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Abstract: The strong-field approximation (SFA) has been widely applied in the literature to model
the ionization of atoms and molecules by intense laser pulses. A recent re-formulation of the SFA
in terms of partial waves and spherical tensor operators helped adopt this approach to account for
realistic atomic potentials and pulses of different shape and time structure. This re-formulation
also enables one to overcome certain limitations of the original SFA formulation with regard to the
representation of the initial-bound and final-continuum wave functions of the emitted electrons. We
here show within the framework of JAC, the Jena Atomic Calculator, how the direct SFA ionization
amplitude can be readily generated and utilized in order to compute above-threshold ionization (ATI)
distributions for many-electron targets and laser pulses of given frequency, intensity, polarization,
pulse duration and carrier–envelope phase. Examples are shown for selected ATI energy, angular
as well as momentum distributions in the strong-field ionization of atomic krypton. We also briefly
discuss how this approach can be extended to incorporate rescattering and high-harmonic processes
into the SFA amplitudes.

Keywords: atomic; Coulomb–Volkov; direct amplitude; distorted-Volkov; electron emission; Jena
Atomic Calculator; partial-wave representation; relativistic; strong-field approximation; strong-
field ionization

1. Introduction

During the past decades, strong-field ionization measurements in atoms and molecules
have led to numerous insights into the electron dynamics on short time scales. In particular,
several nonlinear optical processes, such as the above-threshold ionization (ATI, [1,2]),
tunneling ionization, high-order harmonic generation (HHG, [3,4]), or the nonsequential
double ionization (NSDI, [5]) have attracted much interest and can be readily controlled by
tailoring the temporal shape and duration of ultrashort laser pulses. In ATI, for example,
the energy and momentum distributions of photoelectrons are often recorded for different
targets and (short) laser pulses of different frequency ω, intensity I, polarization ε, pulse
duration (i.e., number of laser cycles, np), or by even steering the carrier–envelope phase
φ (CEP). In contrast to the detailed modeling of the driving laser pulse, however, the target
atoms are typically described in rather a simplified manner, and especially the initial state
of the active electron is often just taken as a hydrogenic 1s state [6,7]. Because of this and
further simplifications in modeling the target atoms, many observations are still understood
only qualitatively so far.

Figure 1a displays the prototypical geometry and observables of an ATI experiment.
Here, atoms are exposed to an intense driving laser pulse with given intensity I, wavelength
λ, ellipticity ε or, perhaps, even a superposition of such light fields. A detector D records
the photoelectrons that are emitted due to the interaction of laser pulse with the target
atoms. Routinely, the photoelectron energy distributions are recorded at a fixed detector
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position within the x− y polarization plane (Figure 1b). The observed photoelectron energy
spectra then exhibit ATI peaks that are spaced by the photon energy. If the detector position
is varied within the polarization plane, azimuthal angular distributions can be recorded for
photoelectrons of selected energy (Figure 1c). These angular distributions strongly depend
not only on the shape of the driving laser pulse but also on the outgoing electron wave in
the potential of the photoion. In addition, the full photoelectron momentum distributions
are often measured within the polarization plane as shown in Figure 1d.

(a) (b) (c) (d)
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Figure 1. ATI experiment and typical observables. (a) geometry of an ATI experiment: An atom is
irradiated by a strong laser pulse (red) of intensity I and wavelength λ that propagates along the
z-axis and is polarized with ellipticity ε within the x − y plane . Due to the interaction with the
laser field, a photoelectron is emitted with momentum p = (p, ϑp, ϕp) in spherical coordinates and
measured at the detector D. (b) For a given position of the detector within the polarization plane,
the measured photoelectron energy distributions exhibit several ATI peaks that are just spaced by
the photon energy. (c) For a few-cycle driving laser pulse, the angular distribution of photoelectrons
with fixed energy reveals an asymmetry which encodes details of the pulse structure and the electron
continuum. (d) In addition, full photoelectron momentum distributions are often recorded within the
polarization plane.

While any reliable theory of the strong-field (ionization) processes from above must
have its roots in the time-dependent Schrödinger equation, a direct (numerical) integration
of this equation becomes unfeasible already for the three-dimensional motion of a single
(active) electron in a static soft-core potential, not to speak about the many-electron nature
of most targets [8]. Therefore, a number of analytical methods have been developed as
well and nowadays provide good insights into the underlying electron dynamics. In
particular, the strong-field approximation (SFA) [9–11] provides an efficient single-electron
treatment and has become, despite several limitations in its original form, a very valuable
tool for computing the ATI and HHG spectra for a wide range of laser parameters and
targets [12–14]. Here, however, a re-formulation of the SFA in terms of partial waves and
spherical tensors [15] is applied and help adopt this method towards modern strong-field
measurements. This re-formulation enables one to incorporate all central features of the
incident laser pulse as well as the electronic structure of the target atoms.

To support the analysis of different strong-field measurements, this work reports an
implementation of the (direct) SFA amplitude in its partial-wave representation within
the framework of JAC, the Jena Atomic Calculator [16]. This toolbox, which facilitates the
(relativistic) computation of atomic structures and processes [17,18], has been expanded
here in order to model the initial-bound and final-Volkov states in the computation of strong-
field amplitudes. Apart from the active-electron waves, however, our implementation
below is flexible also in choosing the polarization, shape (envelope) and even the CEP
phase of the driving laser pulse. Indeed, all these features have been found to be (very)
crucial to further adopt the theoretical modeling of strong-field ionization processes to
ongoing experiments.

The paper is structured as follows: After a brief discussion of the SFA and the direct
amplitude in terms of partial waves in Section 2, emphasis is placed on the implemen-
tation within the framework of JAC as well as the role of appropriate data structures for
simplifying the communication with and within the program. Section 3 then explains and
discusses how the different energy, angular and momentum distributions can be obtained
quite readily by just specifying the initial and final levels of the target atom as well as the
parameters of the laser pulse. This includes the choice of atomic potential and the Volkov
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states in the evaluation of the amplitudes. Finally, a short summary and conclusions are
given in Section 4, with emphasis on possible extensions of the code towards rescattering
phenomena, or the computation of harmonic spectra.

2. Strong-Field Amplitudes and Probabilities
2.1. Brief Account of the Strong-Field Approximation

The SFA has been known as perhaps the most straight avenue for modeling strong-field
ionization processes and for analyzing most of the associated ATI spectra and momentum
distributions. In this approximation, a (so-called) active electron is assumed to undergo
a transition from its initial bound state |ψi(t)〉 into the laser-dressed continuum

∣∣χ p(t)
〉

owing to its interaction with the laser pulse (cf. Figure 1a), while the motion of all other
electrons of the target is typically assumed to be unaffected. Not much need to be said
here about the basic SFA theory, which can be found in various texts [12,13]. In this
approximation, the probability for the strong-field ionization of atoms and for finding a
photoelectron with asymptotic momentum p at the detector,

P (p) = p |T (p)|2, (1)

can then be expressed in terms of transition amplitudes as [6]

T(p) = T0(p) + T1(p),

T0(p) = −i
∫ ∞

−∞
dτ
〈
χp(τ)|Vle(r, t) |ψi(τ)

〉
, (2)

T1(p) = (−i)2
∫ ∞

−∞
dτ

∫ ∞

τ
dτ′

〈
χp(τ

′)
∣∣V(r) U le(τ

′, τ) Vle(r, τ)
∣∣ψi(τ)

〉
, (3)

and where Vle(r, t) refers to the laser–electron interaction, U le(t′, t) the time evolution and
V(r) to the atomic potential as seen by the outgoing electron.

