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Abstract: In the framework of the study of helium-like atomic systems possessing the collinear
configuration, we propose a simple method for computing compact but very accurate wave functions
describing the relevant S-state. It is worth noting that the considered states include the well-known
states of the electron–nucleus and electron–electron coalescences as a particular case. The simplicity
and compactness imply that the considered wave functions represent linear combinations of a few
single exponentials. We have calculated such model wave functions for the ground state of helium
and the two-electron ions with nucleus charge 1 ≤ Z ≤ 5. The parameters and the accompanying
characteristics of these functions are presented in tables for number of exponential from 3 to 6. The
accuracy of the resulting wave functions are confirmed graphically. The specific properties of the
relevant codes by Wolfram Mathematica are discussed. An example of application of the compact
wave functions under consideration is reported.

Keywords: two-electron atoms; wave functions; collinear configuration; Fock expansion; Wolfram
Mathematica

1. Introduction

In this paper, we present a technique for building compact and simple wave functions
of high accuracy, describing two-electron atomic systems such as H−, He, Li+, Be2+ and
B3+ with the collinear arrangement of the particles [1]. The study of mechanism of double
photoionization of the helium-like atomic systems by high energy photons [2,3] can serve
as an example of possible application (see the details in the next Section).

Methods enabling us to calculate the relevant wave function (WF) and the correspond-
ing non-relativistic energy differ from each other by the calculation technique, spatial
variables and basis sets. It is well-known that the S-state WF, Ψ(r1, r2, r12), is a function
of three variables: the distances r1 ≡ |r1| and r2 ≡ |r2| between the nucleus and electrons,
and the interelectron distance r12 ≡ |r1 − r2|, where r1 and r2 represent radius-vectors of
the electrons. We shall pay special attention to the bases that differ from each other both in
the kind of the basis functions and in its number (basis size). The Hartree atomic units are
used throughout the paper.

It would be useful to give some examples of basis sets intended for describing the
relevant S states. The correlation function hyperspherical harmonic method (CFHHM) [4,5]
employs the basis representing the product of the hyperspherical harmonic (HH) as an
angular part, and the numerical radial part. The corresponding basis size N equals (as a
rule) 625. The Pekeris-like method (PLM) [6–8] is used intensively in the current work. The
basis size of the PLM under consideration is N = 1729 (for the number of shells Ω = 25),
and the basis functions can be finally reduced to the form exp(αr1 + βr2 + γr12)rl

1rm
2 rn

12,
where α, β and γ are the real constants and l, m, n are non-negative integers. Hylleraas [9]
(see also [10,11]) was the first who employed the same basis but with γ = 0. The authors
of Ref. [12] have performed variational calculations on the helium isoelectronic sequence
using modification of the basis set that employed by Frankowski and Pekeris [13]. They
managed to get very accurate results using the reduced basis of the size N = 230. The

Atoms 2022, 10, 4. https://doi.org/10.3390/atoms10010004 https://www.mdpi.com/journal/atoms

https://doi.org/10.3390/atoms10010004
https://doi.org/10.3390/atoms10010004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atoms
https://www.mdpi.com
https://orcid.org/0000-0001-9501-6029
https://doi.org/10.3390/atoms10010004
https://www.mdpi.com/journal/atoms
https://www.mdpi.com/article/10.3390/atoms10010004?type=check_update&version=2


Atoms 2022, 10, 4 2 of 11

variational basis functions of the type exp(α̃r1 + β̃r2 + γ̃r12) with complex exponents were
used in the works of Korobov [14] (N = 1400–2200) and Frolov [15] for N = 600–2700 (see
also references therein). Application of the Gaussian bases of the size N > 100 can be found
in the book [16]. The reviews on the helium-like atomic system and the methods of their
calculations can be found, e.g., in the handbook [17].

In this paper, we propose a simple method of calculation of the compact but very ac-
curate WFs describing the two-electron atom/ion with collinear configuration. The results
and example of application of the relevant technique are presented in the next sections.

2. Calculation Technique

The simplicity of the WFs under consideration implies that the form

fN(r) =
N

∑
k=1

Ck exp(−bkr) (1)

represents the sum of a few single exponentials, whereas the compactness means that their
number 3 ≤ N ≤ 6 in Equation (1), unlike the basis sizes mentioned in the introduction.
The relevant accuracy will be discussed later. It is seen that the RHS of Equation (1) includes
N linear parameters Ck and N nonlinear parameters bk with k = 1, 2, . . . , N.

The collinear arrangement of the particles consisting of the nucleus and two electrons
can be described by a single scalar parameter λ as follows [1]:

r1 = r, r2 = |λ|r, r12 = (1− λ)r, (2)

where λ ∈ [−1, 1], and r is the distance between the nucleus and the electron most distant
from it. Clearly λ = 0 corresponds to the electron–nucleus coalescence, and λ = 1 to the
electron–electron coalescence. The boundary value λ = −1 corresponds to the collinear
e-n-e configuration with the same distances of both electrons from the nucleus. In general,
0 < λ ≤ 1 corresponds to the collinear arrangement of the form n-e-e where both electrons
are on the same side of the nucleus. Accordingly, −1 ≤ λ < 0 corresponds to the collinear
arrangement of the form e-n-e where the electrons are on the opposite sides of the nucleus.
The absolute value |λ| measures the ratio of the distances of the electrons from the nucleus.

