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Abstract: The Hubble tension has now grown to a level of significance which can no longer be ignored
and calls for a solution which, despite a huge number of attempts, has so far eluded us. Significant
efforts in the literature have focused on early-time modifications of ΛCDM, introducing new physics
operating prior to recombination and reducing the sound horizon. In this opinion paper I argue that
early-time new physics alone will always fall short of fully solving the Hubble tension. I base my
arguments on seven independent hints, related to (1) the ages of the oldest astrophysical objects,
(2) considerations on the sound horizon-Hubble constant degeneracy directions in cosmological data,
(3) the important role of cosmic chronometers, (4) a number of “descending trends” observed in a
wide variety of low-redshift datasets, (5) the early integrated Sachs-Wolfe effect as an early-time
consistency test of ΛCDM, (6) early-Universe physics insensitive and uncalibrated cosmic standard
constraints on the matter density, and finally (7) equality wavenumber-based constraints on the
Hubble constant from galaxy power spectrum measurements. I argue that a promising way forward
should ultimately involve a combination of early- and late-time (but non-local—in a cosmological
sense, i.e., at high redshift) new physics, as well as local (i.e., at z ∼ 0) new physics, and I conclude by
providing reflections with regards to potentially interesting models which may also help with the
S8 tension.

Keywords: hubble tension; dark matter; dark energy

1. Introduction

The concordance ΛCDM model has been extremely successful in describing cosmological
and astrophysical observations across a wide range of times and scales, such as anisotropies
in the Cosmic Microwave Background (CMB), the clustering of the large-scale structure (LSS),
weak lensing of the CMB and the LSS (cosmic shear), the magnitude-redshift relation of distant
Type Ia Supernovae (SNeIa), and light element abundances [1–10]. Nonetheless, we know that
ΛCDM cannot be the end of the story: at best, it is a phenomenological placeholder for our
ignorance about the fundamental nature of dark matter (DM), dark energy (DE), and the
origin of primordial perturbations. Theory considerations aside, possible observational
hints for new physics have recently emerged, in the form of tensions between independent
inferences of cosmological parameters assuming ΛCDM.

Among these discrepancies, a special position is held by the “Hubble tension”: the mismatch
between several early- and late-time inferences of the Hubble constant H0. One of the most precise
early-time inferences is obtained from CMB temperature, polarization, and lensing measure-
ments by the Planck satellite, which assuming ΛCDM yield H0 = (67.36± 0.54) km/s/Mpc [4],
improving to (67.62± 0.47) km/s/Mpc once combined with Baryon Acoustic Oscillation
(BAO) and Hubble flow SNeIa data [4]. In contrast, one of the most precise local measure-
ments (model-independent in a cosmological sense, although dependent on the underlying
models for a variety of astrophysical effects), provided by the SH0ES team via a distance
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ladder making use of Cepheid-calibrated SNeIa, yields (73.04± 1.04) km/s/Mpc [11]. De-
pending on the dataset considered (see e.g., Refs. [12–21] for other local measurements),
the significance of the tension falls between 4σ and 6σ, making it one of the most exciting
open problems in cosmology (see Refs. [22–31] for reviews).

While systematics-based explanations (e.g., Refs. [32–36]) are not yet completely
excluded (but are admittedly becoming increasingly unlikely), the possibility of the Hubble
tension calling for new physics, potentially related to the dark sector, is now taken very
seriously, with a wide range of proposals having been put forward: with no claims as to
completeness, see e.g., Refs. [37–556] for examples of the rich variety of discussions in this
context, as well as approaches adopted, with varying degrees of success. Cosmological
solutions (involving new physics in the Hubble flow and not in the local Universe) usually
feature modifications to ΛCDM either prior to recombination, or in the late Universe,
which I shall refer to as early-time and late-time modifications respectively. It is now well
understood that late-time models are less effective in addressing the Hubble tension,
because of their worsened fit to BAO and Hubble flow SNeIa data when H0 is increased,
due to the fact that the sound horizon at baryon drag rd is not altered [557–566]. In fact,
the focus is now mostly towards early-time modifications, which aim to reduce rd by ≈7%
to accommodate a higher H0 while keeping the angular size of the sound horizon to the
CMB value, and not running afoul of late-time BAO and SNeIa constraints. Examples in
this sense include but are not limited to models raising the pre-recombination expansion
rate, or modifying the recombination history.

Nevertheless, it is fair to say that we remain far from a compelling solution to the
Hubble tension. Leaving aside their theoretical motivation, none of the models proposed
so far have succeeded in accommodating a higher H0 while maintaining a good fit to
all available data, or not worsening other tensions (e.g., the “S8 discrepancy” [567–571]).
Tongue-in-cheek, I would say that the statement “the Hubble tension calls for early-time
new physics” may have been elevated to somewhat of a mantra in the community, and more
often than not interpreted a bit too literally.1 My goal here is to argue that solving the Hubble
tension will ultimately require more than just early-time new physics. I stress that this
is not an original paper in a strict sense: to build my case, I will review results from a
number of earlier works, at first glance perhaps unrelated to each other. When viewed
more broadly, these results paint a coherent picture with a clear message: early-time new
physics alone is not sufficient to solve the Hubble tension. “Alone” is the key word here:
there is no question that an important fraction of the “tension-solving job” needs to come
from early-time physics (and that late-time new physics alone definitely cannot do the job),
but the point is that something more, e.g., some amount of late-time or local new physics, is
required. As a clarification, the terms “local” and “non-local” here are used not in the field
theory sense of the principle of locality, but to distinguish physics in the local Universe
(z ∼ 0) from physics taking place at sufficiently high redshift. My case is built upon seven
hints,2 some more theoretical in nature, others more data-driven, and others seemingly
unrelated to the Hubble tension!

The rest of this paper is then organized as follows. The seven hints mentioned above
are presented in Section 2. The latter is divided into seven subsections, each devoted to
discussing one of these hints. In Section 3, I speculate about promising model building
directions towards solving the Hubble tension and possibly other tensions (such as the S8
discrepancy) simultaneously, building upon the lessons learned from these seven hints.
Finally, in Section 4 I draw concluding remarks.

2. Seven Hints

In what follows, I present the seven hints upon which my case is built. In hopes that
this will help committing them to memory, I have developed an “ABCDEFG” mnemonic
for the hints as follows:

• Ages of the oldest astrophysical objects;
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• Baryon Acoustic Oscillations sound horizon-Hubble constant degeneracy slope (com-
pared to the same slope in the CMB);

• Cosmic chronometers;
• Descending trends observed in a wide range of low-redshift data;
• Early integrated Sachs-Wolfe effect and the restrictions it imposes on early-time new

physics;
• Fractional matter density constraints from early-Universe physics insensitive and

uncalibrated cosmic standards;
• Galaxy power spectrum sound horizon- and equality wavenumber-based determina-

tions of the Hubble constant.

In the following subsections, the hints will be presented in the above order, though I
note that this is not necessarily the order which I would adopt to present them, say, in a talk.

2.1. Ages of the Oldest Astrophysical Objects

This first hint is, in principle, unrelated to the Hubble tension. The existence of old
astrophysical objects (OAO) at high redshift has historically played an important role in
cosmology, particularly with regards to hinting towards the existence of a cosmological
constant-like component, and thus cosmic acceleration, way before the latter was actually
discovered through SNeIa in 1998. The usefulness of OAO as a cosmological test is based
on the following simple, incontrovertible fact: at any given redshift, the Universe must
be at least as old as the oldest objects it contains at that redshift. Being the age-redshift
of the Universe a model-dependent function, this statement can be turned around into a
cosmological test, which can be used to exclude those models (or parameters) leading to
the Universe being paradoxically younger than its oldest objects.3

To set the stage, the age of the Universe at any redshift, tU (z), is given by the
following integral:

tU (z) =
∫ ∞

z

dz̃
(1 + z̃)H(z̃)

≈ 977.8
H0 [km/s/Mpc]

∫ ∞

z

dz̃
(1 + z̃)E(z̃)

Gyr , (1)

where E(z) ≡ H(z)/H0 is the normalized expansion rate, and in what follows I will denote
the age of the Universe today by tU ≡ tU (z = 0). Three comments are in order about
Equation (1):

1. the age of the Universe at any given redshift is self-evidently inversely proportional
to the Hubble constant, tU (z) ∝ 1/H0;

2. the age integral picks up most of its contributions at late times, z . 10, since
E(z) increases faster than (1 + z)3/2 in the early Universe (see e.g., Ref. [286])—for
all intents and purposes, it is therefore basically insensitive to pre-recombination
(new) physics;4

3. it is possible for different cosmological models to lead to the same value of tU (at
z = 0), while predicting a completely different evolution tU (z) at high redshift.

As myself, Pacucci and Loeb recently noted [575], the first two points above indicate
that OAO can play an important role in further uncovering the origin of the Hubble tension,
if due to new physics. In particular, OAO can be used as an early-time-independent consistency
test of late-time physics, as follows [575]:

• create an OAO age-redshift catalog;
• choose a given model for the late-time expansion (the “null hypothesis” which will be

the subject of the consistency test);
• impose (in a statistical sense) that the age of the Universe at any redshift within the

chosen model exceeds the OAO ages—given the previous point 1), this will lead to an
upper limit on H0;

• the derived upper limit being in tension with local H0 measurements would indicate
an inconsistency in the chosen cosmological model and thus the need for at least some
amount of late-time new physics (“new” relative to the chosen model)—conversely,
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absence of tension is at best an indication that there is no inconsistency yet, since it
is in principle possible that OAO older than those present in the catalog may not yet
have been identified.

Before moving on, I note that an important caveat to results involving OAO concerns
the reliability of their ages, which are notoriously difficult to estimate. Nonetheless, signifi-
cant progress is being made with regard to these issues (see e.g.,
Refs. [576–580]), and more progress can be expected along these lines thanks to the recent
launch of the James Webb Space Telescope. With these caveats in mind, in Ref. [575], I
led an analysis following the above recipe, selecting ΛCDM as the baseline model for the
late-time expansion. In Ref. [575], myself, Pacucci and Loeb constructed an age-redshift
catalog of 114 OAO up to z ≈ 8, considering both galaxies, most of which identified within
the CANDELS observing program, and quasars (QSOs) identified within various surveys.
Most galaxy ages were estimated via photometric spectral energy distribution fits, whereas
the QSOs ages were estimated via Monte Carlo realizations of the growth model proposed
by Pacucci et al. [581]. I refer the reader to Section 3 of Ref. [575] for further details on the
adopted galaxies and QSOs data, as well as on the age estimate methodology. The resulting
OAO age-redshift diagram is shown in the left panel of Figure 1, alongside the predicted
age-redshift relationship for three ΛCDM cosmologies with Ωm = 0.3 and three different
values of H0.

0 2 4 6 8 10 12
z

10−1

100

101

t U
[G

yr
]

H0 = 70 km s−1 Mpc−1

H0 = 90 km s−1 Mpc−1

H0 = 50 km s−1 Mpc−1

EGS
COSMOS
UDS
GOODS-S
GOODS-N
S05
high-z QSOs
Pan-STARRS1 QSOs
GEMINI QSOs
SDSS QSOs

0.15 0.30 0.45 0.60

τin [Gyr]

0.24

0.28

0.32

0.36

Ω
m

60 75 90

H0 [km/s/Mpc]

0.15

0.30

0.45

0.60

τ i
n

[G
y
r]

0.24 0.28 0.32 0.36

Ωm

Figure 1. (Left panel) age-redshift diagram of the OAO considered in Ref. [575], with the curves
showing the age-redshift relationship for three ΛCDM cosmologies with Ωm = 0.3 and different
values of H0 as per the color coding. (Right panel) corner plot for H0, Ωm, and τin in light of the OAO
age-redshift diagram. Reproduced from Figures 1 and 2 of Vagnozzi, Pacucci & Loeb, “Implications
for the Hubble tension from the ages of the oldest astrophysical objects”, Journal of High Energy Astrophysics,
Volume 36, Pages 27–35, doi:10.1016/j.jheap.2022.07.004, published 4 August 2022 [575]. © (2022)
Elsevier BV. Reproduced by permission of Elsevier and the first author. All rights reserved.

To obtain (Bayesian) upper limit on H0 from the OAO age-redshift diagram, Markov
Chain Monte Carlo (MCMC) methodswere used, considering a 3-dimensional parameter
space described by Ωm, H0, and τin [575]. The latter is referred to as “incubation time” and
accounts for the time elapsed between the Big Bang and the formation of the OAO, or in
other words the fact that no OAO formed right at the Big Bang. From general considera-
tions, we expect τin ∼ O(0.1)Gyr [582,583], but to be as conservative as possible τin was
marginalized upon, imposing the so-called J19 prior, using the fitting function provided
in Appendix G of Ref. [584]: this approach was argued to be conservative, as it assumes
that the OAO descend from the oldest generation of galaxies (had they been assumed to
descended from a later generation of galaxies, more stringent but less conservative upper
limits on H0 would have been obtained), see Refs. [575,582] for further details.

https://www.sciencedirect.com/science/article/abs/pii/S2214404822000398
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For the baseline analysis adopting flat priors on H0 and Ωm, and the J19 prior on
τin, regarded as the most balanced one in terms of equilibrium between conservative and
aggressive assumptions, in Ref. [575] myself, Pacucci and Loeb found the 95% confidence
level (C.L.) upper limit H0 < 73.2 km/s/Mpc: see the right panel of Figure 1 for the corre-
sponding contour plot. The concordance/discordance between this upper limit and the
then-current local Cepheid-calibrated SNeIa distance ladder measurement was estimated
to be at the 2.3σ level, certainly not high enough to be alarming, but still worthy of atten-
tion. This limit was found to be relatively stable against different analysis assumptions
(particularly concerning priors on Ωm and τin), with most of these assumptions actually
resulting in more stringent upper limits on H0, and hence stronger conclusions. Other
analysis assumptions were further explored by Wei and Melia [585], and their effect on the
resulting upper limits on H0 were found to be small (see however Ref. [586]).

