ = 1, c = 1), (74)

εi represent the DHF eigenvalue and VDHF(~r) represents the DHF potential, given by

VDHFu(~r) =
N

∑
j=1

e2
∫

d3r′

{(
u†

j uj
)′u− (u†

j u
)′uj

}
|~r−~r′|

, (75)

and the prime denotes the argument over which integration is carried out. Solutions to the
DHF equations are best represented by a Slater determinant

ψ(N) =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣

u1(1) . . . . . . . . . u1(N)
u1(1) . . . . . . . . . u1(N)

. . . . . . . . . . . . 〈N|i〉

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
uN(1) . . . . . . . . . uN(N)

∣∣∣∣∣∣∣∣∣∣∣∣
, (76a)

where

unκm =
1
r

(
iGnκ(r)Ωκm(r̂)
Fnκ(r)Ω−κm(r̂)

)
=

(
u+

u−

)
, (76b)

with

for j = `+
1
2

, Ωκm =


√
( j+m

2j )Y(
`=j− 1

2

)(
m
`′=m− 1

2

)
(r̂)√

( j−m
2j )Y(

`=j− 1
2

)(
m
`′=m+ 1

2

)
(r̂)



for j = `− 1
2

, Ωκm =

−
√
( j−m+1

2j+2 )Y(
`=j+ 1

2

)(
m
`′=m− 1

2

)
(r̂)√

( j+m+1
2j+2 )Y(

`=j+ 1
2

)(
m
`′=m+ 1

2

)
(r̂)

. (76c)

The electron densities of the DHF one-electron bispinors (spin-orbitals) represent only
a time-average since the DHF model ignores electron correlations. Due to the electron cor-
relations in the initial and the final state of a transition affected by what may be represented
by an interaction operator

Ω = ν+e−iωt + ν−e+iωt, (77)
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with the positive and negative frequency driving terms respectively denoted by

ν+ =~α · ~A; ν− = ν†
+. (78)

~A being the vector potential of the electromagnetic field, the DHF orbitals must be repre-
sented by time-dependent functions described by

ui(~r)→ ui(~r) + wi−(~r)eiωt + wi+(~r)e−iωt + · · · (79)

The dots . . . at the end in Equation (79) represent higher harmonics. If we rebuild the
(Time-Dependent) Dirac–Hartree–Fock scheme with all the higher harmonics, we obtain
Non-Linear Time-Dependent Dirac–Hartree–Fock equations. Dalgarno and Victor [14]
proposed the RPA linearization of the (non-relativistic TD-HF equations by dropping the
higher harmonics. Following a similar logic, Johnson, Lin and Dalgarno [2–5] introduced
the very same linearization in the TD-DHF system of coupled integro-differential equations
for the orbitals wi±.The orbitals wi+ represent perturbation of the DHF orbitals due to the
positive frequency part of the perturbation, and the orbitals wi− represent perturbation
of the DHF orbitals due to the negative frequency part. The linearized Time-Dependent
Dirac–Hartree–Fock (L-TslatdetD-DHF) equations are

(h0 + VDHF − εi ∓ω)wi± =
(
ν± −V(1)

±
)
ui + ∑

j
λij±uj; i = 1, 2, . . . , N, (80)

with

V(1)
± ui(~r) =

N

∑
j=1

∫
d3r′

[(
u†

j wj±
)′ui +

(
w†

j∓uj
)′ui −

(
w†

j∓ui
)′uj −

(
u†

j ui
)′ujwj±

]
|~r−~r′|

, (81)

which includes the Coulomb correlations that are omitted in the DHF method. The fac-
tors λij± in Equation (80) are the Lagrange’s variational multipliers, introduced in the
algebraic equations to ensure orthogonality of the perturbed orbitals wj∓ with respect
to the unperturbed ones uj. Omission of the driving terms ν± gives us the fundamental
RRPA equations:

± (h0 + V − εi)wi± + V(1)
± ui ∓∑

j
λij±uj = ωwi±; i = 1, 2, . . . , N, (82)

The eigenvalues of the RRPA equations provide the linear approximation to the
excitation spectra in both the discrete and the continuum. The positive and negative
components wi± of the eigenfunctions describe the correlations which are omitted in the
DHF formalism, respectively, in the excited state (both discrete and continuum) and in the
initial states. The amplitude of transition from an initial state to the excited state described
by the RRPA function wi±(~r) corresponding to the frequency ω brought about by the
interaction (Equation (76)) is

T =
N

∑
j=1

∫
d3r
(
w†

i+v+ui + w†
i−v−ui

)
, (83a)

i.e.,

T =
N

∑
j=1

∫
d3r
(
w†

i+~α · ~Aui + w†
i−~α · ~Aui

)
. (83b)

It is a very important property of the (R)RPA equations that the transition matrix
element is invariant under gauge transformations of the electromagnetic potentials. In ac-
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tual calculations, one often employs truncated RRPA in which only the most important
interchannel coupling is used. This leads to a slight disagreement in the estimation of the
transition matrix elements in the length gauge and in the velocity gauge.

It is very convenient to have a pictorial representation of the correlations that are
addressed in a many-electron theory. The diagrammatic representation developed by
Feynman, first presented in the Spring of 1948 at the Pocono Conference, is suitable for
our purpose. In AMO sciences, we (normally) do not work with positrons, but there are
‘hole’ states which are vacant states normally occupied by electrons. Thus we represent
evolution of atomic states by vertical solid lines with reference to a time-axis going from
the bottom to the top (left to right is an alternative convention). The atomic state lines are
sometimes referred to as the ‘trunk’ of the diagram. A vertex in the diagram represents an
intersection of a photon wavy line and the trunk. Particle lines point upwards and hole
lines point downwards. Summing over only the ring graphs, as shown by Gell-Mann and
Brueckner [21] has precisely the same effect as the linearization approximation that results
in the random-phase approximation introduced by Bohm and Pines. Electron correlations
are interpreted by recognizing that electrons exchange virtual photons which mediate the
interaction between the electrons. The electromagnetic interaction is treated at the level of
quantum theory. A positron is anelectron propagating backward in time. Figure 3 shows
some of the lowest order diagrams [22] which contribute to the RRPA matrix elements.

 

Figure 3. Lowest order Feynman diagrams which contribute to the RRPA transition amplitude for
the transition a→ ā. Time axis is from the bottom to the top of the page. The dashed lines represent
electron–electron correlations, and the wiggly lines correspond to the photon operator. Arrows
pointing upward (downward) are the electron (hole): (a) represents uncorrelated transition matrix
element; (b,c) represent, respectively, the first order time-forward (i.e., final state) Coulomb and
exchange terms; and (d,e) represent, respectively, the first order time-backward (i.e., initial state)
Coulomb and exchange terms. (f–h) represent higher order ring diagrams.
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Time-forward diagrams represent correlations in the final state in which configuration-
interaction in the continuum is taken care of. In the RRPA, this corresponds to interchannel
coupling. The time-backward diagrams represent correlations in the initial state. Variants of
the RRPA that offer some advantages include the R-MCTD (Relativistic Multi-Configuration
Tamm–Dancoff) method [23] and the RRPA-with-relaxation (RRPA-R) method [24]. The par-
ticle and the hole creation and annihilation operators that are referenced in the ring
diagrams (Figure 3) are defined with respect to a vacuum consisting of a closed-shell
Hartree–Fock (or Dirac–Hartree–Fock) fermion system, such as that described by Equa-
tion (8). Two-particle two-hole correlations are included, accommodating both creation and
annihilation of a particle-hole pair. The focus of this article is to discuss the linearization
approximation involved in the RPA and illustrate a few applications of the RRPA; hence,
we omit an elaboration of the RRPA-R and R-MCTD techniques.