Thus, for the particles with collinear arrangement we can introduce the collinear WF of
the form

Φ(r, λ) ≡ Ψ(r, |λ|r, (1− λ)r)/Ψ(0, 0, 0). (3)

It should be emphasized that, e.g., the PLM WF with collinear configuration reduces to
the form

ΦPLM(r, λ) = exp(−δλr)
Ω

∑
p=0

cp(λ)rp, (4)

where Ω = 25 for the current (standard) consideration, as it was mentioned earlier.
We can give an example of the physical problem where the collinear WF of the form

(4) cannot be applied, but the quite accurate WF of the form (1) is required instead. In
Refs. [2,3], the mechanism of photoionization in the two-electron atoms is investigated.
Calculations of various differential characteristics (cross sections) of ionization are based
on computation of the triple integral of the form∫

d3r eiqr
1F1(iξ1, 1, ip1r− ip1r)1F1(iξ2, 1, ip2r− ip2r)Φ(r, 1), (5)

where pj (j = 1, 2) are the momenta of photoelectrons, q is the recoil momentum, ξ j = Z/pj,
i is the imaginary unit, and 1F1(. . . ) is the confluent hypergeometric function of the first
kind. The most important for our consideration is the fact that integral (5) contains the
collinear WF Φ(r, 1) describing the case of the electron–electron coalescence (λ = 1) in the
helium-like atom/ion with the nucleus charge Z. It is clear that the numerical computation
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of the triple integral (5) is not impossible, but rather a difficult problem, especially for
building the relevant graphs. Fortunately, already in 1954 [18], the explicit expression for
the triple integral which is very close to integral (5) was derived. In fact, integral (5) can be
calculated by simple differentiation (with respect to a parameter) of the explicit form for
the integral mentioned above, but only under condition that the WF, Φ(r, 1) is represented
by a single exponential of the form exp(−br) (with positive parameter b, of course).

According to the Fock expansion [19,20] (see also [21,22]), we have:

Ψ(r1, r2, r12)/Ψ(0, 0, 0) =
R→0

1− Z(r1 + r2) +
1
2

r12 − Z
(

π − 2
3π

)(
R2 − r2

12

)
ln R + O(R2), (6)

where R = (r2
1 + r2

2)
1/2 is the hyperspherical radius. Using Equation (6) and the collinear

conditions (2), we obtain the Fock expansion for the collinear WF in the form:

Φ(r, λ) =
r→0

1 + ηλr + ζλr2 ln r + ξλr2 + . . . (7)

where
ηλ = −Z(1 + |λ|) + 1− λ

2
, (8)

ζλ = −2Zλ(π − 2)
3π

, (9)

and the general form of the coefficient ξλ being rather complicated will be discussed later.
The necessity of the equivalent behavior of the model WF, (1) and the variational WF,
Φ(r, λ) near the nucleus (r → 0) results in the following two coupled equations for 2N
parameters CN ≡ {C1, C2, . . . , CN} and bN ≡ {b1, b2, . . . , bN} of the model WF:

N

∑
k=1

Ck = 1, (10)

N

∑
k=1

Ckbk = Z(1 + |λ|) + λ− 1
2

. (11)

Equation (10) follows from the condition Φ(0, λ) = 1, whereas Equation (11) is ob-
tained by equating the linear (in r) coefficients of the power series expansion of the model
WF (1) and the Fock expansion (7).

As it was mentioned above, to obtain the fully defined model WF of the form (1) one
needs to determine 2N coefficients. To solve the problem with given Equations (10) and (11),
we need to find extra 2(N − 1) coupled equations for parameters of the exponential form
(1). To this end, we propose to use the definite integral properties of the collinear WF (3).

A number of numerical results presenting expectation values of Dirac-delta functions
〈δ(r1)〉, 〈δ(r12)〉 ≡ 〈δ(r1 − r2)〉 and 〈δ(r1)δ(r2)〉 for the helium-like atoms can be found in
the proper scientific literature (see, e.g., [15,17,23] and references therein). It was shown [1]
that expectation values mentioned above represent the particular cases of the more general
expectation value

〈δ(r1 − λr2)〉 = 4π〈δ(r1)δ(r2)〉
∫ ∞

0
|Φ(r, λ)|2r2dr, (12)

where
〈δ(r1)δ(r2)〉 = Ψ2(0, 0, 0)/

∫
ψ2(r1, r2)d3r1d3r2 (13)

is a square of the normalized WF taken at the nucleus. It is seen that the expectation value
(12) is fully defined by the collinear WF, Φ(r, λ).
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We propose to use the integrals of the form

Sn =
∫ ∞

0
|Φ(r, λ)|2rndr, (n = 0, 1, 2, . . . ) (14)

for deriving 2(N − 1) extra coupled equations required, in its turn, for determining 2N
coefficients defining the model WF, (1). Replacing Φ(r, λ) in the RHS of Equation (14) by
the model WF (1) and using the closed form of the corresponding integral, one obtains n
equation of the form

Sn = n!
N

∑
j=1

N

∑
k=1

CjCk

(bj + bk)n , (15)

where, in fact, CN ≡ CN(Z, λ), bN ≡ bN(Z, λ) are the coefficients we are requested,
whereas the integrals Sn ≡ Sn(Z, λ) can be computed using, for example, the PLM WFs
according to definition (14). The technique proposed, in fact, represents a variant of
the “Method of Moments” (see, e.g., [24]) supplemented by the boundary conditions
(10) and (11).