If we take this discrepancy seriously, what consequences follow? Assuming that the
OAO ages have been correctly estimated, essentially only two further assumptions can be
questioned: the validity of the ΛCDM model for the late-time expansion, and the validity
of the local Cepheid-calibrated SNeIa estimate of H0. Going down the first route requires
introducing new (cosmological) physics which makes the Universe older at all redshifts:
this can be achieved if new physics results in the expansion rate lowering relative to ΛCDM
at z > 0 (as in the case of a phantom-like component), in such a way to accommodate
a higher H0, of course to an extent which is compatible with BAO and Hubble flow
SNeIa constraints—more on this will be discussed in Section 3. Going down the second
route opens the increasingly unlikely door of systematics (already amply discussed in the
literature, as noted in Section 1), or the possibility of new local physics affecting the distance
ladder measurements, more precisely lowering it. While I will return to these points in
much more detail in Section 3, in the meantime I simply note that the possibilities of new
late-time (cosmological) and local physics are not mutually exclusive, as the two can well act
simultaneously (in addition to early-time new physics), the former to raise the cosmological
H0 estimate, the latter to lower the local H0 estimate, bringing the two into better agreement.
Of course, these results come with the caveats discussed earlier, pertaining to the difficulty
of reliably estimating OAO ages. In particular, if mismodelled astrophysical or galaxy
evolution effects cause the OAO ages to be systematically overestimated, this would
directly result in a systematic underestimation of the upper limit on H0, therefore artificially
worsening the tension with local measurements.

Before moving on, a comment on related works is in order, as Ref. [575] was not to
the only one to recently appreciate the role of galaxy ages in the quest towards arbitrating
the Hubble tension. Similar arguments, albeit limited to the age of the Universe today
tU , were recently put forward [286,582,587]. In essence these works pointed out that,
should (lower limits on) the age of the Universe as obtained from old stars and galaxies
confirm the high value of tU indicated by Planck assuming ΛCDM (given the preferred low
value of H0, and the fact that tU ∝ 1/H0), this would at the very least require introducing
either some late-time new physics, or some local new physics: to put it differently, early-
time new physics alone would not be sufficient to solve the Hubble tension in this case.
A stronger version of this argument was put forward by Bernal et al. [587], who pointed
out the key role of tU (alongside Ωm) in arbitrating the Hubble tension, highlighting the
usefulness of “cosmic triangles” related to H0, tU , Ωm, and the sound horizon rd, i.e., ternary
plots simultaneously visualizing independent constraints on these parameters (which are
over-constrained given the precision of current cosmological measurements). Similarly,
Krishnan et al. [286] instead argued that recent constraints on tU from old globular clusters,
when analyzed in conjunction with a minimal parametrization for the late-time expansion
while treating rd as a free parameter, indicate that early-time new physics can at best bring
H0 up to ≈71 km/s/Mpc, confirming empirical findings that no early-time model so far
has been able to do better than this. The results of Ref. [575], which this first hint build upon,
essentially constitute a stronger version of these arguments, built upon tU(z) rather than
tU alone (recall that different cosmological models can lead to the same tU while predicting
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a completely different tU(z) evolution), and providing the first direct indication that OAO
ages may indeed be in slight tension with local H0 measurements. Finally, I note that the
importance of OAO ages in arbitrating the Hubble tension was also discussed later by
Borghi et al. [579], Wei and Melia [585], and Moresco et al. [588]. For further related works,
see Refs. [589–591], and Ref. [592] for a discussion in the context of the related look-back
time quantity.

In closing, I think it is important to stress once more that this first hint is in principle
completely unrelated to the Hubble tension. In essence, it constitutes of a consistency
test whose failure indicates the need for some new physics at late times or on local scales,
independently any assumed model for the early Universe. Of course, one would hope that
this late-time and/or local new physics would go in the direction of helping with (or at the
very least not worsen!) the Hubble tension, beyond the (lion’s share?) of the job inevitably
done by early-time new physics.

2.2. BAO Sound Horizon-Hubble Constant Degeneracy Slope

The physics of acoustic oscillations, whose associated distance scale(s) provides a
standard ruler through which distances at high redshift can be inferred, is cleanly imprinted
in two classes of observations: in the CMB through the location of the acoustic peaks
(particularly the first ones), and in the Baryon Acoustic Oscillation BAO peaks observed in
correlators of tracers of the large-scale structure, such as galaxies. In the case of the CMB,
the location of the acoustic peaks and their spacing determines θ?, the angular size of the
comoving sound horizon at recombination:

θ? ≡
r?

D(z?)
, (2)

where r? is the comoving sound horizon at the epoch of recombination, occurring at
redshift z?, and D(z?) is the comoving distance to recombination. Since D(z?) essentially
only depends on the Hubble constant H0 or equivalently the reduced Hubble constant
h ≡ H0/(100 km/s/Mpc), as well as the physical matter density parameter ωm ≡ Ωmh2,
measurements of θ? can be used to infer H0 once ωm and r? are known (or, in the case of r?,
calibrated given a model).

On the other hand, BAO measurements at a certain redshift zobs (typically
zobs . 2.5) carry the imprint of rd, the sound horizon at baryon drag. The latter is the
epoch when baryons were released from the drag of photons, and takes place at a redshift
zd slightly lower than z?, making rd slightly larger than r? as a result: in essentially all
reasonable modified recombination scenarios, rd ≈ 1.0184r? holds. Focusing for simplicity
on transverse BAO measurements, these constrain the BAO angular scale θd(zobs),5 given
by the following:

θd(zobs) ≡
rd

D(zobs)
, (3)

where once again D(zobs) is the comoving distance to the (effective, survey-averaged)
redshift at which the BAO feature is observed. Observing the BAO feature at several
redshifts allows one to constrain Ωm and the product rdh, or equivalently r?h, given the
assumed relation between rd and r?. Equations (2) and (3) together with the assumed rd-r?
relation are the starting point for the work of Jedamzik, Pogosian and Zhao [593], which
investigated the effect of early-time new physics decreasing r? (and thereby rd), treating
the latter as a free parameter to be as model-independent as possible, while assuming that
the post-recombination Universe is described by ΛCDM.

The key observation of Ref. [593] is that, given a value of ωm, both CMB and BAO
measurements define a degeneracy line in the rd-H0 plane, along which the corresponding
θ? and θd are constant (it is in this sense that I adopt the qualifier “degeneracy”). Importantly,
given the enormous difference between zobs and z? � zobs, the redshifts at which the
acoustic feature is observed in BAO and CMB measurements, the corresponding degeneracy
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slopes are very different, as shown in the left panel of Figure 2. Placing rd and H0 on the
horizontal and vertical axes respectively, the rd-H0 degeneracy lines get steeper with
increasing observation redshift, and are therefore steepest when considering the CMB
measurements of θ?. Along the same plane, as shown in the left panel of Figure 2, increasing
ωm moves the degeneracy lines towards the left, keeping the degeneracy slope fixed.

The difference between the BAO and CMB rd-H0 degeneracy slopes plays a key role
in assessing the ability to solve the Hubble tension of new physics which only lowers
rd. To see this, consider again the left panel of Figure 2, where the solid red line has
been plotted assuming the best-fit value of ωm = 0.143 determined by the Planck satellite
(whose constraints in the rd-H0 plane are given by the green contours, and are in agreement
with BAO data—purple bands—for low values of H0). Clearly, for Planck and SH0ES
measurements (grey bands) to be brought into agreement, one has to move along one of
the rd-H0 degeneracy lines: if this is done along the red line (“low” ωm, Planck best-fit), one
clearly sees that it is impossible to obtain complete consistency between CMB, SH0ES, and
BAO data, given that the point where the red line and the grey bands meet is outside the
purple bands.

The only way for a CMB rd-H0 degeneracy line to meet both BAO and SH0ES measure-
ments is for this line to be obtained at a higher value of ωm: see for instance the green dotted
line (in the example of Figure 2, “high” ωm = 0.167). However, in this minimal scenario
where the effect of new physics is only that of reducing rd, the increase in ωm quickly bring
a tension with WL data, worsening the already existing S8 discrepancy. Recall that, along
with Ωm, the parameter best constrained by WL measurements is S8 ≡ σ8

√
Ωm/0.3, where

σ8 is the present day linear theory amplitude of matter fluctuations averaged in spheres of
radius 8 h−1 Mpc, and quantifies the variance of fluctuations on this scale. The clustering
amplitude S8 depends both on the amplitude of the primordial power spectrum (fixed
by the CMB), as well as the net growth of matter perturbations, which increases as ωm is
increased. Therefore raising ωm, which is required to achieve consistency between CMB,
SH0ES, and BAO measurements as argued earlier, comes at the price of increasing S8:
this exacerbates the S8 discrepancy, as the values of S8 preferred by WL surveys such
as DES and KiDS are already lower than that inferred from Planck, with the significance
of this discrepancy lying between 2 and 3σ depending on the underlying assumptions
(see Ref. [569]).

The overall observation of Jedamzik, Pogosian and Zhao [593] is therefore that early-
time new physics which reduces the sound horizon alone cannot completely resolve the
Hubble tension, as it will always create additional tensions: with BAO data if operating
at lower ωm, and with WL data (worsening the S8 discrepancy) if operating at higher
ωm. These problems were first explicitly noted in the context of early dark energy (EDE)
models, which introduce a dark energy-like component dynamically relevant around
matter-radiation equality, and where the necessity of operating at higher ωm is related
to the enhanced early integrated Sachs-Wolfe effect predicted by such models (which
will become relevant in discussing my fifth hint in Section 2.5). Surveying a compilation
of models introduced to solve the Hubble tension, Jedamzik, Pogosian and Zhao [593]
confirmed that the features discussed previously are indeed generically observed, in some
cases more strongly than others (see the right panel of Figure 2).

To conclude, this second hint indicates that early-time new physics whose only effect
is to reduce the sound horizon cannot fully solve the Hubble tension. It is worth noting
that the vast majority of early-time new physics models introduced in this context were
introduced precisely to lower the sound horizon: one notable exception is the strongly inter-
acting neutrino model, which however is now severely constrained by CMB polarization
data. Clearly, a full solution to the Hubble tension which does not introduce additional
tensions requires extra ingredients beyond the rd-lowering ones. While I will discuss in
more detail some possibilities in this direction in Section 3, here I simply note that including
additional early-time new physics is highly non-trivial due to the necessity of maintaining a
good fit to all features in the CMB temperature and polarization spectra, beyond just the
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acoustic peaks. I believe a much more promising direction involves additional late-time
new physics, which “decouples” itself from the early-time effects, and possibly predom-
inantly operating at the perturbation level in order not to spoil ΛCDM’s fit to late-time
background measurements.
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Figure 2. (Left panel) degeneracy lines in the rd-H0 plane defined by constant θ? and θd (the latter
at different redshifts), and for different values of Ωmh2 in the case of θ?, alongside constraints
from (Planck ) CMB data (within ΛCDM), then-current BAO data, and the SH0ES H0 measurement.
(Right panel) best-fit values of Ωmh2, rd, H0, and S8 for a compilation of models aiming to solve the
Hubble tension, alongside 68% constraints on the corresponding parameters from different surveys
(grey bands). No single model manages to solve the Hubble tension while remaining consistent with
all other external measurements. Reproduced from Figures 2 and 3 of Jedamzik, Pogosian & Zhao,
“Why reducing the cosmic sound horizon alone can not fully resolve the Hubble tension”, Communications
Physics, Volume 4, article number 123, doi:10.1038/s42005-021-00628-x, published 8 June 2021 [593],
with permission from the authors. Both figures are licensed under a Creative Commons Attribution
4.0 International License, and no changes were made.

2.3. Cosmic Chronometers

To further arbitrate the Hubble tension or, as in our case, shed light on which epochs
may require new physics, it is helpful to consider cosmological datasets which are as
model-independent as possible.6 In order to identify whether late-time new physics may be
required, it is helpful to consider probes which carry little or no dependence on early-time
physics, as with the OAO considered earlier. Should such a probe return a value of H0
consistent with the high-redshift ones (e.g., the Planck low value of H0 assuming ΛCDM),
the resulting (persisting) tension with the local measurements of H0 is, by construction, one
that may not be resolved by early-time new physics.

Cosmic chronometers (CC) are interesting in this sense, as they are able to provide
a direct, cosmology-independent estimate of the Hubble rate H(z). They were first pro-
posed by Jiménez and Loeb [594], and rely on inverting the time-redshift relation within a
Friedmann-Lemaître-Robertson-Walker (FLRW) Universe:

dt
dz

= − 1
(1 + z)H(z)

=⇒ H(z) = − 1
1 + z

dz
dt

= − 1
1 + z

(
dt
dz

)−1
, (4)

valid for a FLRW Universe and assuming only homogeneity, isotropy, and a metric theory
of gravity, with no further assumptions on the functional form of the expansion rate or the
spatial geometry. Using Equation (4) requires identifying a class of “cosmic chronometers”
to estimate dt/dz as the look-back time differential change with redshift: as redshifts (and
hence dz) can easily be measured via spectroscopy, the difficulty is in finding a trustworthy
estimator for look-back time (and hence dt).

https://www.nature.com/articles/s42005-021-00628-x
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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The question of which objects are best suited for use as CC has been the subject of
much study over the past two decades. It is now understood that extremely massive
(M & 1011M�), early, passively-evolving galaxies (i.e., evolving on a timescale much larger
than their differential ages) are an excellent choice [595]. The reason is that these galaxies
formed and assembled their mass at high redshift (z ∼ 2–3) and over a very short period of
time (t . 0.3 Gyr), after which they quickly exhaust their gas reservoir and evolve passively.
With a suitable CC sample at hand, the age difference ∆t between two passively-evolving
CC formed approximately at the same time and separated by a small redshift interval ∆z
around zeff can be used to obtain dz/dt ≈ ∆z/∆t, and thus H(zeff) via Equation (4). While
not unrelated to the OAO discussed in Section 2.1, the crucial difference is that CC rely on
differential rather than absolute age measurements, and hence are affected to a much lesser
degree by systematics, which are expected to (at least partially) cancel when considering
age differences.

The appeal of CC lies in their providing a determination of H(z) free from cosmological
model assumptions. To infer H0 from CC data, one can proceed non-parametrically (e.g.,
as done by Yu, Ratra and Wang [596], Gómez-Valent and Amendola [597], and many other
works), or assuming a specific model. Two important points are worth noting now:

• regardless of whether one goes parametric or non-parametric, the value of H0 inferred
from CC is the cosmological (as opposed to local) one;

• as CC directly measure the late-time (z . 2) expansion rate, a parametric analysis
thereof requires no assumption whatsoever about early Universe physics (this is
actually true for a non-parametric inference as well).

Focusing on the parametric approach, which is the one we shall follow later, two
immediate corollaries of the above are:

• should the value of H0 inferred from CC within a certain model be in tension with
local H0 measurements, such a conclusion would be completely independent of whatever
happened in the early Universe, including before and around recombination;

• assuming such a (residual) tension is physical (i.e., not due to systematics), resolving it
would require introducing new (relative to the assumed parametric model) late-time
ingredients to alter the cosmological value of H0, and/or new local physics to alter
the local value of H0.

