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Abstract: This paper introduces a comprehensive methodology for examining the stability of dark
matter (DM) halos, emphasizing the necessity for non-local inter-particle interactions, whether they
are fundamental or effective in nature, to maintain halo stability. We highlight the inadequacy
of vanilla cold, collisionless DM models in forecasting a stable halo without considering a “non-
local” interaction in the halo’s effective free energy, which could potentially arise from factors like
baryonic feedback, self-interactions, or the intrinsic quantum characteristics of dark particles. The
stability prerequisite necessitates significant effective interactions between any two points within
the halo, regardless of their distance from the center. The methodology proposed herein offers a
systematic framework to scrutinize the stability of various DM models and refine their parameter
spaces. We deduce that DM halos within a model, where the deviation from the standard cold,
collisionless framework is confined to regions near the halo center, are unlikely to exhibit stability
in their outer sectors. In our study, we demonstrate that the issue of instability within DM halos
cannot be addressed adequately using perturbative quantum effects. This issue is less pronounced
for fermionic DM but suffers from a higher degree of severity when considering bosonic DM. We
find that halos made of bosons with notable quantum effects have sharp edges, while those made of
fermions show more diffuse boundaries extending toward infinity. To present the potentials of the
cross-model approach, we explore the broadest form of the effective free energy around a chosen
mass profile. Next, as a case study, we employ a model where the deviation from the standard cold,
collisionless DM model is represented by a two-body interaction in the effective free energy to show
how to use observations to investigate universal classes of DM models.

Keywords: cross-model approach in dark matter research; effective free energy of dark matter halos;
halo stability

1. Introduction

The Λ-CDM cosmological model, which characterizes dark matter (DM) as a cold
and collisionless gas interacting with visible matter solely via gravity, effectively accounts
for several observed phenomena. These phenomena include the cosmic microwave back-
ground’s (CMB) correlation function [1], supernova redshift surveys [2], and the clustering
of galaxies [3]. Furthermore, the model aligns with the observation that smaller structures
develop earlier in cosmic history [1,4]. Apart from a recent discrepancy in the Hubble
constant value [5], the Λ-CDM model successfully interprets large cosmic scales.

DM simulations that start from early-universe initial density perturbations predict
the formation of DM halos with dense and steep profiles towards the center, creating a
cusp. However, this prediction contradicts observations from rotation curves of stars near
galactic centers and gases in the outskirts, as well as stellar velocity-dispersion data. These
observations suggest a more constant mass density, or a core, at the center of galaxies [6–10].

This inconsistency between DM simulations and observational data can be reconciled
by considering baryonic effects on dark matter. However, unlike DM N-body simulations,
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these effects are not fundamentally modeled. Instead, aspects like star formation and
viscosity are directly integrated into the simulations using numerous free parameters,
which are then adjusted to align with observations [11]. The wide parameter-selection
flexibility in the current versions is suboptimal, although incorporating visible matter
effects remains critical.

While N-body simulations may explain observed DM mass profiles by incorporating
baryonic feedback, their numerous free parameters potentially allow the explanation of
non-physical phenomena as well. To evaluate N-body simulations and other alternate DM
paradigms, it is necessary to examine their predictions against observations not used in
parameter tuning. One such observation is the stability of halos.

We aim to initiate a systematic investigation of the stability of DM halos in this article.
The stability of DM halos can be probed by predicting the position-dependent halo stability
in a given DM scenario and comparing it with observational data. Furthermore, studying
the stability of DM halos can enable cross-model comparisons and the classifications of
DM scenarios into universal categories, which can facilitate a “coarse-grained-assessment”
of DM models in light of the current observational limitations and the abundance of
theoretical possibilities.