The problem is that it is necessary to select a set (sample) of integers
{

n1, n2, . . . , n2(N−1)

}
describing Equations (14) and (15) for each triple of numbers (Z, λ, N). Those selected samples
are presented in Tables 1–4, along with the corresponding parameters of the model WFs.

Table 1. Parameters of the model WFs f3(r).

λ Z b1 b2 b3 C1 C2 C3 n1, n2, n3, n4 104R3

−1 1 1.31221085126 2.30773912084 10.6895455708 1.21535118385 −0.203680351269 −0.0116708325859 1, 2, 3, 4 5.1
2 3.30331779151 5.37300989029 23.5666840162 1.10218667377 −0.0971397085718 −0.00504696520154 1, 2, 3, 4 2.8
3 5.29600197779 8.57050886387 37.1879160606 1.06342095849 −0.0603343891163 −0.00308656937009 1, 2, 3, 4 1.8
4 7.29186771909 11.8104087791 51.8308243021 1.04554901504 −0.0433987968749 −0.00215021816402 1, 2, 3, 4 1.3
5 9.28979602694 14.9934154050 64.5399905936 1.03580989481 −0.0340832362749 −0.00172665853579 1, 2, 3, 4 1.0

−0.5 1 0.34947029202 0.917929731034 3.34452782210 0.00104484900062 1.06791415059 −0.0689589995860 2, 4, 6, 8 26.1
2 2.42281226939 4.84214960756 20.8946624090 1.05104853479 −0.0479768260983 −0.00307170869253 2, 3, 4, 5 0.82
3 3.92179097813 7.24103626268 28.1658903414 1.03561982532 −0.0330601878282 −0.00255963748729 2, 3, 4, 5 0.38
4 5.42080777652 9.74980079227 37.6087443483 1.02691550123 −0.0249667281386 −0.00194877309539 2, 3, 4, 5 0.31
5 6.92015063432 12.2629734705 46.2827741201 1.02161443408 −0.0200074716239 −0.00160696245286 2, 3, 4, 5 0.25

0 1 0.298919116361 0.595029813767 7.19650438253 0.297067039246 0.704003189159 −0.00107022840522 0, 2, 3, 4 34.8
2 1.37487894240 1.79415111548 6.51734657710 0.692940198275 0.307826353261 −0.000766551535934 2, 3, 4, 5 0.16
3 2.38544848722 2.98500782211 11.9948030706 0.806354227022 0.193817876564 −0.000172103585808 2, 3, 4, 5 0.06
4 3.39003538779 4.18238632004 44.1576144385 0.860366370158 0.139650495901 −0.0000168660592834 2, 3, 4, 5 0.05
5 4.39300951665 5.38932092160 77.5849424817 0.892332808812 0.107671063544 −3.87235633559×10−6 2, 3, 4, 5 0.05

0.5 1 0.866272795833 1.35400690862 4.90509052234 0.445709671715 0.522361791814 0.0319285364710 2, 3, 4, 5 13.7
2 2.43745271333 3.52128593757 13.1425881206 0.790450763794 0.200669891111 0.00887934509580 2, 3, 4, 5 3.06
3 3.94735833664 5.62554439840 21.0951038899 0.867392165040 0.127429856680 0.00517797827994 2, 3, 4, 5 1.72
4 5.45119270055 7.71384461880 28.7740927992 0.902403168528 0.0938941380922 0.00370269337946 2, 3, 4, 5 1.18
5 6.95360810088 9.81345881494 36.9476130590 0.923088330095 0.0740947033493 0.00281696655580 2, 3, 4, 5 0.91

1 1 1.53675502654 2.33712280638 8.25913664369 0.596515660760 0.379791535994 0.0236928032457 2, 3, 4, 5 9.5
2 3.58172751587 5.24357995810 19.2222658045 0.819528550521 0.172004590265 0.00846685921408 2, 3, 4, 5 2.85
3 5.58931707310 8.08649238609 29.9307024541 0.881008315694 0.113793976078 0.00519770822784 2, 3, 4, 5 1.7
4 7.59237815227 10.9111334599 40.2659747119 0.910825396831 0.0853703529884 0.00380425018111 2, 3, 4, 5 1.19
5 9.59453605830 13.7549847587 51.2908698042 0.929005400236 0.0680615517954 0.00293304796837 2, 3, 4, 5 0.94

Table 2. Parameters of the model WFs f4(r).

λ Z b1 b2 b3 b4 n1, n2, n3, n4, n5, n6
C1 C2 C3 C4 105R4

−1 1 1.32020535772 2.02749050880 4.54443362311 23.5929861083 1, 2, 3, 4, 5, 6
1.26227358934 −0.227201776295 −0.0326343898304 −0.00243742321816 2.7

2 3.32040412399 4.62849779909 10.9532235110 59.9204389330 0, 1, 2, 3, 4, 5
1.14400570872 −0.128974625641 −0.0142762170106 −0.000754866072272 4.24
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Table 2. Cont.