The above points suggest that CC can be used as a late-time consistency test of
ΛCDM, much as the OAO discussed in Section 2.1, by comparing the value of H0 inferred
from CC assuming ΛCDM to local H0 measurements, and assessing whether there is
a (residual) tension between the two. Of course, CC data come with several caveats
pertaining to their reliability similar to those of OAO (although less severe, given the
fact that the CC galaxies are passively evolving), and inevitably carry dependence on
assumed astrophysical galaxy evolution models. The fact that CC are differential rather
than absolute age measurements somewhat mitigates these potential systematics, which
have nevertheless been studied and quantified in detail in various works, including several
by Moresco et al. [588,598,599]: therefore, at the current stage of things, CC data are
significantly more trustworthy than OAO.

I perform this analysis on the latest compilation of 32 CC measurements, comprising the
31 measurements listed in Table 1 of Ref. [583] and the latest measurement of Borghi et al. [579],
including systematics and off-diagonal covariance terms as discussed in detail in various
recent works (e.g., Ref. [588]).7 Assuming ΛCDM, I infer H0 = 67.8± 3.0 km/s/Mpc and
Ωm = 0.33± 0.06: both values are in excellent agreement with the values inferred from the
Planck satellite assuming ΛCDM, although the uncertainties are a factor of respectively 6
and 8 bigger, which should not come as a surprise, given that I have analyzed CC data on
their own. One could of course try and sharpen these inferences using additional external
datasets (e.g., a prior on Ωm from weak lensing or cluster count measurements), but here I
choose to be as conservative as possible and use no data other than CC, in order to keep
the picture as clean as possible.
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While the uncertainty on H0 is relatively large, it is intriguing that the central value
is in remarkable agreement with the Planck’s central value (67.4 km/s/Mpc). Moreover,
despite the size of the uncertainty, a . 2σ tension with the local H0 determination from
Cepheid-calibrated SNeIa remains. As with the case of OAO earlier, this residual tension is
not high enough to be alarming, but nonetheless worthy of attention. It is worth examining
which part(s) of the CC dataset prevent a high H0 determination. To show this, in Figure 3
I plot the CC dataset alongside the ΛCDM prediction for the expansion rate (upper panel
blue curve), with the best-fit values for the parameters obtained by analyzing the CC
dataset alone, and with the corresponding residuals (data minus theory, in units of data
uncertainties) shown in the lower panel. Then, I plot the same functional form for the
expansion rate, but with H0 fixed to the local SH0ES value (red curve). From the lower
panel (red points), it is clear that there is no single point driving the preference for low H0
(or rather disfavoring high H0). Rather, there are a number of points (especially for z . 1,
as well as a point around z ≈ 1.5) for which the high H0 fit is noticeably worse than the low
H0 one, with the high H0 theory prediction in some cases being nearly 3σ off from the data.

0.5 1.0 1.5
z

100

200

300

H
(z

)
[k

m
s−

1
M

p
c−

1
]

Best-fit ΛCDM model

(assuming SH0ES H0)

CC data

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
z

−3

0

3

∆
H

(z
)/
σ
H

(z
)

Relative to best-fit ΛCDM

(assuming SH0ES H0)

Figure 3. (Upper panel) CC measurements (black datapoints), alongside the predicted expansion rate
given the best-fit ΛCDM cosmological parameters from a fit to CC data alone (blue curve), and the
same cosmology but with H0 fixed to the SH0ES value. (Lower panel) residuals (CC data minus
theory predictions) in units of datapoint uncertainties, for the two cosmologies considered in the
upper panel, with the same color coding.

If we therefore take this residual tension seriously, and eliminate the possibility of
systematics, once more we are left with the options of questioning the validity of ΛCDM at
late times, and/or the validity of local H0 determination(s). Should one pursue the first
route, new late-time physics should again go in the direction of lowering the expansion
rate relative to ΛCDM at z > 0 (similar to the effect of a phantom component), compatibly
with BAO and high-z SNeIa constraints. As with the earlier discussion on OAO, I once
more note that the possibilities of new late-time (cosmological) and local physics are not
mutually exclusive: the two can act simultaneously (together with early-time new physics),
the former to raise the cosmological H0 value, the latter to lower the local H0 value, to bring
the two into better agreement and meet along the way. In closing, it is intriguing that
both absolute (Section 2.1) and relative (Section 2.3) galaxy ages independently8 appear
to disfavor high (&73 km/s/Mpc) values of H0 and, when used as consistency tests of
ΛCDM, indicate the need for new physics at late times and/or local scales, if the residual
tension with local H0 measurements is taken seriously.
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2.4. Descending Trends in Low-Redshift Data

The ΛCDM model is a dynamical model (i.e., one which describes the evolution of
a system over time or, equivalently, redshift), equipped with a number of fitting param-
eters. In science, including physics and by extension cosmology, it is a non-negotiable
(mathematical) fact that dynamical models break down when fitting parameters which
are supposed to be constant actually evolve with time—more precisely, when their inferred
values evolve depending on the time when they are inferred. In the case of ΛCDM, this
would correspond to the inferred values of otherwise constant parameters taking different
values depending on the redshift of the data used to infer the parameters themselves.
Let me now be more specific and focus on H0 as the parameter of interest. Within an
FLRW Universe, from the mathematical point of view H0 is none other than an integration
constant: therefore, by definition, it should be constant regardless of the redshift at which it
is inferred. More specifically, as shown by Krishnan et al. [602], under the assumptions of
homogeneity and isotropy, and once a theoretical in the form of an effective equation of
state weff(z),9 the Friedmann equations can be integrated to give:

H0 = H(z) exp
[
−3

2

∫ z

0
dz′

1 + weff(z′)
1 + z′

]
. (5)

While Equation (5) is a mathematical identity, from the observational point of view
an useful interpretation is as follows. An input weff(z), appearing in the right-hand side
of Equation (5) is specified in the form of a underlying model fit to the data, the latter
corresponding to H(z) appearing on the same side of the equation.10 This is used to infer
H0 on the left-hand side of the equation. If the input [weff(z)] and the data [H(z)] “agree”,
the value of H0 inferred as a function of the redshift of the data should be consistent (within
uncertainties) across redshift. On the other hand, if weff(z) and H(z) disagree beyond the
uncertainties, H0 picks up z dependence and “runs”. Note that this statement can also
be made for other parameters beyond H0 (e.g., Ωm and S8) which are either integration
constants, or are directly related to integration constants.

Overall, it would appear that inferring running constants is a telltale signature of a
model’s death. In some way, the H0 tension (and other tensions) can be thought of as a
primitive example of such running, in the simplest case between two (extreme) redshifts.
However, if the H0 tension is physical (i.e., not due to systematics) and calls for some
amount of late-time new physics,11 redshift evolution at some other intermediate redshift is
non-negotiable. If such a redshift evolution is not observed, one is left with the conclusion
that either systematics are to blame, and/or that the assumption of FLRW itself [underlying
the derivation of Equation (5)] should be dropped. This is a mathematical statement,
and amounts to the observation that there cannot be contradictions between mathematics
and observations. This leads to the following questions:

• Has such a redshift evolution already been observed in current data?
• Has it been observed across different independent datasets, and if so is there a common

trend across these independent datasets?
• Are the size and/or direction of this trend inconsistent with what one would expect if

no new physics were at play, i.e., can it be attributed to new physics?

With a few caveats, the answers to the above three questions are positive: hints of
running H0 have now been observed in multiple datasets, and in all of these H0 decreases
with increasing redshift, which is why I will refer to these as “descending trends”.

The first, and perhaps most famous, example of descending trend was reported by
the H0LiCOW collaboration, who in Wong et al. [14] performed a joint analysis of six
gravitationally lensed quasars with measured time delays to infer H0. The strong lensing
approach is a one-step technique, which unlike the distance ladder approach requires no
external calibration, although the absence of a ladder is traded for the dependence on
assumptions concerning the lens and line-of-sight mass distribution [603–605]. As such,
the method is completely independent of and complementary to the CMB and distance
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ladder approaches. Nevertheless, the inferred value of H0 is still cosmological model-
dependent, as it is related to the so-called “time-delay distance” D∆t. The time-delay
distance combines information on the lens redshift as well as the angular diameter distances
to the lens, source, and between lens and source. Therefore, interpreting D∆t measurements
requires adopting an underlying cosmological model, which in the case of H0LiCOW was
chosen to be the ΛCDM model.

Albeit relegated to an Appendix, the H0LiCOW collaboration [14] noted a curious
trend where the value of H0 inferred from each of the single lenses decreased with increasing
redshift lens. This trend, in the redshift range 0.3 . z . 0.7, is reported in the left panel
of Figure 4, whereas the right panel reports a similar trend observed with the time-delay
distance. In particular, the central value of H0 evolves from∼ 82 km/s/Mpc when inferred
from the lens PG1115 at redshift z ∼ 0.3, to ∼68 km/s/Mpc when inferred from the lens
J1206 at redshift ∼0.7. Using mock data, the H0 trend was found to deviate from the null
hypothesis (where H0 does not run with redshift) at an equivalent Gaussian significance
level of nearly 2σ [14]. Albeit intriguing, the trend and its possible physical origin were
not discussed further, possibly also due to its moderate significance. A similar trend was
confirmed by the TDCOSMO collaboration when revisiting the analysis including stellar
kinematics measurements to break the mass-sheet degeneracy and thereby jointly infer
H0 and lens density profiles [606]. The key point, however, is that this trend is inferred
without making any assumptions on early-Universe physics, since the interpretation of the
time-delay distance measurements is essentially only sensitive to late-time physics (and,
in this case, the assumption of ΛCDM). Therefore, if not due to systematics or astrophysical
mismodeling, “fixing” this 2σ trend12 can only be achieved by fiddling around with late-
time new physics.
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Figure 4. (Left panel) constraints on H0 from the individual H0LiCOW lenses as a function of lens
redshift. (Right panel) same as for the left panel, but as a function of the lens time-delay distances.
Reproduced from Figure A1 of Wong et al., “H0LiCOW—XIII. A 2.4 per cent measurement of H0

from lensed quasars: 5.3σ tension between early- and late-Universe probes”, Monthly Notices of the Royal
Astronomical Society, Volume 498, Issue 1, Pages 1420–1439, doi:10.1093/mnras/stz3094, published 16
September 2019 [14]. © (2019) The Authors. Reproduced by permission of Oxford University Press
on behalf of the Royal Astronomical Society. All rights reserved.

Inspired by the H0LiCOW results, Krishnan et al. [607] considered a low-redshift
(z . 0.7) dataset which overall indicates an intermediate (∼70 km/s/Mpc) value of H0,
and used previously by Dutta et al. [151], to examine whether this intermediate value
actually hides a similar trend once the data is divided in redshift bins. The adopted dataset
included distances to 6 megamaser-hosting galaxies [18,608,609], CC data restricted to
the range z ≤ 0.7, BAO data from 6dFGS, SDSS-MGS, and BOSS DR12 (only isotropic
measurements, without including f σ8 measurements), and Pantheon SNeIa in the range

https://academic.oup.com/mnras/article/498/1/1420/5849454
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0.01 ≤ z ≤ 0.7. Krishnan et al. [607] then divided the data into 6 redshift bins, and inferred
H0 from each bin via an MCMC where a number of additional nuisance parameters
were also varied (see Ref. [607] for more details). Note that the presence of CC data,
which directly constrain H(z), allows for the use of BAO data without having to impose
any external prior on the sound horizon at baryon drag rd, which is instead treated as
a free parameter. Therefore, the determinations of H0 are free of any early-Universe
physics assumption, and the same is true for any trend that may be inferred. The result
of this analysis is shown in Figure 5, where a descending trend broadly similar to the
H0LiCOW one is clearly seen. Intriguingly, the slope of the two trends are consistent,
albeit the two intercepts differ slightly. Using the same approach as H0LiCOW to establish
the significance of the trend, this was found to deviate from the null hypothesis at an
equivalent Gaussian significance level of 2.1σ [607]. As with the H0LiCOW trend, this is by
construction one which cannot be fixed by invoking early-time new physics which alters
rd, since such modifications will only push the trend up and down without removing it.
In fact, Krishnan et al. [607] used this observation to argue that the Hubble tension calls for
something more than just early-time new physics.

Figure 5. (Left panel) binned constraints on H0 obtained from the late-time dataset combination
considered in Ref. [607]. (Right panel) probability distribution functions for H0 as inferred from
each bin, together with the overall constraint obtained from the complete dataset. Reproduced from
Figures 1 and 2 of Krishnan et al., “Is there an early Universe solution to Hubble tension?”, Physical
Review D, Volume 102, Issue 10, article number 103525, doi:10.1103/PhysRevD.102.103525, published
20 November 2020 [607]. © (2020) American Physical Society. Reproduced by permission of the
American Physical Society and the authors. All rights reserved.

Another notable example, and the last one I will discuss to a similar level of detail
as the previous two, is the Pantheon SNeIa sample. The analysis of Dainotti et al. [610]
considered the full Pantheon sample and binned the SNeIa into respectively 3, 4, 20,
and 40 redshift bins, each containing the same number of SNeIa. Within each bin a value
for H0 was then inferred, both assuming the ΛCDM model, as well as the w0waCDM model
where the DE equation of state (EoS) is described by the so-called Chevallier-Polarski-
Linder parametrization w(z) = w0 + waz/(1 + z). The results, as far as the ΛCDM model
is concerned, are shown in Figure 6, with each panel corresponding to a different choice
of number of bins. Albeit visually less clear than the previous two, a trend is visible in
this case as well, with significance estimated to be up to 2σ by Dainotti et al. [610]. When
instead assuming the w0waCDM model, the trend was found to persist, albeit at a lower
significance. The authors then fit the inferred values of H0 with a function of the form
H0(z) = H̃0(1 + z)−α, where H̃0 = H0(z = 0), inferring values of α differing from 0 at
up to 2σ. Various possible astrophysical causes for such a redshift evolution of H0 were
discussed (in fact, the proposed fitting function is routinely used in modelling astrophysical
evolution effects in Gamma-Ray Bursts an Active Galactic Nuclei studies), ranging from
correlations between SNeIa luminosities, progenitor ages, and metallicities, to intrinsic

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.103525
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evolution of SNeIa luminosities, to Malmquist bias. However, none of these effects could
be convincingly narrowed down as the underlying explanation for the trend. As with the
H0LiCOW trend and the trend found by Krishnan et al. [607], this is one which cannot
be fixed by new physics in the early Universe, but only at low redshifts. Finally, while
consistent in direction with the previous two trends, the slope in this case is much lower.
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Figure 6. Binned constraints on H0 obtained from the Pantheon SNeIa sample in Ref. [610], considering
3 redshift bins (upper left panel), 4 redshift bins (upper right panel), 20 redshift bins (lower left panel),
and 40 redshift bins (lower right panel). Reproduced from Figures 5 and 6 of Dainotti et al., “On
the Hubble Constant Tension in the SNe Ia Pantheon Sample”, The Astrophysical Journal, Volume 912,
Number 2, article number 150, doi:10.3847/1538-4357/abeb73, published 17 May 2021 [610]. © (2021)
American Astronomical Society. Reproduced by permission of the American Astronomical Society
and the authors. All rights reserved.