A key requirement for long-term stability is the satisfaction of the Vlasov–Poisson
equation, which ensures that the net force on DM in the halo is zero, leading to dynamical
stability [12,13]. However, fluctuations in an N-body system are inevitable. If the system
is not at the minimum of effective free energy, these fluctuations can rapidly increase,
destabilizing the halo. This means that dynamical stability does not necessarily guarantee
“thermodynamic” stability, and a dynamically stable halo could still experience gravother-
mal catastrophe or collapse [14,15]. Nevertheless, “thermodynamic” stability does imply
dynamic stability [16].

To investigate “thermodynamic” stability, Landau damping and violent relaxation
should be considered to find a solution minimizing the N-body system’s free energy. While
this approach is robust, it increases the complexity of the calculations and depends on the
DM model. Existing studies on fermionic DM “thermodynamic” stability can be found
in [17–19]. For some DM models, more attention has been devoted to Vlasov–Poisson
dynamical stability, with less focus on long-term stability.

Given the complexity and model-dependent nature of the current approach to “ther-
modynamic” stability, this article employs Landau’s field-theoretic method to investigate
the long-term stability states of halos. This approach avoids dealing with the specifics of
the DM model, instead focusing on the collective system’s symmetries. Intriguingly, a
broad spectrum of seemingly different models fall under one universality class, complying
with the same statistical equations determined almost exclusively by the symmetries of
the N-body system, barring highly entangled quantum systems where topology plays a
role. This approach allows us to investigate a wide array of DM models and their free
parameters within a single study. The unique aspect of our approach is its capacity to
transfer results between different DM models.

In this article, we demonstrate that no self-gravitating classical model of DM can
predict a stable halo unless a “non-local” interaction between mass densities is included
in the effective free energy of the halo. This interaction could be collective, for example,
due to baryonic feedback or self-interactions or resulting from the quantum nature of
dark particles, whether fermionic or bosonic. This stability condition demands substantial
interactions between any two locations in the halo, even if both are far from the center.
Therefore, if a DM model’s deviation from the standard cold, collisionless scenario is
confined to regions near the halo’s center, the halo will still be unstable. Consequently,
models like the cold, collisionless DM with baryonic feedback, where visible matter is
located at the center, are unlikely to predict pressure-supported stable outer halo regions.

To showcase the potential of the field-theoretic approach to studying DM halos, we
expand the most general form of effective free energy around an arbitrary mass profile.
We then choose a model whose deviation from the standard cold, collisionless model
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is a two-body interaction in the effective free energy. We demonstrate that even with a
“non-local” interaction, the halo may still be unstable for certain forms of the interaction.
Moreover, using the showcase, we demonstrate that fluctuations of the DM mass density
around an empirically determined mass profile are contingent on the universal class of DM
scenarios. As such, it becomes possible to restrict their parameter space. Importantly, any
reduction in the parameter space of a particular universal class extends to all DM models
within that category.

The structure of the article is as follows. In Section 2, we establish the effective free
energy of a simple, cold, collisionless DM halo, demonstrating its inherent instability. In
Section 3, we introduce DM interactions into the effective free-energy equation, elucidating
the necessity of non-local interactions to stabilize the halo. Proceeding to Section 4, we
formulate the effective free energy of a halo incorporating non-interactive DM quantum
effects. The equivalence between this quantum model and a classic interactive DM model,
in the context of effective free energy, is demonstrated. Further, we explore a particular
model where quantum effects can be analyzed via the perturbation method. In Section 5,
we design the most encompassing model of DM perturbations, illustrating its potential to
investigate universal classes of DM perturbation models. Finally, in Section 6, we draw
our conclusions.