Indeed, the two (strong-field) amplitudes T0(p) and T1(p) can be readily interpreted
in terms of a (re-) scattered photoelectron and are often referred to as the direct and
rescattering amplitudes, respectively. In this work, we shall focus especially on the direct
amplitude T0(p) that describes those photoelectrons which are directly released from the
target atom by the laser potential, Vle(r, t) |ψi(t)〉, and then freely propagate within the laser
field as Volkov solution

∣∣χp
〉
, until they reach the detector. Indeed, this amplitude often

provides a good approximation for most strong-field ionization processes and, in particular,
if the laser field is not linearly polarized. Typically, the following assumptions are made to
further simplify the amplitude (2):

1. The initial-bound state |ψi(t)〉 is entirely determined by the atomic potential V(r) and
is not affected by the laser field.

2. The photoelectron with asymptotic momentum p arrives as plane-wave at the detector,
i.e.,

∣∣χp(t→ ∞)
〉
= |p〉.

3. Once the electron is released from the atom, the atomic potential does not affect its
(electronic) motion within the continuum.

Often, moreover, a Coulomb potential V(r) = − Z (eff)/r = −√ 2 Ip/r has been
applied, in line with the ionization potential of the target atoms, and the initial state
|ψi(t)〉 has been taken just as 1s ground state orbital in this (Coulomb) potential. With
these assumptions in mind, the momentum distribution of the photoelectrons can then be
expressed by a closed (analytical) formula. Obviously, however, these assumptions neglect
both a proper representation of the initial state of the atoms as well as the (static) potential
of the photoion upon the outgoing electron wave (continuum) and, hence, quite major
parts of the electronic structure of the target atoms.

Several, if not most, of these assumptions can be easily released, if the initial and
final states are consequently expressed in terms of partial waves as typical for atomic
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structure theory [15]. In such a partial wave expansion, the representation of the initial
bound and (Volkov) continuum states can be incorporated along with the parameterization
of the short an intense laser pulses. It is this representation of the (direct) transition
amplitude T0(p) on which we shall focus in the implementation below and which paves
the way for extending the strong-field theory towards the study of non-dipole contributions
in light-atom interactions as well as towards many-particle correlations in strong-field
ionization processes.

2.2. Partial-Wave Representation of Strong-Field Amplitudes
In the derivation of the SFA amplitude ((2) and (3)), indeed, no additional assumptions

have to be made about the form of the atomic potential V(r) or about the potentials Φ(r, t)
and A(r, t) of the driving laser field, but which—of course—affect the Volkov states

∣∣χp
〉
.

If, for the coupling of the radiation field, we restrict ourselves to the dipole approximation
[ A(r, t) ≈ A(t) ] and the velocity gauge [ Φ(r, t) = 0 ], the vector potential of an elliptically-
polarized laser pulse can be written in terms of its spherical tensor components as

A(t) = Re {Ac(t)} =
1
2
(Ac(t) + A∗c (t)), Ac(t) = Ao u f (t) e− i (ωt+ φ (CEP)) (4)

and where Ao denotes the (real-valued) amplitude, f (t) the pulse envelope, ω = 2π c/λ
the fundamental frequency, and where φ (CEP) refers to the carrier–envelope phase of the
laser pulse. In this notation, moreover, the (complex) polarization unit vector

u =
1√

1 + ε 2

(
ex + i ε ey

)
(5)

defines the orientation of the polarization ellipse in terms of the ellipticity −1 ≤ ε ≤ 1.
The vector potential (4) therefore implies already all the properties ω, I, f (t), ε and φ (CEP)

of the laser field which can be controlled experimentally.
A partial-wave representation of the amplitudes ((2) and (3)) also enables one to adapt

both the initial bound state |ψi〉 and the final continuum state to the target potential of
interest [15,19]. This is readily achieved, for instance, by using (self-consistent) solutions
from atomic structure theory. For the outgoing photoelectron

∣∣χp(t)
〉

=
1

(2π) 3/2 e−i SV(t)
∣∣∣φ(A)

p

〉
, (6)

moreover, one only needs to replace the partial wave
∣∣∣φ(A)

p

〉
in the expansion of a plane-

wave Volkov state by the corresponding solutions of either a Coulomb–Volkov or distorted-
Volkov state in order to account for a realistic potential of the target, including the associated
Coulombic and non-Coulombic phase shifts [20,21]. Here, we shall provide only a brief
discussion of the theory, just enough to follow our implementation below, while all further
details are given in Refs. [15,19].

For the direct SFA transition amplitude (2), Equations (23) and (24) of reference [15]
display a rather lengthy formula that is written in a basis of well-defined total angular
momenta for the initially bound and the final (photo-) electron. This expression depends
explicitly on the Volkov phase and all the parameters of the driving laser pulse, and it
also accounts for the spatial dependence of the active electron in terms of the reduced
one-particle matrix elements

〈
εp`p jp‖ p ‖n`j

〉
of the momentum operator, as typical for

atomic structure theory. The advantage of such an expression in a spherical basis arises
from the—prior and separate—integration over all radial and spherical coordinates. This
expression therefore also enables one to readily incorporate and discuss different contri-
butions from the electron–photon interaction and the representation of the active electron
without any need to re-derive the transition amplitude(s) for every target potential and/or
laser (pulse) configuration separately. Below, we shall focus especially upon realistic (single-
electron) initial states and the improved representation of the continuum for the outgoing
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photoelectron. It is this partial-wave representation of the direct SFA amplitude which
makes the present extension an integral part of the JAC toolbox and which goes well beyond
of what has been used originally in the SFA. However, since the expression in Ref. [15] is
still restricted to the electric-dipole approximation, it neither accounts for the magnetic
field nor any spatial dependence of the electric field, though this can likely be done as well
(cf. Section 4).

2.3. Implementation of the (Direct) Strong-Field Amplitude

Like in atomic structure theory, a partial-wave representation of all (strong-field)
amplitudes enables one to deal quite independently with atomic potentials, the Volkov
state for the outgoing electron or the laser–electron interaction in terms of the given laser
parameters. Such a representation also helps identify the building blocks for computing
the photoelectron spectra and/or momentum distributions, as they are observed exper-
imentally. In the JAC toolbox, we therefore aim to distinguish between the target and
laser parameters as the input of a computations, and the generated observables (spectra)
as output. A simple access to all individual input parameters will enable us to compute
the strong-field ionization amplitudes in quite different approximations. Although the
current implementation is still restricted to the direct SFA amplitude in velocity gauge, the
same or very similar building blocks will occur if other amplitudes or gauges are to be
considered in the future. The use of partial waves and spherical tensors even ensures that
these amplitudes can be readily combined with atomic structure codes to further include
electronic correlations and relativistic contributions to the strong-field ionization studies.