3. Illustrative Examples

As a first example, consider the dipole photoelectron angular distribution resulting
from the photoionization of the 5s subshell of the closed-shell Xe atom. The general form
of the dipole angular distribution for linearly polarized incident radiation for subshell i is
given as the differential photoionization cross section by [25]

dσi
dΩ

=
σi
4π

[1 + βiP2(cos θ)], (84)

where σi is the total subshell cross section, P2(x) = (3x2 − 1)/2, θ is the angle between
photon polarization and photoelectron momentum directions, and βi is the dipole angular
distribution asymmetry parameter. Nonrelativistically, for a closed shell atom, βi = 2 and is
independent of energy for an initial ns subshell [24]. From a physical point of view, this
occurs because, nonrelativistically, there is only a single final state partial wave, charac-
terized by ns→ εp, so that there is nothing to interfere with, and the angular distribution
is just determined by the symmetry of the εp-wave. When relativistic interactions are
included, the situation is changed in that there are then two possible photoionizing tran-
sitions ns→ εp1/2 and ns→ εp3/2, and these can interfere with one another, giving rise
to both a deviation of βi from the value two, and an energy dependence. This behavior
will be most evident near Cooper minima [26] owing to the fact that the two relativistic
channels exhibit the minima at slightly different energies [27], so that in this region the
matrix elements for the two relativistic channels can be vastly different, both in magnitude
and phase.

The Xe 5s photoionization cross section and β parameter calculated using RRPA,
including correlation in the form of interchannel coupling with 5p and 4d relativistic pho-
toionization channels, are depicted in Figure 4. The cross section exhibits a deep minimum,
indicative of the Cooper minima in the 5s→ εp1/2 and 5s→ εp3/2 channels. Correspond-
ingly, the β parameter shows a deep minimum around that energy, and over a significant
energy range, β is energy-dependent. It is to be emphasized, that, while the nonrelativistic
RPAE does pretty well on the cross section [1], the β parameter predicted by the nonrela-
tivistic calculation is constant and equal to two at all energies. Thus, it is evident that the
addition of relativistic effects to the original nonrelativistic RPAE brings out additional
physical effects. It should also be noted that, although the RRPA result for the cross section
is rather good in the Cooper minimum region, the predictions for β are not, owing to the
mission of satellite photoionization channels in the RRPA [28].
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Figure 4. Xe 5s photoionization cross section (upper curve) and β parameter vs. photon energy, ω,
calculated using RRPA [29].

The next example is the phenomenon of spin-orbit-activated interaction interchan-
nel coupling (SOIAIC). Basically, this results from the interchannel coupling among the
photoionization channels emanating from the two members of a spin-orbit doublet, nl,
with j = l ± 1

2 . The phenomenon was discovered experimentally in the photoionization of
the 3d subshell of Xe [30] and subsequently explained theoretically [31]. The explanation
given in [31] was based upon the nonrelativistic RPAE that was artificially made to include
the spin-orbit splitting of the Xe 3d spin-orbit split levels. Subsequently, RRPA was applied
and verified the explanation [32]. The results, both experimental and theoretical, are shown
in Figure 5.

tions, accounted for in our present calculations and in the
SPRPAE calculations but not in the ASFA approach.

The results of our RRPA-R calculations, the measured
data @1#, the results of the ASFA calculations@1#, and the
results of the SPRPAE calculations@12# for photoelectron
angular distribution anisotropy parametersb3d j ( j
55/2,3/2) are shown in Fig. 2. This parameter is defined by
the known expression for differential cross section for unpo-
larized photons~see, e.g., Ref.@22#!:

dsnl j

dV
5

snl j

4p F12
1

2
bnl j~v!P2~cosu!G ,

where snl j (v) is the photoionization cross section of the
subshellnl j ( j 5 l 61), V is a solid angle into which the
photoelectron is ejected,P2(z) is the second-order Legendre
polynomial of its argumentz, andu is the angle between the
directions of the incoming photon and ejected photoelectron.
The RRPA-R results in length and velocity gauge differ at
most by 0.005, so that they are indistinguishable in the scale
of Fig. 2.