2. Non-Interactive Classic DM

We begin this section by deriving the effective free energy functional of mass density
for a halo of cold, collisionless DM, neglecting the effects of baryons. We consider a small-
volume element ∆V at a position x in the halo. The number of particles in this volume
element is N(x) = ρ(x)

m ∆V, where ρ(x) is the mass density and m is the particle mass. We
assume that the system is in a steady state so that the probability of the volume’s state is
equal to

P(x) = exp

(
β(µ(x)−mφ(x))∑

ε

nε − β ∑
ε

nεε

)
, (1)

where µ(x) is the chemical potential at the volume, nε is the occupation number of ε energy
level, β is the inverse of the temperature of DM, and the gravitational potential is

φ(r) = −4πG
(1

r

∫ r

0
ρ(r′)r′2dr′ +

∫ R

r
ρ(r′)r′dr′

)
. (2)

Due to the absence of correlations between ∆V volumes in the vanilla collisionless
model, the probability of the state of the halo can be found by multiplying the probabilities
of all ∆V volumes. After a sum over all the possible halo states with their respective
weights, the halo’s partition function reads

Z = ∏
x

(
∑

N(x)
exp

(

βN(µ−mφ)− N Ln
(

λ3ρ

m

)
+ N

))
, (3)

where λ =
√
(2πm)−1 β, the summation of ε has been calculated, and both Stirling’s

approximation and ρ = mN/δV have been utilized. In this equation, we have used
Landau’s approach of rearranging the summation over the halo states to only keep the
summation over the parameter of interest. If we choose the infinitesimal volume to be
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arbitrarily small, we can approximate the integral as
∫

d3x ' ∑x δV, and after defining
Dρ ≡ ∏x

∫
dρ(x), the halo’s partition function can be expressed as follows:

Z =
∫

Dρ exp

(

−
∫

d3x
ρ

m

[
Ln{ ρ

m
λ3} − 1− βµ + βmφ

])
. (4)

Therefore, the effective free energy functional of DM mass density of the halo takes
the following form [20,21]:

βFSimple =
∫

d3x
ρ

m

[
Ln{ ρ

m
λ3} − 1− βµ + βmφ

]
. (5)

A DM halo in a state of stability is positioned at the nadir of the effective free energy
curve. This premise implies the initial constraint on any proposed DM model of halos.
Specifically, it requires that the first functional derivative of the system is zero at the halo’s
mean density:

δβFSimple

δρ(q)

∣∣∣
〈ρ〉
' 0. (6)

In an attempt to calculate the functional derivative, we make use of the following
equations as expounded in Appendix A:

δ

δρ(~r )
=

δ

4πr2δρ(r)
,

δφ(~r1)

δρ(~r2)
= − G

r>
, (7)∫

d3x ρ(~x)
δφ(~x)
δρ(~x ′)

= φ(~x ′),

where r> denotes the larger of r1 and r2 and we presume a spherical symmetry.
By applying δ

δρ(q) to the right side of Equation (5) and utilizing (7) to solve the integrals,
the first functional derivative of the effective free energy can be written as follows:

δβFSimple

δρ(q)
=

4πq2

m

[
Ln{ ρ

m
λ3} − βµ + 2βmφ

]
. (8)

The chemical potential µ(r), which remains unestablished by observations, can be
tailored such that the first functional derivative of the effective free energy is null. Therefore,
presuming that DM follows a simple system of statistics and using the semi-equality
mentioned above, we can express the chemical potential as follows:

µSimple ' β−1Ln{ ρ

m
λ3}+ 2mφ. (9)

As has been previously demonstrated, the second functional derivative of either
entropy or free energy is necessary to analyze the stability of gravitational systems [15,22].
Given that our study reorganizes the sum in the partition function to define the effective
free energy, the second functional derivative of the latter should analogously shed light
on the stability of halos. Indeed, Equation (9) represents a necessary but not sufficient
condition for a stable halo. The rationale behind this is that the first functional derivative is
also null at a maximum or extremum of an effective free energy. In order for the halo to
be at the minimum of the effective free energy and thus be stable, the second functional
derivative of the effective free energy needs to be positive at any pair of arbitrary locations
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within the halo. However, the second functional derivative of the effective free energy in
Equation (5) does not meet this requirement. It is expressed as follows:

δ2βFSimple

δρ(~r2)δρ(~r1)
=

δ(r2 − r1)

4πr2
2mρ

− 2βG
r>

. (10)