Not much need to be said about JAC itself, the Jena Atomic Calculator [16] that
supports atomic (structure) calculations of different kind and complexity and that has
been summarized at various places [22–24]. Apart from energies and wave functions
for open-shell atoms and ions, this toolbox also helps compute a good number of their
excitation and decay processes. With the design and implementation of JAC [25], we
moreover aim for establishing a descriptive language that (i) is simple enough for both, a
seldom or more frequent use of this toolbox, (ii) emphasizes the underlying atomic physics
and, furthermore, (iii) avoids most technical slang as common to many other electronic
structure codes. The implementation of JAC is based on Julia [26,27], a recently developed
programming language for scientific computing, and supports its use without much prior
knowledge about neither the language nor the code itself.

Figure 2 displays a few selected atomic processes that are presently supported by JAC,
and which are shown together with useful features and control parameters for calculating
strong-field amplitudes. The set of parameters in the right panel of Figure 2 hereby indicates
how between different pulses we shall distinguish in these computations geometries and/or
gauges for the coupling of the radiation field, and as far they have been worked out until
the present. In particular, the initial bound and final Volkov states of the (photo-) electron
just appear in the reduced matrix elements

〈
εp`p jp‖ p ‖n`j

〉
, and can be taken either as a

hydrogenic orbital, scaled upon the ionization potential, or as realistic one-electron wave
function. Here, the continuum orbitals are generated in the static potential of the photoion
and with energies as measured at the detector [28].

Special care has to be taken about the envelope of the laser pulses. In a spherical-wave
expansion, this envelope enters the direct amplitude in terms of (so-called) pulse-shape
integrals F1[±ω; f ; p] and F2[ f ; p], cf. Ref. [15]. These one-dimensional, (time) integrals are
often obtained numerically but can be evaluated also analytically for continuous beams and
a few other forms of the envelope. In our implementation below, the envelope (shape) of
the laser pulse is accessed by a proper (abstract) data type, quite similar to the frequency, in-
tensity, number of cycles and the polarization of the incident pulses. In typical applications
of JAC, one needs to select these parameters based on the given setup of the experiment
and different practical considerations in order to keep the computations feasible.
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Figure 2. Selected applications of the JAC toolbox that help calculate atomic structures and processes
as well as strong-field ionization amplitudes in various approximations. Apart from choosing between
typical strong-field observables, the Volkov states and the parameterization of the laser pulses can be
controlled rather flexibly. See Refs. [16,25] for a detailed account of all other features of this toolbox.

2.4. Data Types for Modeling Photoelectron Distributions and Above-Threshold Experiments

From a physics viewpoint, we normally wish to trace back the simulation of different
spectra and photoelectron distributions to just computing the (direct) SFA amplitude from
above, though for specifically selected target atoms, approximation of wave functions and
parameters of the laser pulse. Obviously, this requires simple access to all these data as well
as special care to bring them together with the internal calls of the program. To facilitate the
communication with and the data transfer within the program, the JAC toolbox is built upon
a large number of data structures in order to specify useful and frequently recurring objects
in such computations, and which also establish their language elements. Two prominent
examples for such data structures, that frequently appear in atomic structure theory, are
an Orbital for specifying the quantum numbers and radial components of single-electron
orbital functions, or a Level for the full representation of an approximate initial or final
bound state of the target atoms, and which itself comprises all information about the
orbitals, the coupling of the angular momenta and the mixing of the many-electron target
states. These target states are typically obtained self-consistently in a Dirac–Fock–Slater
potential and hence are based on orbitals in line with the given target. JAC’s explicit set of
data structures has been enlarged for the present update of the code by several types and
now helps compute, analyze and explore the desired photoelectron spectra for different
laser pulses and targets. In total, there are about 250 of these data structures in JAC, though
most of them remain hidden to the user.

To model different strong-field ionization measurements, we wish (and need) to char-
acterize especially the incident laser pulse in terms of its frequency, intensity, shape and
polarization as well as the observables (spectra) to be simulated. In addition, we wish
to control the target potentials and representation of the Volkov states in the strong-field
amplitude. All this input is very central to the implementation and must be readily accessi-
ble by the given hierarchy of data structures. While we shall not explain these structures
in all detail here, Figure 3 displays a few of them from JAC’s Pulse and StrongField
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modules. The abstract type Pulse.AbstractEnvelope (middle panel), for example, just
deals with the envelope of the laser pulse and comprises various concrete types for spec-
ifying a particular shape, pulse duration or number of cycles. Similarly, the data type
StrongField.AbstractSFAObservable enables one to specify the observable of choice and
its resolution. All this information about the observable, target and pulse parameters
finally define (an instance of) a StrongField.Computation (lower panel), and which can
be utilized in JAC analogue to the previously implemented Atomic.Computation [16,29] or
Cascade.Computation [30,31].Version June 26, 2022 submitted to Atoms 7 of 15

abstract type StrongField.AbstractSFAObservable ... defines an abstract as well as a number of
concrete data types for observables that can be computed by means of the implemented SFA
amplitude.

+ struct SfaEnergyDistribution ... to compute an energy spectrum of the photoelectrons.
+ struct SfaMomentumDistribution ... to compute a momentum distribution.
+ struct SfaAzimuthalAngularDistribution ... to compute an angular distribution of photoelectrons

as function of the azimuthal angle phi but for a
fixed energy and polar angle.

+ struct SfaPolarAngularDistribution ... to compute the angular distribution as function of
theta but for fixed energy and phi.

StrongField.SfaEnergyDistribution <: StrongField.AbstractSFAObservable, etc.

abstract type Pulse.AbstractEnvelope ... defines an abstract type to deal with the envelope
of a laser pulse; it comprises the following (concrete) subtypes:

+ InfiniteEnvelope ... to represent an infinte (plane-wave) pulse.
+ RectangularEnvelope ... to represent a finite rectangular pulse.
+ SinSquaredEnvelope ... to represent a finite sin^2 pulse.
+ GaussianEnvelope ... to represent a Gaussian light pulse.

Pulse.RectangularEnvelope <: Pulse.AbstractEnvelope, etc.

struct StrongField.Computation ... defines a type for the computation of strong-field amplitudes
and observables; it enables the user to specify all the parameters as they are typically known
from strong-field ionization experiments.

+ observable ::AbstractSFAObservable ... SFA obserable to be calculated in this run.
+ nuclearModel ::Nuclear.Model ... Model, charge and parameters of the nucleus.
+ grid ::Radial.Grid ... Radial grid to be used for the computation.
+ initialLevel ::Level ... Initial level of the atom.
+ finalLevel ::Level ... Final level of the atom.
+ beam ::Pulse.AbstractBeam ... Type and properties of the incident pulse.
+ envelope ::Pulse.AbstractEnvelope ... Envelope of the incident light pulse.
+ polarization ::Basics.AbstractPolarization ... Polarization of the pulse.
+ volkov ::AbstractVolkovState ... Approach for the Volkov states.
+ settings ::StrongField.Settings ... Settings to control the SFA computation.