The authors of experimental and theoretical~ASFA! data
in Ref. @1# shifted their theoretical curve in energy by
22 eV in their original figure presenting the results for pa-
rameterb, to obtain better agreement between these data.
We present in Fig. 2 the results of the ASFA calculations
@1#without shifting. Similarly to the case of the cross sec-
tions, the shifting of experimental data in energy would im-
prove the agreement with our and also ASFA results. How-
ever, note that the amount of shifting required now~2 eV! is
different than for cross sections~5.1 eV!.

Although our and ASFA calculations for the parameterb
are closer than in the case for the cross sections, the RRPA-
R results show again some peculiarity not produced by the
ASFA approach@1#, but this time not so distinctly exhibited
by measured data, as is the case for the cross section. The
RRPA-R curve forb3d5/2

(v) has a hump at about the same

photon energies where the RRPA-R curve for the cross-
section curve has a dip. We are going to show below that this
hump is also a consequence of intershell couplings.

B. Influence of intershell correlations

To investigate whether the noticed peculiarities found in
the results of our 13-channel RRPA-R calculations—the dip
in the 3d5/2 cross section followed by the broad maximum,
present in the measured data@1#, and the hump in the 3d5/2
parameterb3d5/2

(v) unpronounced in the experimental data
@1#—are the consequence of intershell couplings, we per-
formed additional RRPA-R calculations in which the inter-
shell couplings are excluded. Such calculations include only
three channels: for the 3d5/2 subshell the included channels

3d5/2→« f 7/2, « f 5/2, «p3/2,

and for the 3d3/2 subshell these are

3d3/2→« f 5/2, «p3/2, «p1/2.

These calculations are somewhat similar to the ASFA ap-
proach@1,13#, but contrary to the ASFA they include inter-
channel correlations within a subshell~intrashell correla-

FIG. 1. Photoionization cross sections for the 3d shell of xenon.
Solid lines represent 13-channel RRPA-R partial cross sections for
the respective 3d5/2 and 3d3/2 subshells, calculated in the present
work. The calculated cross sections in length and velocity gauge
differ by at most 3%, so that the corresponding curves are almost
indistinguishable in the scale of the figure. Dashed lines represent
the results of SPRPAE calculations by Amusiaet al. @12#. Dotted-
dashed lines represent results of the ASFA calculations@1# as cal-
culated by the authors,withoutshifting in the original figure of their
work. Closed and open circles denote the respective experimental
results for 3d5/2 and 3d3/2 subshells@1#.

FIG. 2. Photoelectron angular distribution anisotropy parameter
b for the 3d shell of xenon. Solid lines represent the 13-channel
RRPA-R parameterb for 3d5/2 and 3d3/2 subshells calculated in the
present work. The length and velocity gauge results differ at most
by 0.005 and are indistinguishable in the scale of the figure. Dashed
lines represent the results of SPRPAE calculations@12#. Dotted-
dashed lines represent the results of the ASFA calculations@1# as
calculated by the authors,without shifting in the original figure of
their work. Closed and open circles denote the experimental results
for respective 3d5/2 and 3d3/2 subshells determined from one type
of measurements~I!, and open triangles denote the two sets ofb
values for 3d5/2 measured with a different setup~II ! @1#.

NEAR-THRESHOLD PHOTOIONIZATION OF THE Xe 3d . . . PHYSICAL REVIEW A67, 022719 ~2003!