It is evident that the second functional derivative of the simple cold, collisionless
DM model, as described in Equation (10), is negative when r1 6= r2. This implies that
Equation (9) corresponds to the maximum, rather than a minimum, of the effective free
energy as described in Equation (5). This suggests that the halo, while momentarily static,
will eventually either condense toward a higher mass density profile or explode, thereby
disappearing. Given that the effective free energy equates to the negative logarithm of
the probability of the mass density profile, the direction of evolution is random if a halo’s
chemical potential corresponds to Equation (9). We can demonstrate that if fluctuations
cause the halo’s chemical potential to exceed the value given in Equation (9), the halo’s
mass density escalates indefinitely toward higher values. Conversely, if the halo’s chemical
potential falls below the value given in Equation (9), the halo’s mass density diminishes
indefinitely towards lower mass density.

3. Interactive Classic DM

This section aims to delve into the interactions between DM particles that may rectify
the instability previously noted in the simple cold, collisionless DM model. Specifically, we
seek interactions that ensure the second functional derivative of the effective free energy
remains positive for any selected pairs of locations.

In general, the Hamiltonian’s inter-particle interactions can originate from either
collective or fundamental forces. It can be represented as follows:

HI =
1
2! ∑

ij
U2ij +

1
3! ∑

ijk
U3ijk + · · · , (11)

where the indices denote all the DM particles within the halo. Applying the identity
∑i =

∫
d3x ρ

m , we can reformulate the equation in a continuum form

HI =
1
2!

∫
d3x1d3x2U2(~x1,~x2)ρ(~x1)ρ(~x2)

+
1
3!

∫
d3x1d3x2d3x3U3(~x1,~x2,~x3)ρ(~x1)ρ(~x2)ρ(~x3) (12)

+ · · · .

In this scenario, the partition function for the halo in the presence of classical interac-
tions is given as

Z = ∑
N

∫
d3Nq exp(−β(µ−mφ)N − βHI)

×
∫

d3N p exp
(
−βHSimple

)
, (13)

Here, the division is feasible because HSimple depends solely on particle momentum,
whereas HI and φ are functions of particle position. Given that HI can be entirely expressed
in terms of ρ(x) and considering that

ρ(~x) ≡ m
N

∑
i=1

δ(~x−~qi)

remains a function of the particle positions~qi, the enumeration of energy states (∑N
∫

d3Nq)
equates to that given by

∫
Dρ.
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Upon resummation, the partition function can be traditionally written as [20]

Z =
∫

D ρ exp

(
FSimple + FI

)
. (14)

The effective free energy here is partitioned into the simple term and the interaction
term. In its most generic form, the latter can be expanded to

FI =
∞

∑
n=2

1
n!

∫ ( n

∏
a=1

d3xaρ(~xa)

)
Un(~x1 · · ·~xn). (15)

The modification of the effective free energy alters Equation (6), which leads to the
effective chemical potential, under the assumption of halo steadiness, being

µ ' µSimple +
δβFI
δρ(~x)

∣∣∣
〈ρ〉

. (16)

Additionally, the second derivative of the effective free energy becomes

δ2βF
δρ(~r2)δρ(~r1)

=
δ(r2 − r1)

4πr2
2mρ

− 2βG
r>

+ βU2(~x1,~x2) + · · · . (17)

From the above, it is clear that by merely adjusting the two-body interaction, we can
make the second functional derivative of the effective free energy positive, irrespective
of the chosen ~x1 and ~x2. This approach can potentially explain the long-term stability of
halos. However, the two-body interaction, U2(~x1,~x2), necessary for long-term stability,
must be non-local due to the existence of 2βG/r> and cannot be proportional to the Dirac
delta function. This means that the interaction should remain positive and non-zero when
the interacting particles’ positions vary. Given that gravity, already accounted for, is the
only known force capable of operating over galactic distances, U2(~x1,~x2) must either have
an unusual nature, such as emerging effectively from quantum effects, or be collectively
produced by other phenomena like baryonic feedback.