Besides these three examples, similar trends have been observed in several other
late-time datasets. For instance, Jia, Hu and Wang [611] performed an analysis of the
latest Pantheon+ SNeIa sample in combination with BAO and CC data, finding a similar
trend of H0 decreasing with increasing redshift, with significance of up to 5.6σ depending
on the binning strategy, and explicitly arguing that this strongly indicates the need for
new late-time physics. Importantly, in their analysis Jia, Hu and Wang [611] for the
first time removed the correlations between different redshift bins, making use of the
transformation matrix discussed by Huterer and Cooray [612]. A similar trend was also
found in the Pantheon+ SNeIa sample (without making use of the SH0ES calibrator sample)
by Malekjani et al. [613],13 who argued in favor of possible evidence for negative dark
energy density (or equivalently Ωm > 1). While not directly focusing on H0 but rather
attempting to infer the proper motion of the Solar System from the Pantheon SNeIa,
Horstmann, Pietschke and Schwarz [614] also found an interesting trend of H0 slightly
decreasing with redshift and thereby Ωm slightly increasing with redshift (see Figure 6 in
Ref. [614]): this inverse correlation is a direct reflection of the H0-Ωm degeneracy at the level
of low-redshift distances (within ΛCDM), as one can keep the distance to a certain redshift
fixed by decreasing [increasing] one parameter and simultaneously increasing [decreasing]
the other. For the same reason, observed increasing trends in Ωm from QSOs data (see e.g.,
Refs. [615–617]), which appear to prefer Ω ∼ 1 at high redshift, can directly be translated
into a decreasing trend in H0 (although not always explicitly reported). A combination

https://iopscience.iop.org/article/10.3847/1538-4357/abeb73


Universe 2023, 9, 393 15 of 56

of CC, Pantheon SNeIa, and QSOs data was also used by Ó Colgáin et al. to report a
similar trend [618].14

Having reported all these trends, the natural questions to ask are to what extent
they could have been expected, and what are their implications for the Hubble tension.
Let me start from the latter question. Since all these trends were obtained making no
assumptions on early-Universe physics, their implication is quite clear: some amount of
late-time new physics is clearly needed to “fix” these trends, which intriguingly all go
in the same direction and show a good compatibility between each other (although not
all show the same level of significance). Taking these trends seriously would require this
new physics to work in the same direction as that inferred from OAO and CC, i.e., in the
direction of lowering the expansion rate relative to ΛCDM at z > 0, similar to the effect of
a phantom component.

As for whether similar trends may be expected even within ΛCDM, the answer is
positive, although somewhat surprising. Naïvely, one would guess that, because in ΛCDM
DE dies quickly and matter becomes quickly dominant as one moves to high redshift,
probes at higher redshift should indicate higher values of Ωm, and thereby lower values of
H0. This expectation, while reasonable, does not appear to be confirmed in analyses of mock
data. Specifically, Ó Colgáin et al. [618] and Ó Colgáin, Sheikh-Jabbai and Solomon [630]
considered mock distance and expansion rate data matching the expected sensitivity of
DESI. After binning this mock data, it was found that as one moves to higher redshifts the
H0 and Ωm posterior distributions develop non-Gaussian tails in the low H0 and high Ωm
directions, but the peaks of the distributions actually move in the opposite direction (high
H0 and low Ωm). This was explained in terms of projection effects in combination with
the non-Gaussian tails [618,630] (see also Ref. [631]). The surprising conclusion is therefore
that one should indeed expect some evolution in H0 and Ωm, but in the opposite direction
compared to what is seen in data. Perhaps more relevant is the fact that the expected size
of this “running” effect, even at the sensitivity of DESI, is small - far smaller than what is
actually observed in data. In fact, as both Figure 4 and Figure 5 show, the size of the trend
is quite significant even at redshifts z . 0.7, where DE is still dominant and one would not
expect any evolution within ΛCDM, regardless of the direction of the evolution (see e.g.,
Figure 2 of Ref. [618]).

Taken in conjunction, all these considerations suggest that the descending trends
observed in data are not consistent, neither in terms of size nor direction, with what is
expected within ΛCDM. If we take them seriously, they appear to be the telltale signature
of the breakdown of ΛCDM at late times—or, to put it differently, a disagreement between
mathematics and observations. Importantly, this problem cannot simply be fixed by
changing a length scale (such as reducing rd, as is achieved by most early-time new physics
models), but require a weff(z) other than the ΛCDM one at late times, and therefore call
for late-time new physics. Of course, it is also possible that astrophysical systematics may
be the cause of these descending trends. One way to eliminate this possibility would
be to observe such trends in as many independent datasets as possible, and ascertain
whether these independent trends are consistent among each other: should this be the
case, it would be extremely hard to make a convincing case for systematics, as different
astrophysical systematics would somehow have to conspire to make the trend consistent
across independent probes. Current results are indeed moving in this direction, which is
why I believe these descending trends should be taken seriously as an indication for new
late-time physics.

In closing, I also note that a trend of increasing S8 with redshift was recently re-
ported by Adil et al. [632] based on an analysis of f σ8 measurements. Moreover, Espos-
ito et al. [633] analyzed SZ-identified galaxy cluster number counts from the South Pole
Telescope, and Lyman-α spectra from the MIKE/HIRES and X-shooter spectrographs,
and inferred a tension between the low value of S8 preferred by low-redshift cluster count
data and the high value of S8 inferred from high-redshift Lyman-α data. While the latter
was not discussed in light of evolving trends, it can indeed be read in terms of S8 increasing
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with redshift. If one believes the decreasing H0/increasing Ωm trends, this result should
not be unexpected, as S8 ∝

√
Ωm, and therefore one should expect the inferred S8 to in-

crease with redshift within ΛCDM. If substantiated, this trend would suggest that the H0
and S8 tensions are connected, and that further evolution in S8 may be detected with the
improvement in precision of WL data.

2.5. Early Integrated Sachs-Wolfe Effect

This fifth hint originates from the following question I first explicitly raised in Ref. [634]:
“If solving the Hubble tension requires a significant amount of early-time new physics, why do we not
see clear signs of it in CMB data alone”? Or, equivalently, “Why does ΛCDM appear to fit CMB
data so well”? These queries were driven by the apparently puzzling contradiction between
the significant amount of new physics required to solve the Hubble tension, and the lack of
detection thereof when analyzing CMB data alone, without the use of any late-time H0 prior.
For instance, this is exemplified by the EDE solution to the Hubble tension, which requires
& 10% of the energy budget of the Universe at matter-radiation equality to have been in
the form of an exotic EDE component, raising the question as to how such a significant
amount of new physics may have escaped detection in CMB-only analyses.15 As a caveat,
hereafter I will focus my discussion on CMB data from Planck in order to follow the analysis
I performed in Ref. [634].

The key observation I made in Ref. [634] is that for what concerns CMB data, a non-
insignificant amount of early-time new physics would first be expected to appear in
conjunction with the so-called early integrated Sachs-Wolfe (eISW) effect. The eISW effect
is a contribution to CMB anisotropies sourced by time-varying gravitational potentials at
early times. In the standard picture, the eISW effect is driven by the fact that the CMB forms
when the Universe is not entirely matter dominated, since only in a matter-dominated
Universe are gravitational potentials constant in time. The potential decay driven by
the non-negligible residual radiation fraction is then responsible for sourcing the eISW
effect, which is particularly prominent around the first acoustic peak. To linear order
in temperature perturbations, the eISW contribution to the `th temperature anisotropy
multipole, Θ`(k), is given by:

ΘeISW
` (k) =

∫ ηm

0
dη e−τ(η)

[
Ψ̇(k, η)− Φ̇(k, η)

]
j`(k∆η) ,

(6)

where Ψ and Φ are the two scalar potentials in Newtonian gauge, η is conformal time
(with η0 denoting the conformal time today), τ(η) is the optical depth to a given conformal
time, j` is the order-` spherical Bessel function, ∆η ≡ η − η0, and ηm is the conformal
time at an arbitrary point deep inside the matter-domination era (as long as this point
is chosen deep inside the matter-domination era, e.g., z ∼ 30, the exact value of ηm is
irrelevant). The observation I made in Ref. [634] is then that early-Universe new physics
altering the expansion rate around recombination will inevitably modify the evolution of
the gravitational potentials, and hence the terms Ψ̇ and Φ̇ in Equation (6), which in turn
alters the prediction for the eISW contribution to the CMB anisotropies. This would result
in a mismatch between the ΛCDM prediction for the eISW effect, and that of new physics,16

which can be tested in a relatively model-agnostic way via an eISW-based consistency test
of ΛCDM (similar in spirit to the OAO test of Section 2.1, but restricted to early times).

To proceed, in Ref. [634] I isolated the eISW contribution to the CMB power spectra
by introducing a phenomenological scaling parameter/fudge factor, the “eISW amplitude”
AeISW, which multiplies Equation (6). This parameter is reminiscent of the phenomenologi-
cal lensing parameter Alens introduced by Calabrese et al. [635] as a consistency test of the
amplitude of CMB lensing (see also Refs. [636,637] for recent reassessments pertaining to
the Alens problem), and is part of a more general class of phenomenological scaling param-
eters discussed by Kable, Addison and Bennett [638], and Ruiz-Granda and Vielva [639].
Note that AeISW should not be viewed as a standard cosmological parameter, but rather as
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a phenomenological consistency test parameter: AeISW = 1 corresponds to the prediction
of the underlying “null hypothesis” model (in this case ΛCDM), whereas AeISW 6= 1 could
be an indication for discrepancy at the level of the eISW effect between the underlying
model and data. The effect on the CMB temperature power spectrum of varying AeISW is
shown in the left panel of Figure 7. Clearly, the effect is most prominent around the first
peak (with AeISW > 1/AeISW < 1 respectively enhancing/reducing the amplitude of the
first peak), as one could have expected from purely theoretical considerations [634].
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Figure 7. (Left panel) impact of varying AeISW on the CMB temperature power spectrum (upper sub-
panel), and relative differences in with respect to the ΛCDM model (lower sub-panel). (Right panel)
corner plot for AeISW, ωb, and ns, within the ΛCDM (red contours) and ΛCDM+AeISW (blue contours)
models, from Planck data. Reproduced from Figures 1 and 2 of Vagnozzi, “Consistency tests of ΛCDM
from the early integrated Sachs-Wolfe effect: Implications for early-time new physics and the Hubble tension”,
Physical Review D, Volume 104, Issue 6, article number 063524, doi:10.1103/PhysRevD.104.063524,
published 15 September 2021 [634]. © (2021) American Physical Society. Reproduced by permission
of the American Physical Society and the author. All rights reserved.

In Ref. [634], I then fit a 7-parameter ΛCDM+AeISW cosmological model to Planck
CMB temperature and polarization data, resulting in the inference of AeISW = 0.988± 0.027
at 68% C.L., in perfect agreement with the ΛCDM value AeISW = 1. In addition, the fact
that introducing AeISW leads to negligible shifts in the 6 cosmological parameters reinforces
the conclusion that ΛCDM’s prediction for the amplitude of the eISW effect agrees perfectly
with Planck data. The most “significant” (to use an euphemism) parameter shifts induced
by freeing up AeISW were observed in the scalar spectral index ns and the physical baryon
density ωb, which as expected are the two parameters most strongly correlated with
AeISW [634]: however, both of these parameters shift by less than≈ 0.3σ (see the right panel
of Figure 7). This result was found to be stable against the use of the CamSpec likelihood in
place of the Plik one, as well as the inclusion of additional datasets, such as a Big Bang
Nucleosynthesis (BBN) prior on ωb, and constraints on the late-time expansion rate (which
can further stabilize constraints on Ωm) from BAO and uncalibrated SNeIa [634]. Moreover,
the same result was found to be very stable against further parameter space extensions,
including cases where the effective number of neutrinos Neff, Helium fraction Yp, lensing
amplitude Alens, running αs and running of the running βs of the spectral index were
allowed to vary [634]. Therefore, when adopting Planck CMB data, the inferred amplitude
of the eISW effect is perfectly in agreement with the expectation from ΛCDM.

I used this result in Ref. [634] to argue against the presence of a significant amount of
early-time new physics which can fit cosmological observations as well as ΛCDM. Taking as
example the EDE solution to the Hubble tension [106,640,641], which requires &10% of the
energy budget of the Universe at matter-radiation equality to have been in the form of an
exotic EDE component, in Ref. [634] I explicitly showed that, if all other parameters are kept
fixed to their ΛCDM best-fits, the amplitude of the eISW effect of a Hubble tension-solving

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.063524
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EDE cosmology (with ≈12% EDE fraction at its maximum) is ≈20% higher compared to
ΛCDM, corresponding to AeISW ' 1.20, and hence completely excluded by the previous
analysis. One way of fixing this is to absorb the excess eISW power through parameter
shifts, the simplest of which being an increase in the DM density ωc (and a further more
moderate increase in ns): in fact, such an increase makes matter-radiation equality occur
earlier, thereby decreasing the time over which the radiation-driven decay of gravitational
potentials can source the eISW effect. However, an increase in ωc comes with the deleterious
effect of exacerbating the S8 tension, as a larger amount of DM naturally enhances the
growth of structure, worsening the tension between CMB and WL probes: this has explicitly
been noted in the context of EDE and first emphasized by Hill et al. [194] (whereas other
recent works, such as Goldstein et al. [494], discussed related issues pertaining to the
scalar spectral index and its inconsistency with measurements from the one-dimensional
Lyman-α forest flux power spectrum). I further argued that such a problem, namely an
increase in the eISW amplitude which then needs to be compensated in some other way, is
not limited to EDE, but quite generally applies to most models which decrease the sound
horizon by increasing the pre-recombination expansion rate, i.e., a significant fraction of
early-time models invoked to solve the Hubble tension [634]. These models would need
to reduce the excess eISW power, the most direct of which involves an increase in ωc,
which has indeed been observed in several early-time models: note that this increase in
ωc goes precisely in the same direction of the increase in Ωmh2 discussed in the context
of the second hint (Section 2.2), but has a completely different physical origin. At the
same time, I caution against generalizing to all early-time models, given that some of these
may possess model-dependent ingredients which ameliorate the eISW-related problem
(explicitly discussing the cases of Refs. [231,266]), and therefore the prospects of specific
models should be judged on a case-by-case basis [634].