λ Z b1 b2 b3 b4 n1, n2, n3, n4, n5, n6
C1 C2 C3 C4 105R4

3 5.31424074104 7.36821061275 17.2777611913 91.9038190157 0, 1, 2, 3, 4, 5
1.09045506589 −0.0810843733976 −0.00889378923384 −0.000476903253974 2.64

4 7.30994394442 10.1897566947 24.4040098169 148.641527280 0, 1, 2, 3, 4, 5
1.06441904628 −0.0579854208721 −0.00616816635722 −0.000265459051415 2.18

5 9.30868327139 12.8750916787 29.9556776119 155.981269889 0, 1, 2, 3, 4, 5
1.05138164659 −0.0460610340035 −0.00504641308811 −0.000274199500577 1.48

−0.5 1 0.760415630622 0.980090816301 1.92593212146 8.20874671468 2, 3, 4, 6, 7, 8
0.170778873309 0.969455001129 −0.130694209709 −0.00953966472852 11.0

2 0.454124268500 2.42341297045 4.76754499162 19.5795924347 2, 3, 4, 5, 6, 7
3.82312760898×10−6 1.05207275919 −0.0486110885984 −0.00346549372265 8.6

3 0.436440152659 3.92140440426 7.30105365639 28.9040922033 2, 3, 4, 5, 6, 7
−7.40656697931×10−7 1.03517571156 −0.0327434647393 −0.00243150616122 8.3

4 5.42161394245 9.42798545298 25.0471247671 233.462987854 1, 2, 3, 4, 5, 6
1.02782877628 −0.0249202692879 −0.00283800779973 −7.04991926150×10−5 0.94

5 6.92122844867 11.7547534041 29.3462817580 174.466927481 1, 2, 3, 4, 5, 6
1.02259238932 −0.0200065945557 −0.00247182415422 −1.13970613965×10−4 0.55

0 1 0.262567575399 0.389274177978 0.649724323343 2.23082077059 2, 3, 4, 5, 10, 12
0.124958793217 0.334742657170 0.549255567787 −0.00895701817486 8.6

2 0.863128362371 1.37696102972 1.80094039452 6.23029650467 2, 3, 4, 5, 10, 12
0.000151625897771 0.700462341914 0.300247696739 −0.000861664550097 0.85

3 1.99107587529 2.39179071871 3.00926579184 10.6422108618 2, 3, 4, 5, 10, 12
0.00268122936659 0.817445974254 0.180106425521 −0.000233629141750 0.16

4 2.81017418133 3.39598731473 4.21438633241 27.4015188295 2, 3, 4, 5, 10, 12
0.00171603685935 0.868965245468 0.129353924670 −3.52069972580×10−5 0.18

5 4.38456769518 5.14428012476 6.14092966448 16.8182459760 2, 3, 4, 5, 10, 12
0.865405670253 0.120564394928 0.0141051979746 −7.52631553724×10−5 0.047

0.5 1 0.813357864690 1.16216119635 2.11035956249 8.06302367772 2, 3, 4, 5, 6, 7
0.270203654224 0.601608930427 0.118017239524 0.0101701758248 12.8

2 2.39591108217 3.04778032570 5.77051889963 23.1405644612 2, 3, 4, 5, 6, 7
0.666977476198 0.298527484633 0.0320148612526 0.00248017791627 2.7

3 3.90776167717 4.88664625816 9.27871837715 37.4614080792 2, 3, 4, 5, 6, 7
0.781821062131 0.198012796435 0.0187434533393 0.00142268809457 1.5

4 5.41235086929 6.71460919468 12.7195616951 50.2714813824 2, 3, 4, 5, 6, 7
0.836936916554 0.148699140499 0.0133242070845 0.00103973586269 1.0

5 6.91531456746 8.55334168563 16.2935883030 66.2413275150 2, 3, 4, 5, 6, 7
0.870584918595 0.118467258140 0.0101878055295 0.000760017736373 0.81

1 1 1.45895844248 1.94229863142 3.64144369441 14.6402400267 2, 3, 4, 5, 6, 7
0.374761964378 0.526163652625 0.0926648508651 0.00640953213255 11.9

2 3.52660868338 4.46313533469 8.41366993352 33.9863982377 2, 3, 4, 5, 6, 7
0.702939199818 0.262807685971 0.0319120324665 0.00234108174421 2.9

3 5.53691125164 6.92690040645 13.1173116907 53.3038611455 2, 3, 4, 5, 6, 7
0.800429839233 0.178804526892 0.0193437507870 0.00142188308737 1.7

4 7.54061400125 9.36808709974 17.6989833742 70.3315968499 2, 3, 4, 5, 6, 7
0.848381505855 0.136508216332 0.0140382215614 0.00107205625181 1.1

5 9.54371206725 11.8356042739 22.5015053896 91.8749584959 2, 3, 4, 5, 6, 7
0.878994353474 0.109401348385 0.0108088103065 0.000795487835141 0.91
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Table 3. Parameters of the model WFs f5(r).