Since most baryons in galaxies are located at the center, an intriguing research direction
could involve exploring whether baryonic feedback can generate an effective two-body
interaction that remains non-zero even between two points that are both far from the center.

4. Quantum DM

Considering DM models with appreciable quantum effects, we examine the alterations
to the partition function of a non-interacting DM system. The formal partition function of
such a system is expressed as

Z =
∫

d3x1 · · · d3xN ∑
E,N

e−β(E−µN)|ΨE(~x1 · · ·~xN)|2, (18)

with Ψ symbolizing the quantum state of the halo, which is detailed as

ΨE(~x1 · · ·~xN) = (N!)−
1
2 ∑

p
p[uε1(~x1) · · · uεN (~xN)]. (19)

Here, p signifies the permutation operator, with ∑p pointing to all possible permuta-
tions, and uεi (~xi) is the wave function of the ith particle satisfying the Schrodinger equation.
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In scenarios where DM particles are non-interacting, the total energy of the halo
equates to the aggregation of the energies of the individual particles, represented as
E = ∑N

i=1 εi. Consequently, the partition function can be rewritten as

Z =
∫

d3x1 · · · d3xN ∑
N

eβµN 1
N! ∑

p

[
(

∑
ε1

u∗ε1
(p~r1)uε1(~r1)e−βε1

)
× · · · × (20)(
∑
εN

u∗εN
(p~rN)uεN (~rN)e−βεN

)]
.

After introducing

f (p~ri,~ri|β) ≡
λ3

V ∑
ε

u∗ε(p~ri)uε(~ri)e−βε, (21)

and applying the properties of natural logarithm and Stirling’s approximation of the
logarithm of N!, the partition function assumes the following form:

Z =
∫

d3x1 · · · d3xN ∑
N

eβµN exp

(

−NLn
(

λ3N
V

)
+ N + (22)

Ln

(
∑
p

[
f (p~r1,~r1|β) · · · f (p~rN ,~rN |β)

])
.)

.

Using the demonstration in [21], the resultant partition function can be expressed as a
combination of the typical cold, collisionless DM Equation (5) and a corrective term due to
quantum effects:

F = FSimple + FQ.M.

βFQ.M. = −βLn

(
∑
p

[
f (p~r1,~r1|β) · · · f (p~rN ,~rN |β)

])
. (23)

Upon evaluating this effective free energy and comparing it with Equation (15), it
becomes clear that, in this context, a quantum description of DM is equivalent to a classical
model of DM that includes specific types of interactions. A similar equivalence of statistical
models for non-gravitational, quantum, and classic interactive systems was introduced by
Uhlenbeck and Gropper in the 1930s [23].

When f (~r,~r) = 1 and f (~r1,~r2)� 1 for large |~r1 −~r2|
In this subsection, we consider a DM halo that exhibits weak entanglement. In this

case, the function f (~r1,~r2), which characterizes the degree of quantum effects, only holds
significant value when the locations~r1 and~r2 are close. Given this scenario, we can express
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the quantum modification to the effective free energy, as shown in Equation (23), in an
expanded form

FQ.M. = −Ln

(
1± 1

2 ∑
ij
| f
(
~ri,~rj

)
|2 + . . .

)
,

' ∓1
2 ∑

ij
| f
(
~ri,~rj

)
|2, (24)

where each term inside the logarithm represents the number of permutations, and we
have neglected higher-order terms. Also, in terms with a dual sign, the upper and lower
signs correspond to bosons and fermions, respectively. Upon employing the relation
∑i =

∫
d3xρ/m, the above equation can be transformed as

FQ.M. =
∓1
2m2

∫
d3x1d3x2| f (~x1,~x2)|2ρ(~x1)ρ(~x2). (25)

Consequently, the additional term in the second derivative of the effective free energy
assumes the form

δ2βF
δρ(~r2)δρ(~r1)

=
δ(~r2 −~r1)

mρ
− 2βG

r>
∓ 1

m2 | f (~x1,~x2)|2. (26)

From the above discussion, we infer that in a DM halo where quantum effects are not
strong, a bosonic DM tends to exacerbate the instability problem by rendering the second
derivative of the effective free energy more negative. On the other hand, a fermionic DM
has the potential to alleviate the instability for closely situated location pairs. Nevertheless,
in the event that ~x1 and ~x2 are considerably distant, the corrective term loses significance,
and the halo reverts to an unstable state.