In conclusion the eISW effect, and in particular the high level of consistency between
its expected amplitude within the ΛCDM model and Planck CMB data, places important
restrictions on the leeway of early-time models which raise the expansion rate around
recombination (and thereby enhance the eISW effect), most of which pay the eISW price by
increasing ωc and thereby worsening the S8 tension. Of course, the conclusions I reached
in Ref. [634] discussed in this hint hinge upon the use of Planck CMB data. Although such
an analysis has not been explicitly performed in the literature, it is conceivable that the
adoption of a different CMB dataset, for instance from the Atacama Cosmology Telescope
(ACT), could lead to different conclusions for what concerns AeISW. In fact, ACT DR4
data [6] is known to be in slight tension with Planck for what concerns the extrapolated
height of the first acoustic peak, and thus of parameters whose determination is closely
tied to the latter, such as ωb, Neff, and ns [642–646]: by extension, one would expect these
conclusions to extend to AeISW as well, although I stress that such a conclusion has yet to be
checked explicitly. In fact, if interpreted within an EDE framework, ACT data at face value
lead to a detection of non-zero EDE fraction [320,322,383], although the “CMB tension”
between ACT and Planck calls for a deeper scrutiny of possible systematics involved.
Until these are better understood, or clarified by future CMB data (e.g., Refs. [647–649]),
the most conservative stand one can take is to view Planck’s results as placing (upper)
guard rails on the amount of early-time new physics which affects the amplitude of the
eISW effect.

2.6. (Fractional) Matter Density Constraints from Early-Universe Physics Insensitive and
Uncalibrated Cosmic Standards

As the reader has hopefully been able to appreciate so far in the context of OAO
(Section 2.1), CC (Section 2.3), and descending trends in low-redshift data (Section 2.4),
re-analyses of observations relaxing strong assumptions, or alternative analyses which
do not depend on these strong assumptions, are very important. If the results of the
re-analyses of alternative analyses are consistent with the original/baseline results, new
physics attempting to solve tensions by modifying those assumptions cannot be completely
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successful. In the cases discussed earlier, alternative analyses carrying absolutely no
dependence on early-Universe physics systematically uncovered a residual ≈2σ tension
between ΛCDM and late-time probes which cannot, by construction, be fixed by early-
time new physics. However, all the resulting constraints were not as competitive as those
adopting using CMB data under the assumption of ΛCDM: this is not surprising, given
the enormous constraining power carried by CMB observations, which however have
long been thought to depend strongly on early-Universe physics. These observations
are the starting point for the discussion of the sixth hint, which relies on a re-analysis of
CMB data (in combination with other low-redshift observations) performed by Lin, Chen
and Mack [650] with little to no dependence on early-Universe physics, while remaining
competitive with the original analysis at least as far as the inferred value of H0 is concerned.

As noted in earlier by Lin, Mack and Hou [651], the Hubble tension is normally
presented comparing constraints on H0 only, or sometimes H0 and rd, and this has strenght-
ened the pre-recombination vs post-recombination narrative. However, besides the age of
the Universe tU as noted elsewhere, a very important role in the Hubble tension discus-
sion can be played by the (fractional) matter density parameter Ωm, and Lin, Mack and
Hou [651] advocated for comparing constraints between different probes in the H0-Ωm
plane, as this allows for a much more complete assessment of the compatibility between
different probes, the model-dependence of each, and the ability of non-standard models to
truly reconcile all constraints (as referring exclusively to projected information along the
H0 direction may obscure the full picture).

CMB observations can set strong constraints on Ωm, although these have long been
thought to depend strongly on the assumed early-Universe physics model (usually ΛCDM).
On the other hand, combined uncalibrated BAO and SNeIa data can constrain the H0-
normalized background evolution of the late-time Universe: in the case of BAO, this
requires treating rd as a free parameter, which will therefore be completely degenerate with
H0.17 This dataset combination, which essentially constrains H(z)/H0 (and in particular the
slope thereof), can constrain Ωm, although such constraints are not as strong as the model-
dependent CMB ones. Finally, there exist plenty of low-redshift probes only involving post-
recombination physics (CC are an excellent example), but their precision on H0 is relatively
low, because of their own astrophysical uncertainties and their inherent H0-Ωm degeneracy.
Is it possible to get the best of all three worlds, i.e., determinations of H0 and Ωm which
are as free from early-Universe assumptions as possible, while remaining competitive with
the CMB determinations? Lin, Chen and Mack [650] show that this is indeed possible,
through a particular combination of the CMB acoustic peak scale θ?

18 with uncalibrated
BAO and SNeIa data, plus other late-time probes which are completely insensitive to
early-Universe physics, which together deliver constraints on H0 and Ωm competitive with
Planck’s ΛCDM ones. Lin, Chen and Mack [650] denoted this combination “early Universe
physics insensitive and uncalibrated cosmic standards”, or simply “uncalibrated cosmic
standards” (UCS).

Earlier in Section 2.2, I argued that the two distance scales imprinted in CMB and BAO
observations, respectively the comoving sound horizon at recombination r? and at baryon
drag rd, are closely related, with rd ≈ r?. This simple observation is the key behind the UCS
approach—Lin, Chen and Mack [650] argued that the difference between the two sound
horizons normalized by the Hubble distance, denoted by ∆rH0, is very small and almost
completely insensitive to early-Universe physics:

∆rH0 ≡ (rd − r?)H0 =
∫ z?

zd

dz
cs(z)
E(z)

, (7)

where cs(z) is the sound speed of the photon-baryon fluid and E(z) ≡ H(z)/H0. The near
insensitivity to early-Universe physics of ∆rH0 is a direct consequence of the narrow
separation in redshift ∆zs ≡ zd − z? ≈ 30 between the epochs of recombination and baryon
drag. On the other hand, the two epochs leave their imprints (respectively in the CMB
acoustic peaks and the BAO feature observed in the clustering of the large-scale structure)
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at widely separated redshifts, ∆z ≈ 1100, and this provides the extremely long lever arm
required to constrain Ωm with a precision comparable to that of CMB data alone when
working within a specific model (for instance ΛCDM).

With these premises, the initial UCS dataset combination considered by Lin, Chen and
Mack [650] includes measurements of the CMB acoustic peak scale θ? obtained from Planck
and ACT+WMAP, alongside uncalibrated BAO distance and expansion rate measurements
from the 6dFGS, SDSS-MGS, SDSS DR12, and SDSS DR16 galaxy samples, as well as from
the eBOSS DR16 quasars and Lyman-α (including their cross-correlations), and finally
uncalibrated SNeIa distance moduli measurements from the Pantheon sample. The free
parameters varied are Ωm, the SNeIa absolute magnitudeM, and the combination rdH0,
whereas a BBN prior is set on Ωbh2 (required to compute the sound speed of the photon-
baryon fluid), and Planck-driven priors are set on the redshift of recombination z? and the
redshift separation between recombination and the epoch of baryon drag ∆zs. The priors
on z? and ∆zs fix ∆rH0 via Equation (7), through which θ? can be inferred given the values
of rd H0 and Ωm: this essentially makes θ? another measurement of θd at z?, well above
the redshift range probed by BAO measurements (0 . zobs . 2), providing a powerfully
constraining anchor at high redshift and the extremely long lever arm required to tighten
constraints on relative changes in H(z) and thereby constrain Ωm at the same level as in
ΛCDM, but without assuming any specific early-Universe model. The underlying reason is
closely related to our earlier discussion in Section 2.2 in the context of the rd-H0 degeneracy
slopes: in this case, the slope of the rd H0-Ωm degeneracy gets steeper as the redshift of the
θd measurements is increased, and it is the fact that z? � zobs which allows for a precise
determination of Ωm, as shown in Figure 8 making use of a number of actual datasets.
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Figure 8. Degeneracy contours in the Ωm-rd H0 plane from different BAO and CMB (geometrical)
probes. Reproduced from Figure 2 of Lin, Chen & Mack, “Early Universe Physics Insensitive and Uncali-
brated Cosmic Standards: Constraints on Ωm and Implications for the Hubble Tension”, The Astrophysical
Journal, Volume 920, Number 2, article number 159, doi:10.3847/1538-4357/ac12cf, published 25
October 2021 [650]. © (2021) American Astronomical Society. Reproduced by permission of the
American Astronomical Society and the authors. All rights reserved.

From the previous combination and assuming the validity of ΛCDM post-recombination
(but without making any assumption on the pre-recombination expansion history), Lin,
Chen and Mack [650] infer Ωm = 0.302± 0.008, only slightly looser than the value obtained
from a full analysis of the same data within ΛCDM (including all CMB information, and not
just the location of the first peak), where Ωm = 0.310± 0.006 is inferred. The obtained
constraints only makes use of geometrical information on the CMB, and makes almost no

https://iopscience.iop.org/article/10.3847/1538-4357/ac12cf
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assumptions on early-Universe physics, while being also insensitive to degeneracies be-
tween Ωm and ns by which a full-shape CMB analysis is instead affected (and which in turn
can carry imprints of the slight large-versus-small angular scales discrepancy in Planck and
therefore potential systematics). Lin, Chen and Mack [650] studied in detail the impact of
various assumptions in the choice of UCS datasets and priors (especially for what concerns
Planck vs ACT+WMAP as well as the inclusion of certain BAO measurements), with the
results shown in Figure 9 indicating that the previous constraint Ωm = 0.302± 0.008 is very
robust against these assumptions.
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Figure 9. Constraints on Ωm obtained from different combinations of uncalibrated cosmic standards,
with the shaded grey band representing the result to the far right obtained including all UCS
measurements. Reproduced from Figure 3 of Lin, Chen & Mack, “Early Universe Physics Insensitive
and Uncalibrated Cosmic Standards: Constraints on Ωm and Implications for the Hubble Tension”, The
Astrophysical Journal, Volume 920, Number 2, article number 159, doi:10.3847/1538-4357/ac12cf,
published 25 October 2021 [650]. © (2021) American Astronomical Society. Reproduced by permission
of the American Astronomical Society and the authors. All rights reserved.

The above analysis delivers a constraint in the H0-Ωm plane which is not exactly along
the Ωm direction, but rather exhibits a small positive correlation described by the following:(

Ωm

0.3

)(
h

0.7

)−0.08
= 1.0060± 0.0258 . (8)

This suggests that the baseline UCS dataset combination can be further supplemented
with additional late-time, but non-local, datasets to break the H0-Ωm background evolution
degeneracy and thereby determine H0. If these late-time datasets are chosen within the
same philosophy of ensuring their independence/insensitivity to early-Universe physics,
the resulting H0 inference will be equally insensitive to early-Universe physics and will
therefore be extremely valuable in arbitrating the source of the Hubble tension. Lin, Chen
and Mack [650] consider many such examples of late-time datasets, ranging from CC,
to γ-ray optical depth measurements, to cosmic age measurements via the ages of old
globular clusters (see Section 4 of Ref. [650] for further details). While in doing so one is
trading the dependence on early-Universe physics for a dependence on other astrophysical
effects and thereby potential systematics, the idea is that by choosing a range of late-time
measurements as wide and independent as possible one can try to reduce the effects of
these systematics as much as possible.

Combining the baseline UCS dataset with all the chosen late-time, non-local obser-
vations, Lin, Chen and Mack [650] infer H0 = (68.8± 1.3) km/s/Mpc, in 2.4σ tension
with the local Cepheid-calibrated SNeIa distance ladder measurement. This inference
was obtained by modelling the latest available systematic error estimates for all non-local
probes, and was found to be extremely stable against the exclusion of one or more of such
probes (most notably the cosmic age estimates, given its dependence on the prior for the
formation time of the globular cluster). Remarkably, despite having only assumed the
validity of ΛCDM at late times and introducing almost no early-Universe assumptions,
the inferred value of H0 is in excellent agreement with the ΛCDM-based value obtained
from a full analysis of CMB and BAO data, only with uncertainty a factor of ≈2 wider.

https://iopscience.iop.org/article/10.3847/1538-4357/ac12cf
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What are the implications of these results for the Hubble tension? Clearly the UCS
analysis has identified a residual & 2σ tension which has nothing to do with early-Universe
new physics, since virtually any information whatsoever on early-Universe physics has
been removed in the analysis. Therefore, such a tension may only be solved by post-
recombination non-local new physics (recall that this UCS analysis assumed that the
post-recombination expansion history is described by ΛCDM), and/or local new physics,
and/or systematics in either or both the local H0 measurements or the non-local datasets
which have been combined with the UCS dataset. However, at least for what concerns the
latter, the mutual consistency between the all the UCS+non-local results (see Table 1 in
Ref. [650] for a complete assessment) suggests that systematics in the latter are unlikely to
be an important driver of this residual tension. Leaving aside systematics in general leaves
us contemplating either or both late-time (non-local) and local new physics as the most
natural avenue for resolving this residual tension. While local new physics would have
to go in the direction of lowering the local H0 determinations, late-time (non-local) new
physics would once more have to work in the same direction as that inferred from the OAO,
CC, and descending trends hints, i.e., in the direction of lowering the expansion rate relative
to ΛCDM at z > 0, similar to the effect of a phantom component. Intriguingly, the size of
the “residual tension” uncovered by all these probes is consistently in the 2− 2.5σ ballpark
which is not high enough to be alarming, but worthy of attention. Overall, the UCS-based
analysis strengthens the case for the pre-recombination versus post-recombination narrative
not being the end of the story, and strongly makes the case for focusing more on a tension
between non-local (pre-recombination and post-recombination) and local measurements,
in light of the consistency between UCS+non-local measurements and a full ΛCDM-based
CMB analysis.

Finally, one may wonder whether this UCS analysis is truly free of any early-Universe
assumption, a question which Lin, Chen and Mack [650] addressed in detail. From the
data side, it was argued that the choice of adopting ΛCDM-based priors for z? and ∆zs,
as well as the use of the ΛCDM-based determination of θ?, have virtually no effect on the
results, as does the choice of computing the sound speed cs(z) as in ΛCDM once a prior
on the physical baryon density is given. From the physics side, Lin, Chen and Mack [650]
argued that there are basically three ways the θd → θ? connection, or more precisely the
value of ∆rH0, could come to depend on early-Universe new physics: (a) some unknown
mechanism changing the integrand of r? relative to rd (or viceversa) at z > z?—else, the fact
that the two share the same integrand at this epoch is the reason why the integral in
Equation (7) only runs between z? and zd; (b) new physics which very significantly affects
the normalized expansion rate and/or sound speed in the narrow window zd . z . z?;
(c) a very substantial change in ∆zs = z? − zd. While none of these three ingredients can be
definitively excluded, all of them are very hard to achieve, particularly in the context of
well-motivated fundamental models. It is more likely that the post-recombination and/or
local Universe may need some tweaking to fix the residual early-Universe-independent 2σ
UCS tension.