022719-3

Figure 5. Photoionization cross sections for the 3d subshell of xenon. Solid lines represent calculated
13-channel RRPA (with relaxation) cross sections for the respective 3d5/2 and 3d3/2 subshells [32].
The calculated cross sections in length and velocity gauge differ by at most 3%, so that the corre-
sponding curves are almost indistinguishable in the scale of the figure. Dashed lines represent the
results of SPRPAE results of [31]. Dotted-dashed lines represent results of the ASFA calculations [30].
Closed and open circles denote the respective experimental results for 3d5/2 and 3d3/2 subshells [30].
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The key point here is that both the 3d5/2 and 3d3/2 cross sections exhibit shape
resonances [33] just above their respective thresholds. As a result, the 3d3/2 cross section
is significantly larger than the 3d5/2 cross section just above the 3d3/2 threshold. As a
general rule, when a large photoionization cross section is degenerate with a small one,
the small cross section is altered owing to interchannel coupling (configuration interaction
in the continuum) [34]. This is exactly what is seen here in the form of the structure in the
3d5/2 cross section just above the 3d3/2 threshold. It is evident that the relativistic spin-
orbit splitting of the 3d thresholds is crucial to the existence of this SOIAIC phenomenon,
and it is also clear that SOIAIC is likely to be in evidence for the photoionization of inner
subshells that have a significant spin-orbit splitting and exhibit a near-threshold shape
resonance. Furthermore, as a result of the fact that the photoionization cross sections of
inner shells of confined atoms often have significant near-threshold maxima [35], owing
to the phenomenon of confinement resonances [36], the SOIAIC should be much more
generally exhibited [37].

The asymptotic branching ratios of spin-orbit doublets have been a topic of interest since
the 1960s. Earlier, it was expected that far above thresholds, the ratio of cross sections for the
members of a spin-orbit doublet, nl, with j = l ± 1

2 , respectively, should approach (l + 1)/l,
known as the statistical value, at asymptotically high energies [38]. However, it was later
shown that relativistic effects on the initial state wave functions would cause the ratio to drop
below the statistical [39,40]. Recently, experimental technology has improved to the point
that this prediction has been verified experimentally [41]. In addition, it had been found
that, in the vicinity of inner shell thresholds, there can be very large swings of the branching
ratio over relatively small energy ranges [41,42]. However, all of this phenomenology cannot
occur within a nonrelativistic framework; relativistic interactions are required.

As a particular example, the calculated branching ratio for Xe 5p using the RRPA with
coupling among relativistic channels from all subshells except 1s [42] is depicted in Figure 6
over a very large energy range, from threshold to 500 a.u. (approximately 13.6 keV), where
it is seen that, at the highest energies, that branching ratio is about 1.6, well below the
statistical value for an initial np doublet, in keeping with the earlier predictions. In addition,
there are seen to be significant excursions from monotone decreasing results in the vicinity
of the n = 4, n = 3 and n = 2 thresholds. These excursions are the result of interchannel
coupling between the relativistic photoionization channels resulting from the 5pj initial
states and the channels from the inner shells. The fact that there are significant excursions
of the branching ratios in these energy ranges means that the actual interchannel coupling
matrix elements are themselves dependent upon relativistic interactions.

Figure 6 also shows the results of RRPA calculation including only coupling among
the five 5p relativistic photoionization channels. It is evident that the truncated RRPA
results agree quite well with the fully coupled branching ratios away from the inner shell
thresholds but do not reproduce the significant excursions from the smooth curve in the
vicinity of the inner shell thresholds, thereby showing conclusively that these excursions
are the result of interchannel coupling with the inner shell photoionization channels.