By employing Equation (26), we can deduce that halos composed of bosons, where
quantum effects are substantial, exhibit sharply defined edges. In contrast, halos consisting
of fermions with considerable quantum influences feature edges that are less sharply
delineated and extend more diffusely toward infinity. The underlying reason for this
behavior is that as we venture further into the halo’s outer regions, we eventually reach a
distance where quantum effects can be adequately addressed using perturbation methods.
Given that the value of r> is relatively large at these distances, the influence of gravitational
instability becomes minimal. Nonetheless, the instability inherent to bosons, as indicated
in Equation (26), persists. This confines the bosonic halo to regions where quantum effects
cannot be treated perturbatively and sharply cuts the outer region.

5. Most General Model of DM Perturbations

The enduring mystery surrounding the nature of DM does not preclude us from
leveraging the observed (at least quasi-)stability of DM halos to our advantage. For one
thing, stability constraints imply that when we expand the effective free energy of any
given DM model around a mass profile ρO , as established by experiments, only the leading
terms significantly contribute. Furthermore, these expansion coefficients are determinable
based on the symmetries of the density perturbations around ρO in the halo.

Drawing a parallel to other statistical systems [24], it can be suggested that the symme-
try of these fluctuations, not the specific principles of the DM model, dictates the effective
free energy of mass density perturbations in the halo. Consequently, a broad and seemingly
disparate collection of DM models may actually fall under the same universality class and,
hence, predict similar fluctuations around the chosen background mass density ρO .
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To gain deeper insights, we undertake an expansion of the most general effective free
energy of a DM halo around ρO , as given by

βF[ϕ] =
∞

∑
n=1

∫
d3x1 · · · d3xn c(n)ϕ1 · · · ϕn, (27)

where

c(n)(~x1, · · · ,~xn) ≡
δnβF

δρ(~x1) · · · ρ(~xn)

∣∣∣
ρO

ρO(~x1) · · · ρO(~xn),

ϕi ≡
ρ(~xi)− ρO(~xi)

ρO(~xi)
, (28)

where a constant is absorbed by the normalization factor. It is important to note that the
first functional derivative of the effective free energy at ρO is not set to zero given that the
choice of ρO is not necessarily equal to the average mass density 〈ρ〉, and retains a degree
of arbitrariness.

Having established this, we can proceed to study potential predictions of DM models
for mass density fluctuations ϕ(x) by systematically varying the c(n) coefficients. This
essentially amounts to transitioning from one universality class to another. Observational
data can then be used to evaluate these classes of DM models based on the predictions they
make. For instance, the n-body correlation between mass densities, i.e., 〈ϕ(~x1) · · · ϕ(~xn)〉,
across the halo is directly linked to the selection of c(n) and can be tested using observations.

In our previous work, we demonstrated how two-body correlations 〈ϕ(~x1)ϕ(~x2)〉, as
derived from observations, can help in refining the parameter space of DM models [21].
Continuing along this vein, we show here how the average 〈ϕ(~x)〉—constructible in a simi-
lar manner from observational data—along with stability constraints can aid in constraining
the parameters of DM models.