Figure 3. Selected data structures of the JAC toolbox that help specify and perform a
StrongField.Computation (lower panel). Apart from the observable of interest (upper panel), the
nuclear model, radial grid as well as the initial and final level of the target atom, one needs to specify
the properties of the laser pulse in terms of its beam type, envelope (middle panel) and the polarization
of the incident light. Moreover, the user can select the Volkov state approach and a number of further
settings. See table 1 for other data types that are closely related to StrongField.Computations.
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Figure 3. Selected data structures of the JAC toolbox that help specify and perform a
StrongField.Computation (lower panel). Apart from the observable of interest (upper panel), the nu-
clear model, radial grid as well as the initial and final level of the target atom, one needs to specify the
properties of the laser pulse in terms of its beam type, envelope (middle panel) and the polarization
of the incident light. Moreover, the user can select the Volkov state approach and a number of further
settings. See Table 1 for other data types that are closely related to StrongField.Computations.

Finally, Table 1 displays several other data structures that are relevant as well for the
computation and analysis of strong-field photoelectron distributions. They are explained
only in brief, while further details can be obtained from JAC’s User Guide [25] or by just
using Julia’s help facilities [32]. The definition and hierarchy of these data structures how-
ever nicely illustrate how they help implement different strong-field ionization scenarios
and, hence, a wide range of potential applications in atomic and atto-second physics. In
the next section, we make use of these data types to simulate various energy, angular and
momentum distributions for a krypton target.



Atoms 2022, 10, 70 8 of 15

Table 1. Selected data structures of the JAC toolbox that are relevant for StrongField.Computations.
Here, only a brief explanation is given, while further details can be found by using Julia’s help
facilities.

Struct & Brief Explanation.

Basics.AbstractPolarization: defines an abstract type to deal with different polarizations of light and electron beams; it presently
comprises the concrete subtypes: LinearPolarization, LeftCircular, RightCircular, LeftElliptical, RightElliptical.

ManyElectron.Level: defines a type for an atomic level in terms of its quantum number, energy and with regard to an explicitly
specified relativistic basis.

Pulse.AbstractBeam: defines an abstract type to deal with various basic laser pulses as they often characterized in terms of their
amplitude, frequency, carrier–envelope phase, etc. In general, the basic beam properties are independent of the (pulse) envelope and
the polarization properties which are handled and communicated separately (to and within the program).

Pulse.AbstractEnvelope: defines an abstract type to deal with different envelopes of the laser pulses with regard to their shape, pulse
duration or number of cycles; it comprises the concrete subtypes: InfiniteEnvelope, RectangularEnvelope, SinSquaredEnvelope
and GaussianEnvelope.

StrongField.AbstractVolkovState: defines an abstract type to specify the Volkov states in the computation of SFA amplitudes; it
comprises the concrete types: FreeVolkov, CoulombVolkov, DistortedVolkov.

StrongField.SphericalAmplitude: to compute and store the amplitude at a given energy-angular point (energy, theta, phi) in the
momentum space of the outgoing electron.

StrongField.Settings: specifies further settings for the computation of SFA amplitudes and observables, including the choice of
the multipole field, gauge and several others.

3. Energy and Momentum Distributions for Atomic Krypton

In the literature, the SFA has been frequently applied for comparing the energy and
momentum distributions with experiments and for studying pulses and targets of quite a
different sort. In these computations, more often than not, the active electron has initially
been assumed to be in a hydrogenic 1s state, and by just matching the ionization potential to
the target of interest. However, such a simple approach provides only little insight into the
role that the target atoms play in strong-field ionization. Here, we wish to demonstrate that
our partial-wave representation of the SFA amplitude enables us to adopt the initial-bound
and final-Volkov states to realistic target potentials. We also show how the ATI spectra and
momentum distributions can be obtained for pulses of different intensity, polarization and
pulse duration. All these computations are performed by applying the JAC toolbox [16],
which integrates the electronic structure and a good deal of atomic processes within a single
computational framework, and which has now been expanded to facilitate the simulation of
strong-field ionization distributions. For the sake of convenience, all simulations below are
performed for krypton (Ip = 14 eV) and a right-circularly polarized, np = 8 cycle driving
laser pulse with wavelength λ = 800 nm, intensity I = 1014 W/cm2 and carrier–envelope
phase φ (CEP) = 0. Here, we shall not compare our implementation with experiment or
previous computations, which have been done recently for a number of other targets [19].

3.1. Above-Threshold Energy Spectra

Often, the observed ATI spectra can be qualitatively reproduced by simply using the SFA
and plane-wave Volkov continuum states, since the peak structure of these photoelectron
spectra itself arises from the interaction of the (quasi-) free electron with the electric field
of the ionizing laser pulse. For these reasons, most energy spectra also exhibit distinct
peaks, which are just spaced by the photon energy of the incident laser beam. These peaks
become easily visible by measuring the photoelectron energy for a fixed azimuthal angle
ϕo along some line in the px − py polarization plane. Besides the selected laser parameters,
these energy spectra depend of course also on the target atoms as well as on how the
photoelectrons are described on their way to the detector, including the Volkov continuum
and, possibly, even a re-scattering of the photoelectrons.
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The ATI energy spectra of the strong-field photoelectrons can be modeled also by
the present extension to the JAC toolbox. Figure 4 displays the (Julia) input which needs
to be prepared by the user and which enables one to calculate such spectra for different
targets and pulses. In this input, we have assumed that the 4p 6 1S0 ground level of atomic
krypton and the 4p 5 2P1/2,3/2 final levels of the photoion have been computed before
by the JAC toolbox and are just provided by the variables initialLevel and finalLevel.
Here, we make use of a slightly larger charge of the nucleus in order to adopt the 4p
ionization potential to experiment. To characterize the laser pulse, moreover, we provide
the wavelength, intensity and carrier–envelope phase and assume a sin2 envelope as well
as a right-circularly polarized plane-wave beam. Some of these given parameters first
need to be converted to atomic units in order to be applicable in the computation of
the field amplitude. We also specify here the velocity gauge and the electric-dipole (E1)
interaction, even if these parameters must not be changed in the present implementation.
The choice of a hydrogenic orbital with scaled nuclear charge can be made by a boolean in
the StrongField.Settings().
Version June 26, 2022 submitted to Atoms 9 of 15

nuclearModel = Nuclear.Model(36.53)
grid = Radial.Grid(Radial.Grid(false), rnt = 4.0e-6, h = 5.0e-2, hp = 2.0e-3, rbox = 20.0)

# Choose electron continuum in the laser field
volkov = StrongField.FreeVolkov()

# Define laser beam parameter
wavelength = 800.; intensity = 1e14; CEP = 0.;
envelope = Pulse.SinSquaredEnvelope(8)
polarization = Basics.RightElliptical(1)

omega = convertUnits("energy: from wavelength [nm] to atomic", wavelength)
intensity = convertUnits("intensity: from W/cm^2 to atomic", intensity)
A0 = Pulse.computeFieldAmplitude(intensity, omega)
beam = Pulse.PlaneWaveBeam(A0, omega, CEP)

# Spectral observations and settings
observable = StrongField.SfaEnergyDistribution(pi/2, 0.0, 200, 10*omega)
sfaSettings = StrongField.Settings([E1], "VelocityGauge", true, true, false, false, true)

comp = StrongField.Computation(observable, nuclearModel, grid, initialLevel, finalLevel,
beam, envelope, polarization, volkov, sfaSettings)