2.7. Galaxy Power Spectrum Sound Horizon- and Equality Wavenumber-Based Determinations of
the Hubble Constant

As discussed in detail earlier, most attempts at resolving the Hubble tension do so
by reducing the sound horizon at recombination r?. The reason is that it is this (acoustic)
scale which serves as a standard ruler to calibrate the BAO feature observed both in the
CMB and in the clustering of the LSS.19 Indeed, comparing the angular size of the BAO
feature extracted from galaxy clustering data to the expected theoretical value of r? (or
more precisely rd, see Sections 2.2 and 2.6) has been instrumental in “stabilizing” CMB-only
constraints on H0 and shedding further light on where new physics should act to reduce
the Hubble tension. However, rs is not the only scale imprinted in galaxy surveys, which
also contain information on the “equality scale” keq, defined as the wavenumber of a
perturbation entering the horizon at the epoch of matter-radiation equality at redshift zeq.
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The galaxy power spectrum features a turnaround at k = keq, with modes on smaller scales
(k > keq) exhibiting a suppression compared to their large-scale (k < keq) counterparts.
The reason is that the k > keq modes of the DM overdensity field entered the horizon in
the radiation domination era, where the large radiation pressure prevented them from
growing as much as if they had entered during the matter domination era. This results in a
small-scale suppression whose scaling is well approximated as k−4 ln(k/keq)2 (but is highly
degenerate with As and ns, and therefore relies on a precise determination thereof from
CMB data, see Ref. [652]), whereas modes on larger scales are unsuppressed and directly
trace the primordial spectrum of scalar perturbations presumably set up during inflation.

The value of the equality scale depends on the balance between energy components
with pressure support (typically referred to as “radiation”) and pressureless matter. This
makes the conclusions related to the present hint somewhat dependent on early-time new
physics (see also Ref. [652]), and this hint should therefore be used more as a consistency
test of ΛCDM rather than a means of excluding specific models of early-time new physics,
as I will also discuss in more detail later. With these important caveats in mind, in standard
scenarios where no extra components with pressure support are present, the equality scale
is given by:

keq =
√

2Ωm H2
0 zeq , (9)

and can therefore be used as a standard ruler, provided its value can be inferred from
galaxy clustering observations. From Equation (9) one sees that, since zeq ∝ Ωmh2, a mea-
surement of keq in h Mpc−1 is sensitive to the combination Γ ≡ Ωmh. Supplying an external
measurement/prior for Ωm can therefore break the Ωm − H0 degeneracy and lead to an
equality-based inference of H0. Besides its intrinsic value as an independent H0 inference,
why should this be of particular interest in the context of the Hubble tension? The reason
is due to the fact that matter-radiation equality (zeq ∼ 3500) occurs much earlier than
recombination (z? ∼ 1100): as a result, most models of early-Universe new physics invoked
to solve the Hubble tension predict significant differences at one epoch versus the other
(see e.g., Figure 2 of Ref. [194] for an example in the context of EDE). This observation
provides an avenue for a valuable consistency test of ΛCDM: since the rs- and keq-based
determinations of H0 from galaxy surveys originate from vastly different epochs and un-
derlying physical phenomena, an inconsistency between the two would provide evidence
for early-time new physics at redshifts beyond that of recombination, whereas consistency
between the two could potentially cause difficulties for models which substantially modify
that expansion history immediately prior to recombination (but not necessarily around
matter-radiation equality).

After a first exploration in CMB lensing data (where the equality scale enters in a
projected way) by Baxter and Sherwin [653], the above idea was pursued in detail in two
works by Philcox et al. [654,655] in the context of galaxy power spectrum measurements.
In particular, Philcox et al. [654,655] developed methods to “marginalize over the sound
horizon” or, more precisely, ensure that the constraints on H0 resulting from galaxy power
spectrum measurements contain as little information about rs as possible, but result only
from keq information. In the first work, Philcox et al. [655] proceeded by removing any
informative prior on ωb (e.g., from BBN): as the latter is required to calibrate rs, this
operation effectively removes any information on rs at least given the precision of current
data, where the ωb-induced small-scale Jeans suppression cannot be detected at high
enough significance to effectively calibrated the sound horizon. Using mock data, Fisher
analyses, and scale cuts, the method was demonstrated to efficiently remove sound horizon
information in galaxy clustering data, and to capture information from keq from the full
shape of the galaxy power spectrum around the peak (even though the peak itself is difficult
to resolve in galaxy surveys). Later Farren et al. [656] refined this method to more robustly
marginalize over rs and avoid unnecessarily degrading the H0 constraints, by directly
marginalizing over templates capturing the power spectrum features related to rs (i.e., the
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BAO features and Jeans suppression). This allows one to add direct ωb information (e.g., a
BBN prior) while still ensuring that the resulting H0 constraints retain only information
from the equality scale.

An application of this method to the latest available cosmological data was presented
by Philcox et al. [654], who considered CMB lensing power spectrum measurements from
Planck, measurements of the power spectrum monopole, quadrupole, and hexadecapole
from the BOSS DR12 galaxy sample, SNeIa measurements from the Pantheon+ sample
(in the form of a Gaussian prior on Ωm), and a BBN prior on ωb. The constraints from
various combinations of these datasets are shown in Figure 10. Including the Pantheon+
prior on Ωm, Philcox et al. [654] find H0 = 64.8+2.2

−2.5 km/s/Mpc, which shifts (slightly) to
H0 = 65.0+3.9

−4.3 km/s/Mpc when removing this prior. Both inferences are in significant
tension with the SH0ES results at the &3σ level. Importantly, this residual tension cannot
be solved by altering rs alone, since such a modification would alter the rs-based but not
keq-based value of H0. These results were argued to provide an important null test for the
Λ model at early times (as the rs-free constraints are in excellent agreement with those
based on rs discussed elsewhere), and to disfavor new physics models which affect the
sound horizon and equality scale in a very different way. Taken at face value, this suggests
the need for new ingredients beyond the “standard” rs-reducing ones.
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Figure 10. Sound horizon-independent constraints on H0 and other parameters from various recent
cosmological probes. Reproduced from Figure 1 of Philcox et al., “Determining the Hubble constant
without the sound horizon: A 3.6% constraint on H0 from galaxy surveys, CMB lensing, and supernovae”,
Physical Review D, Volume 106, Issue 6, article number 063530, doi:10.1103/PhysRevD.106.063530,
published 26 September 2022 [654]. © (2022) American Physical Society. Reproduced by permission
of the American Physical Society and the authors. All rights reserved.

There are, however, a few important caveats, as already alluded to earlier. Firstly, this
analysis is mainly a null test of ΛCDM, and cannot directly be used to exclude specific
models. Moreover, the limited sensitivity of current LSS clustering data prevents one from
making strong statements in this direction, and implies that priors could play an important

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.063530
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role. These points were explored in much more detail by Smith, Poulin and Simon [652]
where, focusing on three specific beyond-ΛCDM models, it was shown that:

• the constraints on H0 obtained from rs-marginalized analyses are model-dependent,
although not to a large extent;

• the results depend to some extent on the assumed priors on As, ns, and Ωm;
• models which introduce additional energy density with significant pressure support

(such as EDE or models increasing the effective number of relativistic species Neff)
can lead to higher H0 values even in rs-free analyses (for such models the keq-based
value of H0 is actually slightly lower than the rs-based value, although the error bars
are huge).

Overall, the conclusion reached by Smith, Poulin and Simon [652] is that current rs-free
analyses are not strong enough to draw strong conclusions in favor of or against beyond-
ΛCDM models, and therefore that the consistency test proposed by Philcox et al. [654] is
inconclusive given the precision of current data, with no strong indication that beyond-
ΛCDM models are in tension with data. However, the forecasts of Philcox et al. [654,655]
indicate that the precision of rs-free determinations of H0 will improve significantly with
future galaxy clustering data [657–661], and at that point it will be possible to put significant
pressure on early-Universe new physics models which alter rs alone. In fact, it is conceiv-
able that the difference between the keq- and rs-based values of H0, currently consistent
within uncertainties, will remain approximately constant, while the error bars will shrink
considerably: in this case, the resulting tension between the two determinations may be
able to put specific early-time modifications under significant pressure. At the current stage
of things, however, drawing strong conclusions does not seem possible, although the con-
sistency (within large error bars) between keq- and rs-based values of H0 certainly disfavors
there being an enormous amount of new physics between equality and recombination.

3. Reflections on Promising Scenarios Moving Forward

Hopefully by now I have managed to convince the reader that pre-recombination
physics alone (and I stress that “alone” is the keyword here) is not sufficient to solve the
Hubble tension: in fact, whatever one does will leave a “residual” 1.5-2σ tension which
will require new physics at either or both late times and local scales. This has been made
especially clear by the first (OAO), third (CC), fourth (descending trends), and sixth (UCS)
hints discussed earlier. It is somewhat fair to say that one could have reached such a
conclusion empirically: in fact, in the absence of (high) external local priors on H0, most early-
time modifications struggle to reach H0 ∼ 71 km/s/Mpc, and many actually fall short of
the 70 threshold. Clearly this is far from satisfactory if one is to claim a solution to the
Hubble tension. One can of course discuss whether or not it is acceptable or even desirable
to include an external H0 prior when assessing the viability of a model in addressing the
H0 tension (in which case the previous figures all increase), but I do not believe this is the
appropriate place, and I refer the reader to e.g., Section VA of Ref. [641] for a very recent and
detailed discussion on the matter. How to make progress from here then? The “simplest”
scenario which comes to my mind involves a combination of two or three ingredients:
early-time new physics, late-time but non-local (i.e., cosmological) new physics, and finally
possibly local new physics as well. I would expect each of these three ingredients to
contribute in a different way. With the caveat that what follows is my opinion and needs
to be corroborated by explicit analyses (which I encourage), I now discuss more in detail
this scenario.

There is no question that early-time (pre-recombination) new physics would need
to do the lion’s share of the job in this context, consistently with earlier “no-go theorems”
excluding late-time new physics alone [557–566]. One could envisage considering a partic-
ularly successful (relatively speaking) early-time model, such as EDE and variants, varying
electron mass (potentially in a curved Universe) resulting in an earlier recombination,
self-interacting dark radiation, and so on (see e.g., Table 1 in Ref. [561]). Empirically,
in the absence of external H0 priors, this should bring H0 up to ∼70–71 km/s/Mpc in
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the best-case scenario. In addition to this, a completely decoupled model of late-time
(post-recombination, but non-local) new physics could help further push H0 up. In what di-
rection would this late-time new physics need to go? As discussed for several earlier hints,
we would require a model which lowers the normalized expansion rate E(z) ≡ H(z)/H0
relative to ΛCDM. Examples in this sense include phantom DE or phantom-like models:
this includes so-called interacting DE models, where non-gravitational interactions between
DM and DE result in energy exchange between the two. In the case of energy flow from
DM to DE, this results in an effective non-zero positive EoS for DM, while making the DE
EoS more negative (i.e., moving towards the phantom regime). These models are only
mentioned for concreteness, and by no means constitute the only possibilities in this sense.

The question I can already hear the reader asking is whether such a model would even
be viable—after all, isn’t it already established that late-time new physics alone cannot solve
the Hubble tension [557–566]? True, but here I am far from requiring such an ambitious
goal for late-time new physics! Rather, all that I require is for the latter to give a further
“push” in the right direction to the cosmological value of H0, already partially raised
by early-time new physics. In other words, I am not asking for late-time new physics to
produce a ∆H0 ∼ 7 km/s/Mpc (which is definitely not allowed once BAO and Hubble flow
SNeIa data are taken into account), but a much more modest value, say ∼1.5–2 km/s/Mpc
at most.

Something along the lines of what I proposed above should definitely be possible,
and let me defend this statement with an empirical argument, in the context of phantom
DE. It is often stated that late-time datasets are consistent with a cosmological constant,
and do not tolerate large deviations in the DE EoS from w = −1. This is broadly speaking
true (although it is worth noting that some of the hints for parameter evolution discussed
earlier only emerge once one bins data, which is not done in standard analyses), but at
the same time (a) there is certainly room within the error bars for reaching values of w
as low as ∼−1.07 (or even ∼−1.10), and (b) the central value of the DE EoS w inferred
by combining CMB data with several late-time probes which are efficient in breaking the
geometrical degeneracy actually falls slightly in the phantom regime (|w| ∼ 1.03–1.05 or
so)20—in this sense, there is already some room within current data for late-time new
physics to help in the right direction. Adimensional multipliers quantifying the correlation
between H0 and w when confronted against the latest CMB, BAO, and Hubble flow SNeIa
data have been estimated in earlier works (see e.g., Refs. [141,447]), and indicate that even
a modest phantom model with w ∼ −1.04, by all means tolerated by data, can help as
much as ∆H0 ∼ 1 km/s/Mpc. Still from an empirical point of view, the most successful
interacting DE models, once confronted against CMB, BAO, and Hubble flow SNeIa data,
have been found to give ∆H0 ∼ 1.5 km/s/Mpc, which again could be sufficient to bring
the Hubble tension to an acceptable level once combined with early-time new physics
which has already done the lion’s share of the job in raising H0.

The above considerations hinge upon an important point: loosely speaking, it would be
desirable for early-time and late-time new physics to contribute “in phase”/“constructively”
towards ∆H0. This should be possible if the two models “decouple” their tension-solving
effects, in other words both raise H0 through completely decoupled physical mechanisms
which do not interfere between each other. One might naïvely guess that early- and late-
time new physics should not interfere as they operate at completely different epochs. Such
a reasoning however misses one subtle point: parameter shifts induced by one of the
two models can limit the tension-solving ability of the other, and viceversa. I already
discussed in the second and fifth hints how early-time modifications which only reduce
the sound horizon will inevitably induced some parameter shifts. The only way to assess
whether these shifts would interfere with the tension-solving ability of additional late-time
modifications is to choose a specific combination of models and perform a concrete analysis,
and I hope the considerations I have drawn above will encourage others to carry out such
an analysis. However, if one were to find two (or more) early- and late-time new physics
models which could combine constructively to raise H0, the Hubble tension may well be
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reduced to an acceptable level, more so than can be achieved with early-time new physics
alone (a model which could potentially be interesting in this sense has been presented,
albeit in a different context, by Oikonomou [681], based on an axion-Higgs portal and
enabling multiple stages of non-standard accelerated expansion both prior to and after
recombination, see also Refs. [682–686] for related works).