A DM Model with a Two-Body Interaction: A Showcase

In the present study, we strive to illustrate a straightforward extension of the classic
model of cold, collisionless DM. This extension incorporates two-body interactions into the
effective free energy of the dark matter halo

F = FSimple +
1
2

∫
d3x1d3x2 ρ(~x1)ρ(~x2)U2(~x1,~x2). (29)

Once we have the complete form of F, Equation (28) can be utilized to compute the
coefficients that describe the mass density fluctuation in effective free energy represented
in Equation (27). The coefficients are given by the following expressions

c(1) =
ρO(~x)

m

(
Ln
(

ρO(~x)
m

λ3
)
− βµ(~x) + 2βmφ

)

+
∫

d3x′U2(~x,~x ′)ρO(
~x′)ρO(~x),

c(2) =

(
δ(~x2 −~x1)

mρO(~x1)
− 2βG

r>
+ βU2(~x1,~x2)

)
ρO(~x1)ρO(~x2), (30)

c(3) = − 1
m

δ(~x2 −~x1)δ(~x3 −~x2)ρO(~x3),

c(4) =
2
m

δ(~x2 −~x1)δ(~x3 −~x2)δ(~x4 −~x3)ρO(~x4).
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A comprehensive analysis of possible U2(~x1,~x2) interaction terms and their observa-
tional implications is beyond the scope of the present work. In this paper, we simplify the
showcase by selecting the interaction such that − 2βG

r>
+ βU2(~x1,~x2) ' 0. It seems unlikely

that this interaction originates from a fundamental force. Instead, it may be more plausible
to consider that the interaction is mediated by phenomena that become significant toward
the center of a halo. Regardless of its origin, we are using this interaction as a toy model
for the purpose of this presentation, offering a simplified way to explore and understand
the system in question. Consequently, the effective free energy of our chosen showcase
model is

βF =
∫

d3x
ρO

m
(~x)g[ϕ],

g[ϕ] ≡ h(x)ϕ(x) + ϕ2(x)− ϕ3(x) + 2ϕ4(x), (31)

h(~x) ≡ m
ρO(~x)

c(1),

where the term h(~x) is dependent on the specific halo under investigation as the chemical
potential µ is influenced by the halo’s environment and other characteristics. To emphasize
the potency of the statistical field theory approach, we make the assumption that the chem-
ical potential and the temperature of a halo are determined through observations and that
these observations suggest h(r) = r−3. In other words, at the moment, direct observational
measurements of the chemical potential and the temperature remain a challenge. Therefore,
we have to make certain assumptions to account for this limitation. To that end, we have
translated our assumptions about the chemical potential and the temperature into a specific
form for the h(r) term. With this assumption, we can plot the functional g[ϕ] as a function
of the mass density fluctuations ϕ, as shown in Figure 1. For the sake of argument, we
would like to see how the mean of the mass density fluctuations can be utilized to evaluate
the model defined in Equation (29).

In Figure 1, assuming that the radius of the halo is scaled to one, the curve with the
label r = 1 belongs to the edge of the halo. This shows that at this distance from the center,
the minimum of g[ϕ] is at ϕ = 0 and the average of the fluctuations tends to be zero. The
curve representing a distance of 0.9 has a minimum of slightly less than zero. This means
that if we measure the fluctuations at that distance, the average would have a net negative
value. As is evident from the rest of the curves, this general trend exists such that as we
move toward the center, the average of the perturbations deviates further away from zero,
and the width of the well shape of the curves increases as the distance decreases toward the
center. Finally, at a distance equal to 10% of the halo’s radius, the curve labeled with r = 0.1
shows no minimum; i.e., the width of the well has become substantially large, indicating
the instability of the toy model’s halo in that region. In other words, from Figure 1, we note
that the minimum of the functional g[ϕ], representing where 〈ϕ〉 is located, shifts from
a significantly negative value at the halo’s center to zero in the outer region of the halo.
Therefore, by measuring the DM mass density as a function of distance from the center of a
halo and subtracting it from the selected mass profile, for example, NFW or Burkert, we can
construct a phenomenological 〈ϕ〉 that can be used to test the predictions of a given class
of DM models, consequently restricting the parameter space of all DM models belonging
to that class.
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Figure 1. The integrand of the effective free energy in Equation (31) in terms of the mass density
fluctuations of DM at various distances r from the center of the DM halo. As can be seen in this
figure, the most probable value of the mass density fluctuations shifts from negative values to zero
for locations at the center and edge of the halo. Also, since the r = 0.1 curve has no minimum, the
plot indicates that the model represented by Equation (31) is unstable at the center of the halo and
will tend to have less DM in the future. Exploring whether the observed instability at the center
propagates to destabilize the entire halo would be a compelling avenue for future research. To
address this question, the static approaches outlined in this paper would need to be expanded upon.
Specifically, a dynamic analysis of the halo’s behavior is required, placing this inquiry firmly within
the scope of existing N-body simulations.