λ Z b1 b2 b3 b4 b5 n1, n2, n3, n4,
C1 C2 C3 C4 C5 n5, n6, n7, n8 106R5

−1 2 3.33403942234 4.15321766999 7.22771669209 18.0394750352 98.9124103713 0, 1, 2, 3, 4, 5, 6, 7
1.19779177816 −0.165381648981 −0.0277431203764 −0.00439609964953 −0.000270909151645 4.5

3 5.32933696681 6.59886648653 11.4228762079 28.2096051133 145.866483798 0, 1, 2, 3, 4, 5, 6, 7
1.12638430126 -0.105910712803 −0.0175600965385 −0.00273317456436 −0.000180317352143 2.8

4 7.32573160412 9.10153474687 15.9377755826 40.8969472027 290.857815110 0, 1, 2, 3, 4, 5, 6, 7
1.09052624934 −0.076177131758 −0.0124353779117 −0.00183726599787 −7.64736726593×10−5 2.4

5 9.32452700647 11.5219291480 19.8392221432 48.4980928929 239.735778051 0, 1, 2, 3, 4, 5, 6, 7
1.07219627060 −0.060471688997 −0.0100638089132 −0.00155216378212 -0.000108608909614 1.5

−0.5 1 0.782723673384 1.00579499131 1.67516053163 3.84347571684 20.7036985208 1, 2, 3, 4, 6, 7, 8, 9
0.247875527976 0.932587577289 −0.156445025546 −0.0223795177635 −0.00163856195617 12.3

2 2.01254813456 2.43474345293 4.24085899493 9.91825838265 49.9226239551 0, 2, 3, 4, 5, 6, 7, 9
0.0111225319077 1.05138001690 −0.0543797090181 −0.00759679366215 −0.000526046127036 6.3

3 2.66771135582 3.92527807057 6.68858179039 15.1815880350 69.4634730215 1, 2, 3, 4, 5, 6, 7, 8
0.000323581113314 1.03908286278 −0.0341431378917 −0.00487131736096 −0.000391988635926 3.6

4 5.02658424937 5.43330301186 8.82243334116 19.5615991527 96.7309045026 1, 2, 3, 4, 5, 6, 7, 8
0.0176544037925 1.01381753461 −0.0270777601306 −0.00410558781973 −0.000288590450437 3.6

5 6.76854109699 6.93768261467 11.4098098294 26.4501588397 130.894355406 0, 1, 2, 3, 4, 5, 6, 7
0.08493484927950 0.939048336705 −0.0209035403321 −0.00289062795813 −0.000189017693978 3.7

0.5 1 0.790902643508 1.06035478911 1.50532224818 3.03736727252 11.1410180677 2, 3, 4, 5, 6, 7, 8, 9
0.196607406672 0.508558045232 0.247655549880 0.0423479201908 0.00483107802464 20.9

2 2.37639295406 2.86725870274 4.29974756696 8.77965927735 35.0370610367 2, 3, 4, 5, 6, 7, 8, 9
0.590329529453 0.341324441817 0.0576037324822 0.00973365189967 0.00100864434805 3.8

3 3.88798021172 4.60274029470 6.92722664338 14.1907934142 57.3767081273 2, 3, 4, 5, 6, 7, 8, 9
0.721150604506 0.238651951852 0.0340403271804 0.00558868261345 0.000568433848049 2.1

4 5.39378534978 6.35210931219 9.65638723913 19.9037177229 76.9969095748 2, 3, 4, 5, 6, 7, 8, 9
0.791446509718 0.181080013887 0.0233325486312 0.00373563625064 0.000405291512930 1.2

5 6.89631641077 8.08529427507 12.3139186919 25.6710836429 107.258963467 2, 3, 4, 5, 6, 7, 8, 9
0.831962265527 0.146815487037 0.0180923679551 0.00285602492664 0.000273854553497 1.1

1 1 1.40532919228 1.76542107311 2.67094532497 5.73653600501 28.8596269922 2, 3, 4, 5, 6, 7, 8, 9
0.228872138883 0.564008891655 0.177278010589 0.0281992012650 0.00164175760899 26.2

2 3.49162225456 4.12954660811 6.24917362659 13.0406927609 55.6660835808 2, 3, 4, 5, 6, 7, 8, 9
0.600886634251 0.328953425818 0.0598766127109 0.00945702883157 0.000826298388269 5.2

3 5.50808155281 6.48741655765 10.0193133315 21.4634677872 95.2150755643 2, 3, 4, 5, 6, 7, 8, 9
0.736257943800 0.224466915903 0.0337303661233 0.00511826651080 0.000426507663627 2.8

4 7.51732319016 8.88501166054 14.1919981920 32.7751210282 162.408084363 1, 2, 3, 4, 5, 6, 7, 8
0.807735699959 0.166935972380 0.0220982375951 0.00303510193517 0.000194988130580 2.5

5 9.52058905892 11.2258539229 17.9584770013 41.6932712805 236.717424813 1, 2, 3, 4, 5, 6, 7, 8
0.845567446616 0.134819493378 0.0171241354063 0.00236103746563 0.000127887134412 2.0

Table 4. Parameters of the model WFs f6(r) for the negative ion of hydrogen (Z = 1).