The Cooper minimum [26] mentioned above in connection with Xe 5s photoionization,
is a ubiquitous phenomenon that pervades the photoionization of outer and/or near-outer
subshells of all of the elements of the periodic table [43,44]. Among the interesting facets
of the influence of relativistic interactions which cause a single nonrelativistic Cooper
minimum to be split into several relativistic Cooper minima dependent upon the total
angular momentum, j, is of the initial and final states of the relativistic photoionizing
transition [45,46]. In addition, the locations of Cooper minima depend very sensitively on
many-body correlations, in addition to relativistic interactions; as a matter of fact, the Xe
5s Cooper minimum is below threshold in the discrete region at the level of single parti-
cle calculations [47] but appear in the continuum in calculations that include significant
many-body effects [5]. Thus, RRPA is an ideal formalism to study these relativistic effects
in Cooper minima. For completeness, it should be pointed out here that in the neighbor-
hood of the Xe 5s Cooper minimum, quadrupole effects become important in the angular
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distribution, although the total subshell cross section is virtually unaffected. The interfer-
ence between dipole and quadrupole photoionizing transitions leads to extra terms in the
expression for the differential cross section, but β remains unaffected to the first order [29].
In addition, calculations of the effects of quadrupole transitions on the differential cross
section (photoelectron angular distribution) using the RRPA methodology has been shown
to be in good agreement with the experiment [48].

 Figure 6. Photoionization cross section branching ratios for Xe 5p3/2/5p1/2 calculated using RRPA
with full coupling (red dots) and with only coupling among the 5p photoionization channels (blue
squares) [41,42]. The vertical dashed lines indicate the thresholds.

Recent work on the splitting of Cooper minima (CM) for heavy and superheavy atoms
has illustrated the importance of including correlation in the calculations [49]. As an
example, given in Table 1 are the positions of the various 6s CM for six elements obtained
at three levels of calculation: independent particle Dirac–Fock (DF), two-channel RRPA
coupling on the two relativistic channels arising from 6s photoionization, and RRPA with
full coupling of all the channels that might affect the result. To begin with, there are huge
differences between the positions of the 6s→ εp3/2 CM and the 6s→ εp1/2 CM, and the
differences increase with Z to an astounding degree in Og—a splitting of more than 4.5 keV.
This comes about owing to the spin-orbit force which is attractive for the 6s→ εp1/2 final
state but repulsive for the 6s→ εp3/2 final state. In addition, it is clear from Table 1 that
correlation in the form of interchannel coupling induces rather significant changes in the
location of 6s → εp3/2 CM compared to the two-channel and DF results, changes that
generally increase with Z, indicating the crucial importance of the interchannel coupling in
the determination of the position of the CM in these heavy and superheavy elements.
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Table 1. Positions of the Cooper minima (CM) in Dirac–Fock (DF), two-channel RRPA and RRPA
with full coupling in photoelectron energy in (a.u.) [5].

Atoms

Photoelectron Energy (a.u.) Photoelectron Energy (a.u.)
of the 6s → εp3/2 CM of the 6s → εp1/2 CM

DF RRPA RRPA (Full DF RRPA RRPA (Full
(2 Channel) Coupling) (2 Channel) Coupling)

Hg (Z = 80) 2.73 2.17 4.17 0.55 0.67 3.67

Rn (Z = 86) 3.63 1.43 5.93 4.43

Ra (Z = 88) 4.01 1.38 6.38 3.88

No (Z = 102) 10.91 5.70 11.70 6.70

Cn (Z = 112) 32.53 29.32 24.82 4.82

Og (Z = 118) 62.12 63.02 171.02 3.52

4. Concluding Remarks

It is clear from the above exposition and examples that RRPA, which includes sig-
nificant many-body correlation including initial state two-particle two-hole terms and
final state interchannel coupling, can be suitably applied to a number of aspects of atomic
photoionization and give physical insight into what makes the results for these processes
what they are. Furthermore, it must be noted that only a few of the many examples that
have been studied over the years are presented above. Thus, it is evident that the RRPA
methodology has contributed greatly to our understanding of atomic photoionization as
well as many other atomic processes [50]. However, it must be recalled that all of this
was made possible by the pioneering work on the RPAE method by Miron Amusia and
his collaborators.
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