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Abstract: In the study of femtoscopic correlations in high-energy physics, besides Bose–Einstein
correlations, one has to take final-state interactions into account. Amongst them, Coulomb interactions
play a prominent role in the case of charged particles. Recent measurements have shown that in
heavy-ion collisions, Bose–Einstein correlations can be best described by Lévy-type sources instead
of the more common Gaussian assumption. Furthermore, three-dimensional measurements have
indicated that, depending on the choice of frame, a deviation from spherical symmetry observed
under the assumption of Gaussian source functions persists in the case of Lévy-type sources. To
clarify such three-dimensional Lévy-type correlation measurements, it is thus important to study the
effect of Coulomb interactions in the case of non-spherical Lévy sources. We calculated the Coulomb
correction factor numerically in the case of such a source function for assorted kinematic domains and
parameter values using the Metropolis–Hastings algorithm and compared our results with previous
methods to treat Coulomb interactions in the presence of Lévy sources.

Keywords: femtoscopy; Bose–Einstein correlations; Lévy distribution; anomalous diffusion;
heavy-ion collisions; high-energy physics

1. Introduction

The investigation of Bose–Einstein or HBT correlations offers a way to gain information
about the space-time dynamics of heavy-ion collisions on the femtometer scale. Such
information can lead to a better understanding of the space-time geometry of the collision
and particle production mechanisms and could even indicate critical phenomena [1–4].

For the study of Bose–Einstein correlation functions, one usually makes an assumption
for the source function. There is now a large amount of evidence showing that in heavy-ion
collisions, there is indeed a significant deviation from Gaussian shape, such as source
imaging results showing a long-range, power-law-type component [5–7]. It turns out that a
suitable choice is a Lévy-type source function [4,8,9].

In one-dimensional correlation measurements, the correlation function is measured
as a function of only one relative momentum variable, the magnitude of the momentum
difference. This type of measurement assumes the spherical symmetry of the spatial source
(and thus the momentum space correlation) and is more suitable for situations wherein
a lack of experimental statistics prevents the detailed mapping of the momentum space.
Three-dimensional measurements, on the other hand, can yield further information about
the space-time geometry of the source, so whenever experimental statistics make it possible,
it is desirable to perform such measurements. Building on the substantial progress that
three-dimensional Gaussian measurements have made in the understanding of the space-
time structure of particle production in heavy-ion collisions, it is also of interest to perform
Lévy-type measurements in a three-dimensional setting. The first such measurement has
already been reported [10].

In the present paper, we aimed at developing a methodology for such a measurement.
Coulomb corrections are an essential ingredient of all HBT correlation measurements
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that use identical charged particles, as most do: the final-state Coulomb repulsion of the
outgoing particles modifies the shape of the observed correlation function in a complicated
manner, and in experimental analyses, one usually applies a correction factor, the Coulomb
correction, to account for this effect [11,12]. At present, the Coulomb correction for Lévy
distributions is available only in the spherically symmetric case [13]. Our goal was two-
fold: first, we investigated the Coulomb correction for three-dimensional Lévy sources
and determined a sound method for its use in experimental work. Second, in doing
so we encountered the question of the proper choice of coordinate frame, namely the
longitudinally co-moving system (LCMS) and pair center of mass system (PCMS) of the
particle pair. We thus investigated the implications of using these coordinate frames for the
measurements and calculations.

1.1. Two-Particle Correlation Functions

The n-particle correlation functions are defined as

Cn =
Nn(k1, · · · kn)

∏n
i=1 N1(ki)

, (1)

where Nn is the n-particle invariant momentum distribution. In a statistical picture, one
introduces the source function S(x, k) that characterizes the particle production at a given
space-time point x and momentum k, and writes up the Nn(k1, . . . , kn) distribution using
this function and the n-particle wave function ψn(x1, · · · xn, k1, · · · kn) as

Nn(k1, · · · kn) =
∫
|ψn(x1, · · · xn, k1, · · · kn)|2

n

∏
i=1

S(xi, ki)dxi. (2)

In particular, for single-particle distributions, we have |ψ1|2 = 1. Thus,

N1(k) =
∫

dx S(x, k), (3)

and so one obtains the two-particle correlation function as

C2(k1, k2) =

∫
dx1dx2 S(x1, k1)S(x2, k2)|ψ2(x1, k1, x2, k2)|2∫

dx1 S(x1, k1)
∫

dx2 S(x2, k2)
. (4)

We introduced the average and relative space-time and momentum variables as

q ≡ k1 − k2, K ≡ k1 + k2

2
, ρ ≡ x1 − x2, R =

x1 + x2

2
. (5)

Although the two-particle wave function appearing in the above formula itself is a function
of all relevant variables, its modulus square depends only on ρ and q, as shown below. We
assumed this in advance and used a notation that reflected this by suppressing the K and R
variables in the notation of |ψ2|2.