The above considerations, however, may not be the end of the story. In fact, the scenar-
ios proposed so far would have the only effect of raising the cosmological value of H0, while
leaving the local value(s) untouched. In principle there is no reason to entertain such an
asymmetry from the model point of view. For instance, what if new physics on local scales
were able to reduce the local value of H0? In this case, the cosmological and local values
would not need to meet at ∼74 km/s/Mpc, but perhaps at a slightly lower value, making
the task of early-plus-late-time new physics in bringing the Hubble tension to an accept-
able level less demanding. It is worth noting that there is a rich literature on local effects
which could lead to an overestimate of the distance ladder value of H0, including physical
effects such as a local void (the “Hubble bubble” [174,249,460]), ultra-late transitions in the
gravitational constant [253], screened fifth forces [137], and so on. None of these models
on their own have proven able to completely address the Hubble tension. In light of the
previous discussion, however, such an ambitious goal may no longer be required! Even
a small push down by |∆H0| ∼ 0.5–1 km/s/Mpc (certainly well within the range of what
can be achieved with local new physics!) could be more than sufficient for the combined
early-plus-late-plus-local new physics scenario to bring the Hubble tension to an acceptable
level. In passing let me mention that a breakdown of the Friedmann-Lemaître-Robertson-
Walker framework, and more generally of the cosmological principle, may be a scenario
particularly worthy of consideration.

The combined early-plus-late-plus-local new physics scenario I have discussed in
words above is perhaps best summarized pictorially in Figure 11. I hope that this helps
convey the idea that early-time new physics (the yellow person) still needs to carry the
lion’s share of the task, but with a little help from late-time new physics (the orange person)
and local new physics (the green person with the SH0ES), the task of solving the Hubble
tension or at least bringing it to an acceptable level may be made less daunting. There are
three obvious objections to this otherwise arguably nice picture:

• What about Occam’s razor? True, such a scenario may be viewed as unnecessary
complicated, and aesthetically unpleasing, to the eyes of some. My view on this point
is that, in the field of cosmology, Occam’s razor (and with it the concept of Bayesian
evidence) is sometimes overused/abused. Not always is the simplest model the
“most correct” one just because it fits the data better or with less parameters. Think,
for example, about the many parameters for which we need to impose physical priors
in cosmological analyses, to avoid inferring unphysical values thereof (the sum of
the neutrino masses is an excellent example), which would otherwise be preferred by
the data. If the true model chosen by Nature is actually as complicated as shown in
Figure 11... then so be it! With a bit of poetic liberty, allow me to paraphrase Neil de
Grasse Tyson and state that “Nature [the universe] is under no obligation to appear
beautiful or simple in our eyes [make sense to you]”.

• You haven’t mentioned any concrete combination of early-plus-late-plus-local new physics
models which does what you advocate. True once more, and this is left as an exercise to the
reader and to aspiring Hubble tension solvers (including myself—so I hope to report
on this in future work).

• Can all these early-plus-late-plus-local new physics ingredients come from one single underly-
ing microphysical model, thus reducing the overall complexity? Maybe, why not? But once
more, I am leaving this as an exercise to the reader and to aspiring Hubble tension
solvers (this time likely not including myself).

Granted, the above objections remain, but I hope the reader now finds them
less worrisome.
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Figure 11. Pictorial representation of my proposed approach towards promising solutions to the
Hubble tension, discussed in Section 3. The grey band at the bottom of the picture represents the
ΛCDM baseline. The yellow person illustrates the effect of early-time new physics, which is still
required to do the lion’s share of the job. A smaller but non-negligible contribution from late-time
new physics, represented by the orange person, pushes the cosmological value of H0 further up.
Finally, local new physics, corresponding to the green person holding the SH0ES, can help bringing
the local value of H0 slightly down, and make the job of new cosmological physics less demanding.
Picture drawn by Cristina Ghirardini.

Before concluding, let me address the remaining elephant in the room: the S8 tension.
It would be preferable if the scenario depicted in Figure 11 were to ameliorate the S8 tension
as well. It is now becoming increasingly clearer to the community that simultaneously
addressing the H0 and S8 tensions requires multiple modifications to ΛCDM at multiple
epochs, not unlike the picture shown in Figure 11. In particular, it is likely that addressing
the S8 tension will require some physical mechanism to suppress small-scale power [687],
rather than playing around with Ωm (although complete consensus has yet to be reached
on this matter). It would of course be desirable if the physical mechanism responsible for
ameliorating the S8 tension does not do so at the expense of the H0 tension, i.e., does not
interfere with the tension-solving abilities of the other models. In this respect, there is a
class of models I find extremely interesting, which I will call “dark scattering” models.

The dark scattering class of models involves elastic (pure momentum) scattering-type
interactions between dark components (DM, DE, or some other additional dark component),
or between dark components and baryons.21 The attractive feature of these interactions
is that, at linear level in cosmological perturbations, they only affect the evolution of
perturbations, but not that of the background. In other words, these interactions only
exchange momentum, but not energy (in an appropriate reference frame, e.g., the frame
where one of the two scattering fluids is at rest). Such a feature is attractive because it
can ensure that whatever mechanism is responsible for suppressing small-scale power
does not alter the background expansion, and therefore the quality of the fit to BAO and
Hubble flow SNeIa data. While this is not a guarantee of such a model not interfering with
the tension-solving abilities of whatever other ingredients are solving the Hubble tension,
it can certainly be a fairly important step in the right direction. Therefore, even if the
scenario depicted in Figure 11 were not to solve the S8 tension, one could envisage adding
further scattering-type ingredients to ameliorate the situation, ideally without significantly
affecting the successes obtained with H0. For instance, Poulin et al. [713] recently proposed
DM-DE scattering as a potential solution to the S8 tension, precisely due to the features
discussed above. It would be interesting to further combine this model with a decoupled
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successful early-time model, e.g., EDE, to assess the potential of this combination in solving
both the Hubble and S8 tensions without the two models “interfering distructively”.

Is it natural, however, to consider ingredients which only modify the evolution of
perturbations but not the background? There is, in fact, a very natural example of such an
ingredient within the ΛCDM model: Thomson scattering between photons and baryons.
At the level of first-order Boltzmann equations, Thomson scattering only affects the evo-
lution of perturbations, and more precisely the photon and baryon velocity divergences
θγ and θb (without affecting the photon and baryon overdensities δγ and δb), whereas the
background expansion remains unchanged while the two components scatter, with their
energy densities evolving as ργ ∝ (1+ z)4 and ρb ∝ (1+ z)3 respectively. In the case of dark
components, it has actually been argued that at linear order in perturbations a scenario
with only momentum exchange can actually be constructed even at the microphysical level
by a particular choice of interaction Lagrangian, which within the classification of coupled
DE models first discussed by Pourtsidou, Skordis and Copeland [748] and later by Skordis,
Pourtsidou and Copeland [749], was termed Type 3 model: this model involves couplings of
the covariant derivative of the DE scalar field φ to the velocity field of the scattering species
and was shown to lead to a coupling current vector whose time component, in the DE rest
frame, is null, ensuring the absence of energy exchange (thus featuring pure momentum
exchange) at least up to linear order. This is of course no guarantee that the resulting model
is well-motivated from the microphysical point of view, but is certainly of interest from the
perspective of model-builders.

4. Conclusions

I have argued the Hubble tension, which at the time of writing remains unsolved, will
ultimately require more than just early-time new physics alone. My claim is not based
on a proof in a strict sense, but rather on a number of independent hints, at first glance
somewhat unrelated, but which paint a more coherent picture once viewed from a holistic
perspective. In a nutshell, these seven hints can be summarized as follows:

1. the z . 10 ΛCDM Universe appears a bit too young to accommodate the oldest
astrophysical objects at high redshift, and this is a problem which cannot be fixed by
new physics in the early Universe, but requires new physics at late times or in the
local Universe;

2. early-Universe new physics which only reduces the sound horizon cannot simultane-
ously agree with CMB, BAO, local H0, and WL data, and will necessarily introduce
new tensions (or worsen existing ones) involving some of these observations;

3. cosmic chronometers show a residual≈2σ tension with local H0 measurements within
ΛCDM, a conclusion which is completely independent of early-Universe physics,
and which therefore cannot be addressed by invoking the latter;

4. if the H0 tension is physical (in the sense of not being due to systematics) and calls for
some amount of late-time new physics, evolving H0 trends should be seen at interme-
diate redshifts between the CMB and local scales, and by now several independent
hints thereof have appeared;

5. the early ISW effect places very restrictive guard rails on what early-Universe physics
may or may not do, and for models enhancing the pre-recombination expansion rate
this often results in fixing the otherwise overpredicted eISW amplitude at the expense
of worsening other tensions;

6. early-Universe-independent uncalibrated cosmic standard constraints on Ωm and
H0 show a residual ≈2σ tension with local H0 measurements which cannot, by con-
struction, be fixed by early-time new physics, but most involve late-time or local
new physics;

7. the good agreement between sound horizon- and equality wavenumber-based con-
straints on H0 from galaxy power spectra measurements makes it relatively unlikely
that a significant amount of new physics operating before recombination can be
at play.
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As I stressed earlier alone is the keyword here, as there is no question (given the
important role of BAO and Hubble flow SNeIa data) that early-time new physics will have
to play an important role in solving the Hubble tension. However, on its own, I have argued
that early-time new physics will not be able to achieve the task. I believe that an ultimately
promising scenario may be the one depicted in Figure 11: early-time new physics doing
an important job in raising H0 can further be helped (in a smaller proportion) by late-time
new physics, and by local new physics which lowers the local value of H0, easing the task
of ensuring the cosmological and local values of H0 meet halfway. It would be intriguing
if the late-time contribution were also to help with the S8 tension without affecting the
Hubble tension-solving ingredients of the early-time part. In this sense, I have argued that
late-time dark scattering-type models with pure momentum exchange, which to linear
order in perturbations do not alter the background evolution, are particularly promising
and worth exploring much more in the context of cosmological tensions.

Despite significant efforts from the theoretical and observational sides, the solution to
the Hubble tension has so far eluded us. However, I believe there is reason to be optimistic,
especially in light of upcoming Stage-IV cosmological data which may contain key evidence
for beyond-ΛCDM physics. These may potentially confirm some or all of the hints I have
presented here which, I hope, can play a small role in guiding the community towards a
building a new concordance model of cosmology.
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Notes
1 Or with an added, uncalled for, adverb “exclusively” between “calls” and “for”.
2 It has been argued that the number of objects an average human can hold in short-term memory is 7± 2, a finding sometimes

referred to as Miller’s law. Together with the many special and symbolic properties of the number seven, this is the reason behind
my choice of focusing on seven hints.

3 Prior to 1998, and particularly in the 1980s, the leading cosmological model envisaged an Einstein-de Sitter (EdS) Universe, with a
vanishing cosmological constant and no spatial curvature. The existence of old galaxies at high redshift (in conjunction with
increasingly precise measurements of H0), seemingly older than the EdS Universe, gave rise to an important “age crisis” [572–574],
whose resolution eventually came with the discovery of cosmic acceleration in 1998. In fact, compared to an EdS Universe with the
same total energy density, a ΛCDM Universe where part of the matter content is replaced by dark energy naturally leads to an older
Universe at any redshift, thus accommodating the otherwise puzzling OAO.

4 Note that, although Equation (1) is formally integrated up to z → ∞, since in practice OAO can only form after recombination,
the upper limit of the integral can be set to z?, the redshift of recombination. This prevents it from being sensitive to huge pre-BBN
modifications to E(z) which could make tU(z) arbitrarily large, although such modifications are not of interest in the discussion on
the Hubble tension.

5 Note that in Ref. [593] and in Figure 2 θd is denoted by θBAO.
6 Here by “model-independent” I really mean independent of any assumed underlying cosmological model, where the cosmological

model-dependence of the “standard” CMB, BAO, SNeIa probes may be traded for dependence on other models, e.g., of more
astrophysical/astronomical nature.

7 I follow the procedure outlined in gitlab.com/mmoresco/CCcovariance, accessed on 18 May 2023.
8 The OAO and CC datasets are mostly independent, except for 8 CC measurements with relatively large uncertainties [600], whose

relative statistical weight in the conclusions is therefore low. Note that the reliability of these measurements has also been recently
questioned by Kjerrgren and Mörtsell [601]. Given their low statistical weight in reaching my conclusions, a posteriori this should
not present a concern.

9 This effective equation of state directly enters the second Friedmann equation (the acceleration equation) and includes contributions
from all species, not only dark energy.

10 Of course the data need not be exactly in the form of H(z), but other types of data (e.g., distance measurements) can be brought into
this form, or conversely Equation (5) can be generalized to account for other types of data.

11 In principle, if some early-time new physics raised the CMB value of H0 to be perfectly in agreement with the local value, and the
late-time Universe were completely described by ΛCDM, there should be no evolving trend at intermediate redshifts.

12 At this point there is no reason not to refer to this trend as a 2σ tension where, if one wants, the tension is with the mathematical
requirement that H0 be a (integration) constant.

13 In this case, rather than binning the data in redshift, the choice was to only use data above a certain redshift and examine the effect
of the lower redshift cutoff.

14 The reliability of Hubble diagrams constructed out of QSOs data has been questioned (see e.g., Refs. [619,620]), but methods to
overcome selection biases and astrophysical evolution in the QSOs parameters have also been tested [621–625]. Similar considerations
hold for Gamma Ray Bursts as a cosmological probe [334,626–629].

15 Tongue-in-cheek, one could say that this is the Hubble tension equivalent of the much more famous Fermi paradox.
16 In particular in Ref. [634] I argued that models raising the pre-recombination expansion rate, of which EDE can be considered a

prototype (but certainly not the only example), naturally boost the eISW effect due to the enhanced potential decay.
17 In the case of SNeIa one simply needs to treat the SNeIa absolute magnitude M as a free parameter to be marginalized over:

however, this is what is routinely done anyway when analyzing uncalibrated SNeIa data (whereas it is much less common to
analyze BAO data treating rd as a free parameter, rather an early-Universe model is usually assumed).

18 Note that in Ref. [650] and in Figure 9 θ? is denoted by θCMB.
19 In what follows, I will focus on galaxies as tracers of the LSS, and will therefore refer to “galaxy clustering”, although the subsequent

discussion can apply to any LSS tracer.
20 See e.g., Refs. [4,7,240,575,583,588,621,662–679] for examples of recent analyses in these directions whose inferred central values of

w (in some cases depending on the specific dataset combination or underlying model considered) lie slightly within the phantom
regime, arising from a wide range of dataset combinations, mostly involving combinations of Planck CMB data with other external
late-time measurements, and see Ref. [680] for a recent reassessment of this point.