λ b1 b2 b3 b4 b5 b6 n1, n2,
C1 C2 C3 C4 C5 C6 . . . , n10 106R6

−1 0.616882428065 1.32144483672 1.98116133623 3.89714002309 10.7703678294 117.105539565 0, 1, 2,
0.0000220356978505 1.27099937960 −0.227846680046 −0.0372255443263 −0.00577032259649 −0.000178868331372 . . . , 9 7.7

−0.5 0.784443648962 1.00933647226 1.62815973825 3.28191702383 9.07710968927 175.255656318 0, 1, 2,
0.255668095458 0.933467043932 −0.159437110775 −0.0255522308928 −0.00407564245776 −0.0000701552652768 . . . , 9 3.5

0.5 0.787145306516 1.03714737333 1.42318385820 2.66484832743 7.69976806889 534.086213753 0, 1, 2,
0.183792703068 0.466750597846 0.288402624695 0.0530568221124 0.00798238877269 0.0000148635064310 . . . , 9 7.2

1 1.36357313996 1.649819114196 2.20488118195 3.61727560292 8.21954358047 125.741386557 2, 3, 4,
0.134755301707 0.5137129189258 0.272937433228 0.0657008289814 0.0126953713973 0.000198145760468 . . . ,11 4.8

To solve the set of Equations (10), (11) and 2(N − 1) nonlinear equations of the form
(15) we apply, as the first step, the built-in function NSolve[. . . ] of the Wolfram Mathematica.
The additional conditions (inequalities) bN > 0 are used. The program NSolve generates
all possible solutions. However, only one of them represents the nodeless solution that
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corresponds to the ground-state WF. We have computed and presented the parameters of
the model WFs for 3 ≤ N ≤ 6. It was mentioned above that the NSolve is used only at
the first step. The reason is that this program works normally (with no problems) only
for N ≤ 3, that is for number of equations 2N ≤ 6. Even for 2N = 6 computer freezes
for a few second capturing 100 % of CPU time, and then normal operation is restored.
However, for 2N = 8 Mathematica (through NSolve) takes all CPU time, and computer
freezes for an indefinite time. This is happened for any settings of Mathematica, e.g., for
any settings in “Parallel Kernel Configuration”. We checked that this problem persists in
different computers and for different version of Mathematica (9, 10.3, 11.0, 12.1). Therefore,
to solve the relevant set of nonlinear equations for the number of exponentials N > 3 we
employed the built-in (Mathematica) program FindRoot[. . . ]. Unlike NSolve this program
generates only one solution (if it exists, of course) starting its search from some initial
values C(0)

N , b(0)
N for which we take the values CN−1, bN−1 of the corresponding calculation

on the N − 1 exponentials. The conditions of the positive exponents and the WF nodeless
are certainly preserved.

To estimate the accuracy of the model WF we employ the following integral represen-
tation

RN =
∫ ∞

0
r| fN(r)−Φ(r, λ)|dr

(∫ ∞

0
r|Φ(r, λ)|dr

)−1
. (16)

Note that the function rΦ is more indicative than Φ, at least, for the ground state.

3. Results

The two-exponential representations (excepting the case of Z = 1) for the two-particle
coalescences only (corresponding to the particular cases λ = 0 and λ = 1) were reported
in Ref. [25]. In the current paper, we calculate the parameters CN and bN of the model
WFs, fN(r) ≡ fN(r; λ) for the number of exponentials 3 ≤ N ≤ 6. Our calculations are
represented for various collinear configurations including in particular the two-particle
coalescences and the boundary case λ = −1. The results are presented in Tables 1–4 together
with the corresponding accuracy estimations RN and the sets {n1, n2, . . . , 2(N − 1)} of
integers included into the integrals (14). It is seen from all tables that the more exponentials
generate the higher accuracy of the model WF.

One should note that for λ = 0, describing the case of the electron–nucleus coalescence,
we were able to calculate the model WFs, fN(r) represented by three and four exponentials
only (N = 3, 4). However, at least the case of N = 4 shows very high accuracy, which is
confirmed by the following. Recall that the integral RN characterizes the general accuracy
of fN(r). In order to track changes in accuracy with distance r we used the logarithmic
function of the form

L(λ)
N (r) = log10|1− fN(r)/ΦPLM(r, λ)|. (17)

It is seen from Tables 1 and 2 that at least for λ = 0 and given N the minimal accuracy
(represented by maximum RN) is demonstrated by the negative ion H−, whereas the
maximum accuracy (represented by minimum RN) is demonstrated by the positive ion
B3+. The logarithmic functions L(0

N (r) are shown in Figures 1 and 2 for these two-electron
ions with boundary (under consideration) nucleus charges Z = 1 and Z = 5. It is seen that
the deviations of the model WF from the PLM WF are practically uniform along the r-axis,
and that one extra exponential improves accuracy by 1-2 (decimal) orders. Regarding the
accuracy of the model WF, f4(r) we would like to emphasize the following. In Ref. [1]
(see Fig. 3(b) therein) it was displayed the logarithmic function L(r) of the form (17),
which describes the difference between the PLM WF and the CFHHM WF for the λ = 0
collinear configuration of the H− ion. The so called correlation function hyperspherical
harmonic method (CFHHM) [4,5] with the maximum HH indices Km = 128 (1089 HH basis
functions) was used for calculation of the fully (3-dimensional) WF of the negative ion H−.
Comparison of the logarithmic estimations L(0

4 (r) and the corresponding L(r) shows that
the model WF f4(r) is even more close to the PLM WF than the CFHHM WF for all values
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of r, which indicates the extremely high accuracy of the model WF (at least for λ = 0 and
Z = 1) represented by four exponentials only. It is seen (see Figure 2) that the accuracy of
the model WF f4(r) for B3+ is higher by about 2 decimal orders than the 4-exponential
WF for H−. The logarithmic estimation L(r) for B3+ is not presented in Ref. [1]. However,
the relevant calculations show that for this case (λ = 0 and Z = 5), the model WF f4(r) is
more close to the PLM WF than the CFHHM WF, as well.