StrongField.perform(comp, output=true)

Figure 4. Julia input for generating the black-solid ATI spectrum in the left panel of Figure 5 for a
krypton target, if irradiated by an np = 8 cycle sin2 laser pulse with a central wavelength of λ = 800 nm
and intensity I = 10 14 W/cm2. The laser pulse is right-circularly polarized and has a carrier-envelope
phase φ (CEP) = 0. This input describes the complete strong-field computation, but where the 4p 6 1S0

ground and the final 4p 5 2P1/2,3/2 levels of krypton are assumed to be generated before by the JAC

toolbox. Although no attempt is made to explain this input in all detail, this figure nicely demonstrates
how readily JAC can be utilized to generate rather different spectra and distributions. See text for
further explanations.
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Figure 4. Julia input for generating the black-solid ATI spectrum in the left panel of Figure 5 for
a krypton target, if irradiated by an np = 8 cycle sin2 laser pulse with a central wavelength of
λ = 800 nm and intensity I = 10 14 W/cm2. The laser pulse is right-circularly polarized and has a
carrier–envelope phase φ (CEP) = 0. This input describes the complete strong-field computation, but
where the 4p 6 1S0 ground and the final 4p 5 2P1/2,3/2 levels of krypton are assumed to be generated
before by the JAC toolbox. Although no attempt is made to explain this input in all detail, this
figure nicely demonstrates how readily JAC can be utilized to generate rather different spectra and
distributions. See text for further explanations.

In the input above, we finally also specify as observable an SfaEnergyDistribution(),
and which is to be calculated for ϑ = π/2 and ϕ = 0 (i.e., along the x-axis), and
for 200-electron energies in the interval 0 ≤ ε kin ≤ 10 ω ≈ 15 eV. All this input to-
gether determines the (strong-field) computation comp::StrongField.Computation and
can be readily adopted to many other experimental scenarios. All that is needed in JAC

is to perform(comp, output=true) this computation, and where the optional parameter
output=true just tells JAC to return the calculated data (amplitudes) to the user for printing
and post-processing.

Figure 5 displays the photoelectron energy spectra, emitted along the x-axis, for a
krypton target and a right-circularly polarized laser pulse. The left panel shows the spectra
as obtained for a computed with a hydrogenic 1s initial wave function with adopted
ionization potential and for a plane-wave Volkov continuum (black-solid curve) as well
as a Coulomb–Volkov continuum (red dashed curve). On the right panel, in contrast,
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the spectra are computed for an initial 4p orbital of neutral krypton and a plane-wave
Volkov continuum (black-solid curve), a Coulomb–Volkov continuum (red-dashed curve)
as well as a distorted-Volkov continuum (blue-dotted curve). In all these computations, a
right-circularly polarized sin2 pulse of wavelength λ = 800 nm, intensity I = 1014 W/cm2,
carrier–envelope phase φ(CEP) = 0 and with just np = 8 cycles has been utilized.
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Figure 5. Photoelectron energy spectra, emitted along the x-axis within the polarization plane, for a
neutral krypton target and a right-circularly polarized laser pulse. The left panel shows the spectra
as computed with a hydrogenic 1s initial wave function with adopted ionization potential and
for a plane-wave Volkov continuum (black-solid curve) as well as a Coulomb–Volkov continuum
(red-dashed curve). On the right panel, in contrast, the spectra are computed for an initial 4p orbital
of neutral krypton and a plane-wave Volkov continuum (black-solid curve), a Coulomb–Volkov
continuum (red-dashed curve) as well as a distorted-Volkov continuum (blue-dotted curve). In all
these computations, a right-circularly polarized sin2 pulse of wavelength λ = 800 nm, intensity
I = 1014 W/cm2, carrier–envelope phase φ(CEP) = 0 and with np = 8 cycles has been utilized.

Input quite similar to Figure 4 can be employed also for studying the angle and
momentum distributions of photoelectrons for different laser pulses and targets. While no
further input data will be shown below, we refer the reader for details to the User Guide
and the online documentation of the JAC program. Moreover, rather moderate changes
to this input will be sufficient in the future to expand the StrongField module to other
gauges, amplitudes or many-electron features. While such an expansion of the code indeed
appears straightforward, major effort will still be needed for its implementation and testing.

3.2. Photoelectron Angular Distribution for Elliptically-Polarized Laser Pulses

In the electric-dipole (E1) approximation, the angular distribution of the photoelectrons
is restricted to the x− y polarization plane and just reflects at fixed photoelectron energy
the ionization probability in Equation (1) for different azimuthal angles 0 ≤ ϕ ≤ 360◦. If,
moreover, the laser field dominates the electron dynamics in the continuum, the observed
photoelectron angular distribution (PAD) should also reflect the symmetry of the vector
potential of the laser beam. In practice, however, a Coulomb asymmetry in the PAD was
(first) observed by Goreslavski et al. [33] in the ATI of xenon gas targets and, since then, has
been found to be a valuable testbed for improving theory. For lithium, argon and xenon,
for example, the SFA theory was shown to reproduce this asymmetry, if a target-specific
initial orbital function is chosen along with a distorted-Volkov continuum for the active
electron [34].

Figure 6 displays different photoelectron angular distributions in the polarization
plane (ϑp = π/2) for a krypton target. Angular distributions are shown for elliptically-
polarized laser pulses with ε = 0.36 (left panel) and ε = 0.56 (right panel) at fixed
photoelectron energy εp ≈ 2.9 ω according to the third ATI peak in Figure 5. Different
approximations are compared for these angular distributions: a hydrogenic 1s initial orbital
together with a plane-wave Volkov continuum (black-solid curves); a self-consistent initial
4p orbital of neutral krypton together with a Coulomb–Volkov continuum (red long-dashed
curves); the same initial 4p orbital but together with a distorted-Volkov continuum (blue-
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dashed curves). All these distributions are normalized on their maximum, while all other
laser parameters are the same as in Figure 5. Indeed, a self-consistent 4p orbital of neutral
krypton together with a Coulomb–Volkov continuum (red long-dashed curves) leads to
a clear rotation of the PAD as mentioned above. Moreover, the PAD no longer exhibits
an inversion symmetry with regard to the origin because of the short duration of the
laser pulse. If, in addition, the Coulomb–Volkov continuum is replaced by an distorted-
Volkov continuum (blue-dashed curves), and which accounts for an outgoing electron in
the potential of the Kr+ photoion, the rotation angle still changes rather remarkably. In
Ref. [19], it was shown that such a distorted-Volkov continuum (often) leads for different
targets to better agreement with experiment.
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Figure 6. Photoelectron angular distributions in the polarization plane (ϑp = π/2) for a krypton
target. Angular distributions are shown for elliptically-polarized laser beams with ε = 0.36 (left
panel) and ε = 0.56 (right panel) at fixed photoelectron energy εp ≈ 2.9 ω according to the third ATI
peak in Figure 5. Different approximations are compared for these angular distributions: a hydrogenic
1s initial orbital together with a plane-wave Volkov continuum (black-solid curves); a self-consistent
initial 4p orbital of neutral krypton together with a Coulomb–Volkov continuum (red long-dashed
curves); the same initial 4p orbital but together with a distorted-Volkov continuum (blue-dashed
curves). All distributions are normalized on their maximum, while all other laser parameters are the
same as in Figure 5.