21 Dark scattering-type scenarios studied in the literature include DM-DE scattering [293,688–716], DM-photon scattering [83,717–719],
DM-neutrino scattering [71,720–724], DM-baryon scattering [725–735], DM self-scattering and scattering with dark
radiation [66,136,736–741], “multi-interacting DM” scenarios featuring multiple similar interactions simultaneously [742], and DE-
baryon scattering [743–747].

https://gitlab.com/mmoresco/CCcovariance
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709. Carrilho, P.; Moretti, C.; Bose, B.; Markovič, K.; Pourtsidou, A. Interacting dark energy from redshift-space galaxy clustering.

JCAP 2021, 10, 4. [CrossRef]
710. Linton, M.S.; Crittenden, R.; Pourtsidou, A. Momentum transfer models of interacting dark energy. JCAP 2022, 8, 75. [CrossRef]
711. Mancini Spurio, A.; Pourtsidou, A. KiDS-1000 cosmology: Machine learning–Accelerated constraints on interacting dark energy

with CosmoPower. Mon. Not. R. Astron. Soc. 2022, 512, L44–L48. [CrossRef]
712. Carrilho, P.; Carrion, K.; Bose, B.; Pourtsidou, A.; Hidalgo, J.C.; Lombriser, L.; Baldi, M. On the road to per cent accuracy VI: The

non-linear power spectrum for interacting dark energy with baryonic feedback and massive neutrinos. Mon. Not. R. Astron. Soc.
2022, 512, 3691–3702. [CrossRef]

713. Poulin, V.; Bernal, J.L.; Kovetz, E.D.; Kamionkowski, M. Sigma-8 tension is a drag. Phys. Rev. D 2023, 107, 123538. [CrossRef]
714. Cardona, W.; Figueruelo, D. Momentum transfer in the dark sector and lensing convergence in upcoming galaxy surveys. JCAP

2022, 12, 10. [CrossRef]
715. Piga, L.; Marinucci, M.; D’Amico, G.; Pietroni, M.; Vernizzi, F.; Wright, B.S. Constraints on modified gravity from the BOSS galaxy

survey. JCAP 2023, 4, 38. [CrossRef]
716. Jiménez, J.B.; Di Dio, E.; Figueruelo, D. A smoking gun from the power spectrum dipole for elastic interactions in the dark sector.

arXiv 2022, arXiv:2212.08617.
717. Wilkinson, R.J.; Lesgourgues, J.; Boehm, C. Using the CMB angular power spectrum to study Dark Matter-photon interactions.

JCAP 2014, 4, 26. [CrossRef]
718. Stadler, J.; Bœhm, C. Constraints on γ-CDM interactions matching the Planck data precision. JCAP 2018, 10, 9. [CrossRef]

http://dx.doi.org/10.1103/PhysRevD.108.043516
http://dx.doi.org/10.1093/mnras/stac2429
http://dx.doi.org/10.1103/PhysRevD.82.083505
http://dx.doi.org/10.1103/PhysRevD.85.083513
http://dx.doi.org/10.1007/s10714-016-2035-4
http://dx.doi.org/10.1103/PhysRevD.91.123003
http://dx.doi.org/10.1103/PhysRevD.92.043524
http://dx.doi.org/10.1088/1475-7516/2015/09/047
http://dx.doi.org/10.1103/PhysRevD.94.043518
http://dx.doi.org/10.1103/PhysRevD.95.023515
http://dx.doi.org/10.1140/epjc/s10052-017-5334-3
http://dx.doi.org/10.1088/1475-7516/2018/04/043
http://dx.doi.org/10.1088/1475-7516/2018/04/032
http://dx.doi.org/10.1088/1475-7516/2018/10/019
http://dx.doi.org/10.1088/1475-7516/2019/04/042
http://dx.doi.org/10.1103/PhysRevD.101.063511
http://dx.doi.org/10.1016/j.physletb.2020.135400
http://dx.doi.org/10.1103/PhysRevD.101.043531
http://dx.doi.org/10.1103/PhysRevD.101.043503
http://dx.doi.org/10.1088/1475-7516/2020/06/020
http://dx.doi.org/10.1103/PhysRevD.102.063531
http://dx.doi.org/10.1088/1475-7516/2021/03/085
http://dx.doi.org/10.1088/1475-7516/2021/07/022
http://dx.doi.org/10.1088/1475-7516/2021/10/004
http://dx.doi.org/10.1088/1475-7516/2022/08/075
http://dx.doi.org/10.1093/mnrasl/slac019
http://dx.doi.org/10.1093/mnras/stac641
http://dx.doi.org/10.1103/PhysRevD.107.123538
http://dx.doi.org/10.1088/1475-7516/2022/12/010
http://dx.doi.org/10.1088/1475-7516/2023/04/038
http://dx.doi.org/10.1088/1475-7516/2014/04/026
http://dx.doi.org/10.1088/1475-7516/2018/10/009


Universe 2023, 9, 393 55 of 56

719. Yadav, S.K. Constraints on dark matter-photon coupling in the presence of time-varying dark energy. Mod. Phys. Lett. A 2019,
35, 1950358. [CrossRef]

720. Serra, P.; Zalamea, F.; Cooray, A.; Mangano, G.; Melchiorri, A. Constraints on neutrino—Dark matter interactions from cosmic
microwave background and large scale structure data. Phys. Rev. D 2010, 81, 43507. [CrossRef]

721. Wilkinson, R.J.; Boehm, C.; Lesgourgues, J. Constraining Dark Matter-Neutrino Interactions using the CMB and Large-Scale
Structure. JCAP 2014, 5, 11. [CrossRef]

722. Escudero, M.; Mena, O.; Vincent, A.C.; Wilkinson, R.J.; Bœhm, C. Exploring dark matter microphysics with galaxy surveys. JCAP
2015, 9, 34. [CrossRef]

723. Stadler, J.; Bœhm, C.; Mena, O. Comprehensive Study of Neutrino-Dark Matter Mixed Damping. JCAP 2019, 8, 14. [CrossRef]
724. Hooper, D.C.; Lucca, M. Hints of dark matter-neutrino interactions in Lyman-α data. Phys. Rev. D 2022, 105, 103504. [CrossRef]
725. Dvorkin, C.; Blum, K.; Kamionkowski, M. Constraining Dark Matter-Baryon Scattering with Linear Cosmology. Phys. Rev. D

2014, 89, 23519. [CrossRef]
726. Gluscevic, V.; Boddy, K.K. Constraints on Scattering of keV–TeV Dark Matter with Protons in the Early Universe. Phys. Rev. Lett.

2018, 121, 81301. [CrossRef]
727. Boddy, K.K.; Gluscevic, V. First Cosmological Constraint on the Effective Theory of Dark Matter-Proton Interactions. Phys. Rev. D

2018, 98, 83510. [CrossRef]
728. Xu, W.L.; Dvorkin, C.; Chael, A. Probing sub-GeV Dark Matter-Baryon Scattering with Cosmological Observables. Phys. Rev. D

2018, 97, 103530. [CrossRef]
729. Boddy, K.K.; Gluscevic, V.; Poulin, V.; Kovetz, E.D.; Kamionkowski, M.; Barkana, R. Critical assessment of CMB limits on dark

matter-baryon scattering: New treatment of the relative bulk velocity. Phys. Rev. D 2018, 98, 123506. [CrossRef]
730. Ali-Haïmoud, Y. Testing dark matter interactions with CMB spectral distortions. Phys. Rev. D 2021, 103, 43541. [CrossRef]
731. Buen-Abad, M.A.; Essig, R.; McKeen, D.; Zhong, Y.M. Cosmological constraints on dark matter interactions with ordinary matter.

Phys. Rept. 2022, 961, 1–35. [CrossRef]
732. Nguyen, D.V.; Sarnaaik, D.; Boddy, K.K.; Nadler, E.O.; Gluscevic, V. Observational constraints on dark matter scattering with

electrons. Phys. Rev. D 2021, 104, 103521. [CrossRef]
733. Rogers, K.K.; Dvorkin, C.; Peiris, H.V. Limits on the Light Dark Matter–Proton Cross Section from Cosmic Large-Scale Structure.

Phys. Rev. Lett. 2022, 128, 171301. [CrossRef]
734. Driskell, T.; Nadler, E.O.; Mirocha, J.; Benson, A.; Boddy, K.K.; Morton, T.D.; Lashner, J.; An, R.; Gluscevic, V. Structure formation

and the global 21-cm signal in the presence of Coulomb-like dark matter-baryon interactions. Phys. Rev. D 2022, 106, 103525.
[CrossRef]

735. He, A.; Ivanov, M.M.; An, R.; Gluscevic, V. S8 Tension in the Context of Dark Matter-Baryon Scattering. arXiv 2023,
arXiv:2301.08260.

736. Foot, R.; Vagnozzi, S. Dissipative hidden sector dark matter. Phys. Rev. D 2015, 91, 23512. [CrossRef]
737. Foot, R.; Vagnozzi, S. Diurnal modulation signal from dissipative hidden sector dark matter. Phys. Lett. B 2015, 748, 61–66.

[CrossRef]
738. Cyr-Racine, F.Y.; Sigurdson, K.; Zavala, J.; Bringmann, T.; Vogelsberger, M.; Pfrommer, C. ETHOS—An effective theory of

structure formation: From dark particle physics to the matter distribution of the Universe. Phys. Rev. D 2016, 93, 123527.
[CrossRef]

739. Vogelsberger, M.; Zavala, J.; Cyr-Racine, F.Y.; Pfrommer, C.; Bringmann, T.; Sigurdson, K. ETHOS–An effective theory of structure
formation: Dark matter physics as a possible explanation of the small-scale CDM problems. Mon. Not. R. Astron. Soc. 2016,
460, 1399–1416. [CrossRef]

740. Foot, R.; Vagnozzi, S. Solving the small-scale structure puzzles with dissipative dark matter. JCAP 2016, 7, 13. [CrossRef]
741. Archidiacono, M.; Bohr, S.; Hannestad, S.; Jørgensen, J.H.; Lesgourgues, J. Linear scale bounds on dark matter–dark radiation

interactions and connection with the small scale crisis of cold dark matter. JCAP 2017, 11, 10. [CrossRef]
742. Becker, N.; Hooper, D.C.; Kahlhoefer, F.; Lesgourgues, J.; Schöneberg, N. Cosmological constraints on multi-interacting dark

matter. JCAP 2021, 2, 19. [CrossRef]
743. Vagnozzi, S.; Visinelli, L.; Mena, O.; Mota, D.F. Do we have any hope of detecting scattering between dark energy and baryons

through cosmology? Mon. Not. R. Astron. Soc. 2020, 493, 1139–1152. [CrossRef]
744. Jiménez, J.B.; Bettoni, D.; Figueruelo, D.; Teppa Pannia, F.A. On cosmological signatures of baryons-dark energy elastic couplings.

JCAP 2020, 8, 20. [CrossRef]
745. Vagnozzi, S.; Visinelli, L.; Brax, P.; Davis, A.C.; Sakstein, J. Direct detection of dark energy: The XENON1T excess and future

prospects. Phys. Rev. D 2021, 104, 63023. [CrossRef]
746. Benisty, D.; Davis, A.C. Dark energy interactions near the Galactic Center. Phys. Rev. D 2022, 105, 24052. [CrossRef]
747. Ferlito, F.; Vagnozzi, S.; Mota, D.F.; Baldi, M. Cosmological direct detection of dark energy: Non-linear structure formation

signatures of dark energy scattering with visible matter. Mon. Not. R. Astron. Soc. 2022, 512, 1885–1905. [CrossRef]

http://dx.doi.org/10.1142/S0217732319503589
http://dx.doi.org/10.1103/PhysRevD.81.043507
http://dx.doi.org/10.1088/1475-7516/2014/05/011
http://dx.doi.org/10.1088/1475-7516/2015/09/034
http://dx.doi.org/10.1088/1475-7516/2019/08/014
http://dx.doi.org/10.1103/PhysRevD.105.103504
http://dx.doi.org/10.1103/PhysRevD.89.023519
http://dx.doi.org/10.1103/PhysRevLett.121.081301
http://dx.doi.org/10.1103/PhysRevD.98.083510
http://dx.doi.org/10.1103/PhysRevD.97.103530
http://dx.doi.org/10.1103/PhysRevD.98.123506
http://dx.doi.org/10.1103/PhysRevD.103.043541
http://dx.doi.org/10.1016/j.physrep.2022.02.006
http://dx.doi.org/10.1103/PhysRevD.104.103521
http://dx.doi.org/10.1103/PhysRevLett.128.171301
http://dx.doi.org/10.1103/PhysRevD.106.103525
http://dx.doi.org/10.1103/PhysRevD.91.023512
http://dx.doi.org/10.1016/j.physletb.2015.06.063
http://dx.doi.org/10.1103/PhysRevD.93.123527
http://dx.doi.org/10.1093/mnras/stw1076
http://dx.doi.org/10.1088/1475-7516/2016/07/013
http://dx.doi.org/10.1088/1475-7516/2017/11/010
http://dx.doi.org/10.1088/1475-7516/2021/02/019
http://dx.doi.org/10.1093/mnras/staa311
http://dx.doi.org/10.1088/1475-7516/2020/08/020
http://dx.doi.org/10.1103/PhysRevD.104.063023
http://dx.doi.org/10.1103/PhysRevD.105.024052
http://dx.doi.org/10.1093/mnras/stac649


Universe 2023, 9, 393 56 of 56

748. Pourtsidou, A.; Skordis, C.; Copeland, E.J. Models of dark matter coupled to dark energy. Phys. Rev. D 2013, 88, 83505. [CrossRef]
749. Skordis, C.; Pourtsidou, A.; Copeland, E.J. Parametrized post-Friedmannian framework for interacting dark energy theories.

Phys. Rev. D 2015, 91, 83537. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRevD.88.083505
http://dx.doi.org/10.1103/PhysRevD.91.083537

	Introduction
	Seven Hints
	Ages of the Oldest Astrophysical Objects
	BAO Sound Horizon-Hubble Constant Degeneracy Slope
	Cosmic Chronometers
	Descending Trends in Low-Redshift Data
	Early Integrated Sachs-Wolfe Effect
	(Fractional) Matter Density Constraints from Early-Universe Physics Insensitive and Uncalibrated Cosmic Standards
	Galaxy Power Spectrum Sound Horizon- and Equality Wavenumber-Based Determinations of the Hubble Constant

	Reflections on Promising Scenarios Moving Forward
	Conclusions
	References