0.0
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r
Φ
(r
,0
)

(a)

0 5 10 15 20 25
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r
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g 1
0|
1-

Φ
P
L
M
(r
,0
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f N
(r
)|

(b)

N=3
N=4

Figure 1. Negative ion of hydrogen H−(Z = 1): (a) the WF, Φ(r, 0) at the electron-nucleus coalescence

(the collinear configuration with λ = 0) times r; (b) the logarithmic estimates L(04 (r) and L(03 (r) of
the difference (see Equation (17)) between the model WF, f4(r) and the PLM WF (solid curve, blue
online), and between the model WF, f3(r) and the PLM WF (dashed curve, red online), respectively.
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Figure 2. Ground state of the positive ion of boron B3+(Z = 5): (a) the WF, Φ(r, 0) at the electron–
nucleus coalescence (the collinear configuration with λ = 0) times r; (b) the logarithmic estimates

L(04 (r) and L(03 (r) of the difference between the model WF, f4(r) and the PLM WF (solid curve, blue
online), and between the model WF, f3(r) and the PLM WF (dashed curve, red online), respectively.

It was mentioned earlier that the behavior of the two-electron atomic WF near the
nucleus is described by the Fock expansion (6), which reduces to expansion (7) for the
collinear arrangement of the particles. The most compact model WFs represented by
the sum of three or four exponentials were obtained for the case of the electron-nucleus
coalescence corresponding to the collinear parameter λ = 0. Tables 1 and 2 together
with Figures 1 and 2 demonstrate the high accuracy of those model WFs. It should be
emphasized that the accuracy of f4(r) for λ = 0 is close to the accuracy of the variational
PLM WF, ΦPLM(r, 0) for all r > 0. Furthermore, the relevant calculations show that the
model WF f4(r) mentioned above is, in fact, more accurate than ΦPLM(r, 0) in the vicinity
of nucleus (r → 0). We can argue this because the leading terms of the series expansion of
f4(r) (for λ = 0) are more close to the corresponding terms of the Fock expansion than the
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ones for ΦPLM(r, 0). Actually, Equations (10) and (11) provide by definition the condition
f4(0) = 1 and f ′4(0) = −Z + 1/2, corresponding exactly to the Fock expansion. Moreover,
it is seen from Equation (9)) that for λ = 0 the logarithmic term of the Fock expansion is
annihilated because ζ0 = 0, and hence F′′(0)/2 = ξ0, where we denoted F(r) ≡ Φ(r, 0).
One should notice that λ = 0 is, in fact, the single case of the collinear arrangement when
the explicit expression for the angular Fock coefficient ξλ can be derived in the form [1,22]

ξ0 =
1− 2E

12
− Z

(
3− ln 2

6

)
+

1
3

Z2, (18)

where E is the non-relativistic energy of the two-electron atom/ion under consideration.
It is seen from Table 5 that (besides f ′4(0)) the values of f ′′4 (0)/2 is much closer to the
theoretical values (18) than F′′PLM(0)/2 for all Z. These results confirm the above conclusion
about the accuracy of the model WF near the nucleus.

Table 5. The first and second derivatives of the collinear WF with λ = 0 at the nucleus. The PLM WF,
F(r) ≡ ΦPLM(r, 0) at the electron–nucleus coalescence is introduced.

Z F′(0) −Z + 1/2 F′′(0)/2 f ′′4 (0)/2 ξ0

1 −0.506379 −0.5 0.169101 0.123314 0.12015

2 −1.50228 −1.5 1.20558 1.13429 1.13167

3 −2.50175 −2.5 3.24348 3.14574 3.14323

4 −3.50323 −3.5 6.38221 6.15306 6.15469

5 −4.50140 −4.5 10.3165 10.1691 10.1661

Author Contributions: All authors contributed equally. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was supported by the PAZY Foundation, Israel.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liverts, E.Z.; Krivec, R.; Barnea, N. Collinear configuration of the helium atom and two-electron ions. Ann. Phys. 2020, 422,

168306. [CrossRef]
2. Amusia, M.Y.; Drukarev, E.G.; Liverts, E.Z.; Mikhailov, A.I. Effects of small recoil momenta in one-photon two-electron ionization.

Phys. Rev. A 2013, 87, 043423. [CrossRef]
3. Amusia, M.Y.; Drukarev, E.G.; Liverts, E.Z. Small recoil momenta double ionization of He and two-electron ions by high energy

photons. Eur. Phys. J. D 2020, 74, 173. [CrossRef]
4. Haftel, M.I.; Mandelzweig, V.B. Fast Convergent Hyperspherical Harmonic Expansion for Three-Body Systems. Ann. Phys. 1989,

189, 29–52. [CrossRef]
5. Haftel, M.I.; Krivec, R.; Mandelzweig, V.B. Power Series Solution of Coupled Differential Equations in One Variable. J. Comp.