3.3. Photoelectron Momentum Distribution for Few-Cycle Laser Pulses

Theoretical photoelectron momentum distributions (PMD) have been calculated in
the literature by means of quite different methods, and by making use of even a larger
number of case-specific modifications to these methods. Generally, the experimentally
observed symmetries of the PMD cannot be explained so readily by just applying a plane-
wave Volkov continuum [33], but can be improved further if the Coulomb potential of the
residual ion is taken into account. In our implementation of the SFA direct amplitude, this
is achieved by replacing the plane-wave Volkov continuum by either Coulomb–Volkov
or distorted-Volkov states. For the low-energy photoelectrons with (say) εp . 2ω, the
ionization probability is then often enhanced by up to an order of magnitude, if the ionic
charge just increases from Z = 0 to 1. This has been explained by the attractive Coulomb
potential of the residual ion that pulls the electron back to the ion and hence reduces
its kinetic energy. The low-energy part of the ATI spectra can be further improved by
adding a short-range potential to the (long-range) Coulomb potential and by making use
of distorted-Volkov states.

Figure 7 shows the photoelectron momentum distributions in the polarization plane
(ϑp = π/2) for the strong-field ionization of a krypton target. Momentum distributions are
shown for circularly-polarized laser beams with three different CEP phases: φ(CEP) = 0 ◦

(left panel), φ(CEP) = 45 ◦ (middle panel) and φ(CEP) = 90 ◦ (right panel) and by applying
a self-consistent initial 4p orbital of neutral krypton together with a plane-wave Volkov
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continuum. All further laser parameters are the same as in Figure 5. Obviously, the PMD in
this figure exhibits a (very) clear rotation since the photoelectrons are preferably emitted in
the polarization plane along the maximum of the vector potential [6], and which changes
with the carrier envelope phase φ(CEP). It will be interesting to explain with JAC in future
work how the Coulomb asymmetry and the CEP dependence act together upon the angular
or momentum distributions, and, especially of the initial-bound and distorted-Volkov
continuum states of different atomic targets, are taken properly into account. In these
studies, both the Coulomb and short-range interactions can be easily incorporated into the
continuum by just replacing the radial wave functions of the active electron.

Figure 7. Photoelectron momentum distributions in the polarization plane (ϑp = π/2) for a krypton
target. Momentum distributions are shown for circularly-polarized laser beams with three different
CEP phases: φ(CEP) = 0 ◦ (left panel), φ(CEP) = 45 ◦ (middle panel) and φ(CEP) = 90 ◦ (right panel)
and by applying a self-consistent initial 4p orbital of neutral krypton together with a plane-wave
Volkov continuum. All further laser parameters are the same as in Figure 5.

4. Conclusions and Outlook

Up to the present, the SFA has been found as perhaps the most powerful method
for predicting or analyzing the electron dynamics in strong-field ionization. Often, this
approximation helps describe features in the observed electron distributions even quantita-
tively, if the initial-bound and final-continuum states of the photoelectron are well adopted
to the target atoms, and if combined with a proper parameterization of the laser field.
With the present implementation of the direct SFA amplitude into the JAC toolbox, this
method can now be applied to different targets and strong-field scenarios. In particular, the
implementation of the SFA in the partial-wave representation enables us to readily control
(and replace) the wave functions and various details about the laser–electron interaction. It
also enables us to extend this implementation for incorporating further interactions and
mechanisms into the modeling.

Detailed calculations are performed for a krypton target as well as for different ATI
spectra and PMD. These examples clearly show how the target potential affects the photo-
electrons on their way to the detector and, hence, all the observed spectra. In particular,
we have demonstrated how the electronic structure of the atomic targets can be taken into
account in the representation of the active electron and how the dynamics of the outgoing
electron can be readily controlled by applying different approximations for the Volkov
continuum. Moreover, the use of partial waves and spherical tensor operators facilitates
a simpler comparison of different pulse shapes and how they influence the observed ATI
spectra and PMD.

Several extensions to the SFA are still desirable and appear feasible within a framework,
which is based on a partial-wave representation of the associated strong-field amplitudes.
While further effort will be needed to decompose these amplitudes into a form, suitable for
computations, a few useful extensions concern:

• Non-dipole interactions: For spatially-structured light fields, non-dipole contribu-
tions to the Volkov continuum usually arise from the spatially dependent Volkov
phase [35–37], and which need first to be expressed into a partial-wave representation
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in order to become applicable within JAC. These non-dipole terms beyond the widely
used E1 approximation capture the combined-electric and magnetic-fields upon the
electron dynamics [38,39]. Their implementation into the JAC toolbox will help predict
the energy and momentum shifts at long wavelengths of the driving fields.

• Coupling of the radiation field: Apart from the (commonly applied) velocity gauge,
the direct amplitude can be also implemented in length gauge. This leads to more
complicated pulse-shape integrals that also comprise the reduced matrix elements of
the momentum operator, since the kinetic momentum then needs to be replaced by
the (time-dependent) canonical momentum. While such an implementation requires
further work, the direct SFA amplitude in length gauge was shown to provide more
accurate results for the ionization of non-spherical np electrons [40].

• Rescattering amplitude: For laser pulses with proper polarization, the electrons
are known to be partly rescattered by the photoion, which then leads to processes,
such as high-order ATI, the non-sequential double ionization, or even to high-order
harmonics beyond the well-known cut-off law [41]. A partial-wave representation of
the rescattering amplitude (2) is currently worked out and can be applied to account
for realistic rescattering potentials.

• High-harmonic generation: Similar to the rescattering ATI amplitude above, a recom-
bination amplitude needs to be computed in order to obtain the dipole moment of
emitted high-harmonic radiation. For modeling HHG, again, we expect to benefit
from a re-formulation of the dipole amplitude in terms of partial waves and from
including realistic initial and continuum orbitals [42,43].

• Role of bound states: The coupling of the ground and continuum states to other
excited (bound) states has been analyzed in the literature for just a (very) few selected
HHG spectra [44]. A partial-wave representation of the SFA amplitudes facilitates
the coupling to excited states of the target and may help explain the formation and
influence of (autoionizing) resonances in the HHG plateau.

• Many-electron effects: A consequent partial-wave decomposition of all strong-field
amplitudes enables one to incorporate many-electron contributions beyond a (spher-
ical) short-range potential into the formalism. Apart from the self-consistent field
and the mixing of important configurations, this also refers to the treatment of the
multipole contributions (higher than E1), if the corresponding many-electron matrix
elements are utilized [45,46].

• Nonsequential double ionization (NSDI): When the photoelectron returns to the
photoion, the electron can scatter inelastically under the ionization of a second electron.
Theoretically, the NSDI is typically described semi-classically by using excitation
and/or ionization cross sections for the second (ionizing) step of the process [47,48].
A partial-wave representation of all associated quantum SFA amplitude facilitates a
coherent treatment of this nonlinear ionization process.