6. Conclusions

We presented a robust methodology to investigate the stability of DM halos. Our
emphasis was on the critical role of non-local inter-particle interactions, be they fundamen-
tal or effective, in sustaining the stability of these halos. We underscored the shortfalls
of conventional cold, collisionless DM models in predicting stable halos without taking
into account a “non-local” interaction within the effective free energy of the halo. These
interactions might stem from elements like baryonic feedback, self-interactions, or the in-
herent quantum features of dark particles. Stability, as we concluded, required substantial
effective interactions between any two points inside the halo, independent of their distance
from the center.

The methodology we proposed serves as a systematic framework for scrutinizing
classes of DM models and for refining their parameter spaces. Based on our investigation,
we inferred that DM halos, where the divergence from the standard cold, collisionless
framework was restricted to areas near the halo center, were not expected to maintain
stability in their outer regions.

We showed that the problem of instability within DM halos could not be sufficiently
resolved by resorting to perturbative quantum effects. This problem was not as severe for
fermionic dark matter, yet it was considerably more pronounced in the case of bosonic DM.

In showcasing the potential of this cross-model approach, we delved into the most
encompassing form of the effective free energy around a selected mass profile. We used



Universe 2023, 9, 400 12 of 14

a model in which the deviation from the standard cold, collisionless DM model was
characterized by a two-body interaction within the effective free energy. We demonstrated
how to utilize observational data to examine different classes of DM models.
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Appendix A. First Functional Derivative

To derive the functional derivatives in this article, we start with the definition of the
derivative of a functional B[ρ(~x)] with respect to ρ(~x)

δB[ρ(~x)]
δρ(~x′)

≡ lim
ε→0

B[ρ(~x) + εδ(~x−~x′)]− B[ρ(~x)]
ε

, (A1)

Let us now define the following functional

B[ρ] ≡
∫

d3x ρ(~x). (A2)

Through a simple substitution, we can see that

B[ρ(~x) + εδ(~x−~x′)] = B[ρ(~x)] + ε. (A3)

Putting this back into Equation (A1), we can conclude that

δρ(~x′)
δρ(~x)

= δ(~x−~x′),

δρ(r′)
δρ(r)

= δ(r− r′). (A4)

Using this equation and since

δ

δρ(r)

∫
dr ρ =

δ

δρ(~x)

∫
d3x ρ = 1,

and using the spherical symmetry, we can conclude that

δ

δρ(~r )
=

δ

4πr2δρ(r)
. (A5)

To show that δφ(~r1)
δρ(~r2)

= − G
r>

, we directly apply δ
δρ(r) to the definition of the gravita-

tional potential

δφ(r)
δρ(r′′)

=

−4πG
(

1
r

∫ r

0
δ
(
r′ − r′′

)
r′2dr′ +

∫ R

r
δ
(
r′ − r′′

)
r′dr′

)
. (A6)
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After working out the integrals, it is easy to see that

δφ(r)
δρ(r′)

= −4πG


r′2
r r′ < r

r′ r′ > r

(A7)

This equation can be easily converted into the format we presented above after using
Equation (A5).

Finally, after substituting Equation (A7) into∫
d3x ρ(~x)

δφ(~x)
δρ(~x ′)

and after working out the integration, we can find that it is equal to φ(~x ′).
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