Phys. 1996, 123, 149–161. [CrossRef]
6. Pekeris, C.L. Ground State of Two-Electron Atoms. Phys. Rev. 1958, 112, 1649–1658. [CrossRef]
7. Liverts, E.Z.; Barnea, N. S-states of helium-like ions. Comp. Phys. Comm. 2011, 182, 1790–1795. [CrossRef]
8. Liverts, E.Z.; Barnea, N. Three-body systems with Coulomb interaction. Bound and quasi-bound S-states. Comp. Phys. Comm.

2013, 184, 2596–2603. [CrossRef]
9. Hylleraas, E.A. Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium. Z.

Phys. 1929, 54, 347–366. [CrossRef]
10. Chandrasekhar, S.; Herzberg, G. Energies of the Ground States of He, Li+, and 06+. Phys. Rev. 1955, 98, 1050–1054. [CrossRef]
11. Kinoshita, T. Ground State of the Helium Atom. Phys. Rev. 1957, 105, 1490–1502. [CrossRef]
12. Freund, D.E.; Huxtable, B.D.; Morgan, J.D., III. Variational calculations on the helium isoelectronic sequence. Phys. Rev. A 1984,

29, 980–982. [CrossRef]
13. Frankowski, K.; Pekeris, C.L. Logarithmic Terms in the Wave Functions of the Ground State of Two-Electron Atom. Phys. Rev.

1966, 146, 46–49. [CrossRef]

http://doi.org/10.1016/j.aop.2020.168306
http://dx.doi.org/10.1103/PhysRevA.87.043423
http://dx.doi.org/10.1140/epjd/e2020-10226-1
http://dx.doi.org/10.1016/0003-4916(89)90076-6
http://dx.doi.org/10.1006/jcph.1996.0012
http://dx.doi.org/10.1103/PhysRev.112.1649
http://dx.doi.org/10.1016/j.cpc.2010.11.031
http://dx.doi.org/10.1016/j.cpc.2013.06.013
http://dx.doi.org/10.1007/BF01375457
http://dx.doi.org/10.1103/PhysRev.98.1050
http://dx.doi.org/10.1103/PhysRev.105.1490
http://dx.doi.org/10.1103/PhysRevA.29.980
http://dx.doi.org/10.1103/PhysRev.146.46


Atoms 2022, 10, 4 11 of 11

14. Korobov, V.I. Coulomb three-body bound-state problem: Variational calculations of nonrelativistic energies. Phys. Rev. A 2000, 61,
064503. [CrossRef]

15. Frolov, A.M. Multibox strategy for constructing highly accurate bound-state wave functions for three-body systems. Phys. Rev. E
2001, 64, 036704. [CrossRef] [PubMed]

16. Suzuki, Y.; Varga, K. Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems; Springer: Berlin, Germany; New
York, NY, USA; London, UK; Milan, Italy; Paris, France; Tokyo, Japan, 1998.

17. Drake, G.W.F. High Precision Calculations for Helium, Section 11. In Handbook of Atomic, Molecular, and Optical Physics; Drake,
G.W.F., Ed.; AIP Press: New York, NY, USA, 1996.

18. Nordsieck, A. Reduction of an Integral in the Theory of Bremsstrahlung. Phys. Rev. 1954, 93, 785–787. [CrossRef]
19. Fock, V.A. On the Schrodinger Equation of the Helium Atom. Izv. Akad. Nauk SSSR Ser. Fiz. 1954, 18, 161–174.
20. Fadeev, L.D.; Khalfin, L.A.; Komarov, I.V. (Eds.) VA Fock-Selected Works: Quantum Mechanics and Quantum Field Theory; CRC Press:

London, UK; Washington, DC, USA, 2004; p. 525.
21. Abbott, P.C.; Maslen, E.N. Coordinate systems and analytic expansions for three-body atomic wavefunctions: I. Partial summation

for the Fock expansion in hyperspherical coordinates. J. Phys. A Math. Gen. 1987, 20, 2043–2075. [CrossRef]
22. Liverts, E.Z.; Barnea, N. Angular Fock coefficients. Refinement and further development. Phys. Rev. A 2015, 92, 042512. [CrossRef]
23. Frolov, A.M. On the Q-dependence of the lowest-order QED corrections and other properties of the ground 11S-states in the

two-electron ions. Phys. Rev. E 2001, 64, 036704-6. [CrossRef]
24. Watkins, J.C. An Introduction to the Science of Statistics: From Theory to Implementation, 1st ed.; Topic 13: Method of Moments; 2016.

Available online: https://www.math.arizona.edu/~jwatkins/statbook.pdf (accessed on 4 November 2021).
25. Liverts, E.Z.; Amusia, M.Y.; Krivec, R.; Mandelzweig, V.B. Boundary solutions of the two-electron Schrodinger equation at

two-particle coalescences of the atomic systems. Phys. Rev. A 2006, 73, 012514-9. [CrossRef]

http://dx.doi.org/10.1103/PhysRevA.61.064503
http://dx.doi.org/10.1103/PhysRevE.64.036704
http://www.ncbi.nlm.nih.gov/pubmed/11580479
http://dx.doi.org/10.1103/PhysRev.93.785
http://dx.doi.org/10.1088/0305-4470/20/8/023
http://dx.doi.org/10.1103/PhysRevA.92.042512
http://dx.doi.org/10.1103/PhysRevE.64.036704
https://www.math.arizona.edu/~jwatkins/statbook.pdf
http://dx.doi.org/10.1103/PhysRevA.73.012514

	Introduction
	Calculation Technique
	Results
	References