For all these desirable extensions, the partial-wave representation of the SFA [15], and
its implementation in JAC provides a straight and conceivably the best way to advance
theory and the light–atom interaction in strong fields.

Author Contributions: Methodology, S.F. and B.B.; software, S.F. and B.B.; writing—review and
editing, S.F. and B.B. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation)—440556973.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Atoms 2022, 10, 70 14 of 15

References
1. Agostini, P.; Fabre, F.; Mainfray, G.; Petite, G.; Rahman, N.K. Free-free transitions following six-photon ionization of xenon atoms.

Phys. Rev. Lett. 1979, 42, 1127. [CrossRef]
2. Paulus, G.G.; Nicklich, W.; Huale, X.; Lambropoulos, P.; Walther, H. Plateau in above threshold ionization spectra. Phys. Rev. Lett.

1994, 72, 2851. [CrossRef] [PubMed]
3. McPherson, A.; Gibson, G.; Jara, H.; Johann, U.; Luk, T.S.; McIntyre, I.A.; Boyer, K.; Rhodes, C.K. Studies of multiphoton

production of vacuum-ultraviolet radiation in the rare gas. J. Opt. Soc. Am. B 1987, 4, 595–601. [CrossRef]
4. Ferray, M.; L’Huillier, A.; Li, X.F.; Lompre, L.A.; Mainfray, G.; Manus, C. Multiple-harmonic conversion of 1064 nm radiation in

rare gases. J. Phys. B 1988, 21, L31. [CrossRef]
5. L’Huillier, A.; Lompre, L.A.; Mainfray, G.; Manus, C. Multiply charged ions formed by multiphoton absorption processes in the

continuum. Phys. Rev. Lett. 1982, 48, 1814. [CrossRef]
6. Milosevic, D.B.; Paulus, G.G.; Bauer, D.; Becker, W. Above-threshold ionization by few-cycle pulses. J. Phys. B 2006, 39, R203.

[CrossRef]
7. Böning, B.; Abele, P.; Paufler, W.; Fritzsche, S. Above-threshold ionization of Ba+ with realistic initial states in the strong-field

approximation. J. Phys. B 2021, 54, 025602. [CrossRef]
8. Ivanov, I.A.; Kheifets, A.S. Angle-dependent time delay in two-color XUV+IR photoemission of He and Ne. Phys. Rev. A 2017, 96,

013408. [CrossRef]
9. Keldysh, L.V. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 1964, 20, 1307.
10. Faisal, F.H.M. Multiple absorption of laser photons by atoms. J. Phys. B At. Mol. Phys. 1973, 6, L89. [CrossRef]
11. Reiss, H.R. Effect of an intense electromagnetic field on a weakly bound system. Phys. Rev. A 1980, 22, 1786. [CrossRef]
12. Ivanov, M.Y.; Spanner, M.; Smirnova, O. Anatomy of strong field ionization. J. Mod. Opt. 2005, 52, 165–184. [CrossRef]
13. Amini, K.; Biegert, J.; Calegari, F.; Chacón, A.; Ciappina, M.F.; Dauphin, A.; Efimov, D.K.; de Morisson Faria, C.F.; Giergiel, K.;

Gniewek, P.L.; et al. Symphony on strong field approximation. Rep. Progr. Phys. 2019, 82, 116001. [CrossRef]
14. Kheifets, A. Revealing the target electronic structure with under-threshold RABBITT. Atoms 2021, 9, 66. [CrossRef]
15. Böning, B.; Fritzsche, S. Partial-wave representation of the strong-field approximation. Phys. Rev. A 2020, 102, 053108. [CrossRef]
16. Fritzsche, S. A fresh computational approach to atomic structures, processes and cascades. Comp. Phys. Commun. 2019, 240, 1–14.

[CrossRef]
17. Schippers, S.; Martins, M.; Beerwerth, R.; Bari, S.; Holste, K.; Schubert, K.; Viefhaus, J.; Savin, D.W.; Fritzsche, S.; Müller, A. Near

L-edge single and multiple photoionization of singly charged iron ions. Astrophys. J. 2017, 849, 5. [CrossRef]
18. Fritzsche, S. Level structure and properties of open f -shell elements. Atoms 2022, 10, 7. [CrossRef]
19. Böning, B.; Fritzsche, S. Partial-wave representation of the strong-field approximation. Atomic states and Coulomb asymmetry.

Phys. Rev. A 2022, submitted.
20. Faisal, F.H.M. Strong-field S-matrix theory with final-state Coulomb interaction in all orders. Phys. Rev. A 2016, 94, 031401.

[CrossRef]
21. Milosevic, D.B.; Becker, W. Atom-Volkov strong-field approximation for above-threshold ionization. Phys. Rev. A 2019, 99, 043411.

[CrossRef]
22. Schippers, S.; Beerwerth, R.; Ábrók, L.; Bari, S.; Buhr, T.; Martins, M.; Ricz, S.; Viefhaus, J.; Fritzsche, S.; Müller, A. Prominent

role of multielectron processes in K-shell double and triple photodetachment of oxygen anions. Phys. Rev. A 2016, 94, 041401(R).
[CrossRef]

23. Beerwerth, R.; Buhr, T.; Perry-Sassmannshausen, A.; Stock, S.O.; Bari, S.; Holste, K.; Kilcoyne, A.D.; Reinwardt, S.; Ricz, S.; Savin,
D.W.; et al. Near L-edge single and multiple photoionization of triply charged iron ions. Astrophys. J. 2019, 887, 189. [CrossRef]

24. Perry-Sassmannshausen, A.; Buhr, T.; Borovik, A., Jr.; Martins, M.; Reinwardt, S.; Ricz, S.; Stock, S.O.; Trinter, F.; Müller, A.;
Fritzsche, S.; et al. Multiple photodetachment of carbon anions via single and double core-hole creation. Phys. Rev. Lett. 2020, 124,
083203. [CrossRef]

25. Fritzsche, S. JAC: User Guide, Compendium & Theoretical Background. Unpublished. Available online: https://github.com/
OpenJAC/JAC.jl (accessed on 10 February 2022).

26. Julia 1.7 Documentation. Available online: https://docs.julialang.org/ (accessed on 10 May 2022).
27. Bezanson, J.; Chen, J.; Chung, B.; Karpinski, S.; Shah, V.B.; Vitek, J.; Zoubritzky, L. Julia: Dynamism and performance reconciled

by design. Proc. ACM Program. Lang. 2018, 2, 120. [CrossRef]
28. Fritzsche, S.; Fricke, B.; Sepp W.D. Reduced L1 level-width and Coster-Kronig yields by relaxation and continuum interactions in

atomic zinc. Phys. Rev. A 1992, 45, 1465. [CrossRef]
29. Gaigalas, G.; Fritzsche, S. Angular coefficients for symmetry-adapted configuration states in jj-coupling. Comput. Phys. Commun.

2021, 267, 108086. [CrossRef]
30. Fritzsche, S.; Palmeri, P.; Schippers, S. Atomic cascade computations. Symmetry 2021, 13, 520. [CrossRef]
31. Fritzsche, S. Dielectronic recombination strengths and plasma rate coefficients of multiply-charged ions. Astron. Astrophys. 2021,

656, 163. [CrossRef]
32. Julia Comes with a Full-Featured Interactive and Command-Line REPL (Read-Eval-print Loop) that Is Built into the Executable

of the Language. Available online: https://docs.julialang.org/en/v1/stdlib/REPL/ (accessed on 10 May 2022).

http://doi.org/10.1103/PhysRevLett.42.1127
http://dx.doi.org/10.1103/PhysRevLett.72.2851
http://www.ncbi.nlm.nih.gov/pubmed/10056001
http://dx.doi.org/10.1364/JOSAB.4.000595
http://dx.doi.org/10.1088/0953-4075/21/3/001
http://dx.doi.org/10.1103/PhysRevLett.48.1814
http://dx.doi.org/10.1088/0953-4075/39/14/R01
http://dx.doi.org/10.1088/1361-6455/abce97
http://dx.doi.org/10.1103/PhysRevA.96.013408
http://dx.doi.org/10.1088/0022-3700/6/4/011
http://dx.doi.org/10.1103/PhysRevA.22.1786
http://dx.doi.org/10.1080/0950034042000275360
http://dx.doi.org/10.1088/1361-6633/ab2bb1
http://dx.doi.org/10.3390/atoms9030066
http://dx.doi.org/10.1103/PhysRevA.102.053108
http://dx.doi.org/10.1016/j.cpc.2019.01.012
http://dx.doi.org/10.3847/1538-4357/aa8fcc
http://dx.doi.org/10.3390/atoms10010007
http://dx.doi.org/10.1103/PhysRevA.94.031401
http://dx.doi.org/10.1103/PhysRevA.99.043411
http://dx.doi.org/10.1103/PhysRevA.94.041401
http://dx.doi.org/10.3847/1538-4357/ab5118
http://dx.doi.org/10.1103/PhysRevLett.124.083203
https://github.com/OpenJAC/JAC.jl
https://github.com/OpenJAC/JAC.jl
https://docs.julialang.org/
http://dx.doi.org/10.1145/3276490
http://dx.doi.org/10.1103/PhysRevA.45.1465
http://dx.doi.org/10.1016/j.cpc.2021.108086
http://dx.doi.org/10.3390/sym13030520
http://dx.doi.org/10.1051/0004-6361/202141673
https://docs.julialang.org/en/v1/stdlib/REPL/


Atoms 2022, 10, 70 15 of 15

33. Goreslavski, S.P.; Paulus, G.G.; Popruzhenko, S.V.; Shvetsov-Shilovski, N.I. Coulomb asymmetry in above-threshold ionization.
Phys. Rev. Lett. 2004, 93, 233002. [CrossRef]

34. Böning, B.; Fritzsche, S. Steering the longitudinal photoelectron momentum in above-threshold ionization with not quite collinear
laser beams. Phys. Rev. A 2022, accepted.

35. Böning, B.; Paufler, W.; Fritzsche, S. Nondipole strong-field approximation for spatially structured laser fields. Phys. Rev. A 2019,
99, 053404. [CrossRef]

36. Wolkow, D.M. Über eine Klasse von Lösungen der Diracschen Gleichung. Z. Phys. 1935, 94, 250–260. [CrossRef]
37. Rosenberg, L.; Zhou, F. Generalized Volkov wave functions: Application to laser-assisted scattering. Phys. Rev. A 1993, 47, 2146.

[CrossRef]
38. Böning, B.; Fritzsche, S. Above-threshold ionization driven by Gaussian laser beams: Beyond the electric dipole approximation. J.

Phys. B At. Mol. Phys. 2021, 54, 144002. [CrossRef]
39. Böning, B.; Paufler, W.; Fritzsche, S. Polarization-dependent high-intensity Kapitza-Dirac effect in strong laser fields. Phys. Rev. A

2020, 101, 031401(R).
40. Bauer, D.; Milosevic, D.B.; Becker, W. Strong-field approximation for intense-laser–atom processes: The choice of gauge. Phys.

Rev. A 2005, 72, 023415. [CrossRef]
41. Dionissopoulou, S.; Lyras, A.; Mercouris, T.; Nicolaides, C.A. High-order above threshold ionization spectrum of hydrogen and

photoelectron angular distributions. J. Phys. B At. Mol. Phys. 1995, 28, L109. [CrossRef]
42. Paufler, W.; Böning, B.; Fritzsche, S. High harmonic generation with Laguerre-Gaussian beams. J. Opt. 2019, 21, 094001. [CrossRef]
43. Paufler, W.; Böning, B.; Fritzsche, S. Tailored orbital angular momentum by high-harmonic generation from counterrotating

bi-circular Laguerre-Gaussian beams. Phys. Rev. A 2018, 98, 011401(R).
44. Klaiber, M.; Hatsagortsyan, K.Z.; Keitel, C.H. Sub-barrier pathways to Freeman resonances. Phys. Rev. A 2020, 102, 053105.

[CrossRef]
45. Johnson, W.R. Atomic Structure Theory: Lectures on Atomic Physics; Springer: Berlin/Heidelberg, Germany, 2007.
46. Fritzsche, S. The RATIP program for relativistic calculations of atomic transition, ionization and recombination properties. Comp.

Phys. Commun. 2012, 183, 1525. [CrossRef]
47. Chen, Z.; Wang, Y.; Morishita, T.; Hao, X.; Chen, J.; Zatsarinny, O.; Bartschat, K. Revisiting the recollisional excitation-tunneling

process in strong-field nonsequential double ionization of helium. Phys. Rev. A 2019, 100, 023405. [CrossRef]
48. Liu, F.; Chen, Z.; Morishita, T.; Bartschat, K.; Böning, B.; Fritzsche, S. Single-cycle versus multicycle nonsequential double

ionization of argon. Phys. Rev. A 2021, 104, 013105. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.93.233002
http://dx.doi.org/10.1103/PhysRevA.99.053404
http://dx.doi.org/10.1007/BF01331022
http://dx.doi.org/10.1103/PhysRevA.47.2146
http://dx.doi.org/10.1088/1361-6455/ac0fef
http://dx.doi.org/10.1103/PhysRevA.72.023415
http://dx.doi.org/10.1088/0953-4075/28/5/002
http://dx.doi.org/10.1088/2040-8986/ab31c3
http://dx.doi.org/10.1103/PhysRevA.102.053105
http://dx.doi.org/10.1016/j.cpc.2012.02.016
http://dx.doi.org/10.1103/PhysRevA.100.023405
http://dx.doi.org/10.1103/PhysRevA.104.013105

	Introduction
	Strong-Field Amplitudes and Probabilities
	Brief Account of the Strong-Field Approximation
	Partial-Wave Representation of Strong-Field Amplitudes
	Implementation of the (Direct) Strong-Field Amplitude
	Data Types for Modeling Photoelectron Distributions and Above-Threshold Experiments

	Energy and Momentum Distributions for Atomic Krypton
	Above-Threshold Energy Spectra
	Photoelectron Angular Distribution for Elliptically-Polarized Laser Pulses
	Photoelectron Momentum Distribution for Few-Cycle Laser Pulses

	Conclusions and Outlook
	References