The overall normalization of the S(x, k) source function cancels from the C2 correlation
function, so from now on we treat it as unity, i.e., we write

C2(q, K) =
∫
|ψ2(q, ρ)|2S(R− 1

2 ρ, K− 1
2 q)S(R + 1

2 ρ, K + 1
2 q)dρ dR. (6)

A usual approximation is that one neglects the ± 1
2 k in the arguments of the source

functions; in other words, one approximates the k1 and k2 momenta in the source functions
as k1 ≈ k2 ≈ K. In doing so, we noted that it was useful to introduce the relative coordinate
distribution, also called pair distribution, D(ρ, K), which is the auto-convolution of the
source function in the first variable:

D(ρ, K) =
∫

dR S
(

R + 1
2 ρ, K

)
S
(

R− 1
2 ρ, K

)
, (7)
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with which the two-particle correlation function could then be expressed as

C2(q, K) =
∫
|ψ2(q, ρ)|2D(ρ, K)dρ. (8)

1.2. Lévy Sources

For the source function, we assumed a symmetric Lévy distribution [14]:

S(r, K) = L(4D)(rµ, α(K), R2
σν(K)) =

∫ d4q
(2π)4 eiqµrµ

e−
1
2 |q

σ R2
σνqν |α/2

, (9)

where α is the Lévy exponent, and R2
σν is a two-index symmetric tensor containing the

squares of the Lévy scale parameters. The momentum dependence of the source was as-
sumed to manifest itself through the momentum dependence of these parameters. For such
a Lévy-type source, the relative coordinate distribution D(r, K) is itself a Lévy distribution
with the same α but with scale parameters modified as R2 → 22/αR2.

By choosing a reference frame and making some assumptions, we constrained the
form of the R2

σν matrix. In the case of Bose–Einstein correlation measurements in high-
energy heavy-ion collisions, one sets the laboratory frame as the center-of-mass frame of
the colliding nuclei. Most two-particle Bose–Einstein measurements are carried out with
respect to the so-called longitudinally co-moving system (LCMS) (see, e.g., Refs. [3,4]),
which is defined as the frame that is connected to the laboratory frame by a Lorentz boost
along the collision axis (z axis), with the criterion that the longitudinal component of the
average momentum of the particle pair Kz vanishes in this frame.

We made the assumption that our source could be described by a spatially three-
dimensional symmetric Lévy shape with only diagonal terms in the scale parameter matrix
R2

σν, and that the freeze-out was simultaneous in the LCMS frame. We saw that the
momentum variable of the source function translated essentially as the average momentum
of the particle pair (after the k1 ≈ k2 ≈ K approximation), so for S(x, K), we determined
the mean LCMS frame as the frame wherein its K variable has no Kz component. Therefore,
the R2

σν tensor has the following form:

R2
σν =


0 0 0 0
0 R2

out 0 0
0 0 R2

side 0
0 0 0 R2

long

, (10)

where out, side, and long indicate that we used Bertsch–Pratt coordinates [15,16]. We could
then simplify the four-dimensional Lévy distribution as a product of a Dirac delta function
and a three-dimensional symmetric Lévy distribution:

L(4D) = δ(tL)L(3D)(~rL, α, Rout, Rside, Rlong), (11)

L(3D)(~rL, α, Rout, Rside, Rlong) =
∫ d3q

(2π)3 e−i~q~rL
e−

1
2 |q

2
outR

2
out+q2

sideR2
side+q2

longR2
long|

α/2
, (12)

where the L superscript indicates that these coordinates are in the LCMS. As noted above,
for such a source function, the pair distribution is a Lévy distribution with modified
scale parameters:

D(~rL, K) = δ(tL)L(3D)(~rL, α, 2
1
α Rout, 2

1
α Rside, 2

1
α Rlong), (13)

From this, in the case when final-state interactions were neglected and thus the final-
state wave function was a symmetrized plane wave, we could easily obtain the form of the
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two-particle correlation function in the LCMS with the above-mentioned source by means
of an (inverse) Fourier transform [14]:

C(0)
2 (~q, α, Rout, Rside, Rlong) = 1 + e−|q

2
outR

2
out+q2

sideR2
side+q2

longR2
long|

α/2
. (14)

2. Methodology
2.1. Coulomb Interaction

To take into account the Coulomb interaction, one has to use the Coulomb interacting
two-particle wave function. This is the solution of the two-particle Schrödinger equation
with a repulsive Coulomb force and the appropriate boundary conditions at infinity.

Utilizing the Schrödinger equation implies a non-relativistic treatment, which is a
justifiable approximation in the PCMS (pair co-moving system) frame, i.e., the center-of-
mass frame of the two particles. The solution of the Schrödinger equation of interest to us
is written as [11,17]

ψ(~RP,~rP, ~KP,~kP) =
N√

2
e−i2~K~R[ei~k~rF(−iη, 1, i(kr−~k~r))+

+e−i~k~rF(−iη, 1, i(kr +~k~r))
]
,

(15)

where a symmetrization has been performed, as required for pairs of identical bosons. In
this expression, F(a, b, z) is the confluent hypergeometric function,~k = ~q/2, k = |~k|, and

η =
mc2α

2h̄ck
, N = e−

πη
2 Γ(1 + iη), (16)

where α is the fine-structure constant; m is the particle mass (e.g., pion mass); and Γ(z) is
the gamma function.

To evaluate the two-particle correlation function, we needed the modulus square of
the wave function, with which the ~R and ~K dependence was lost (as mentioned earlier):

|ψ(~rP,~kP)|2 =
2πη

e2πη − 1
· 1

2
·
[
|F(−iη, 1, i(kr +~k~r))|2+

+e2i~k~rF(−iη, 1, i(kr−~k~r))F(iη, 1,−i(kr +~k~r))
]
+ (~r ↔ −~r).

. (17)

To arrive at the two-particle correlation function, one has to evaluate a d4r integral
over the whole space-time. This can be performed in any coordinate frame, but our ap-
proximations detailed above made strong arguments in favor of some preferred coordinate
systems. However, even with these in mind, we had several options to explore:

1. We could assume that the R2
σν matrix, and thus the whole source function, is the

same in the PCMS and the LCMS frames. This is essentially an approximation where
~K ≈ 0. However, this is a rather strong approximation, and one of the goals of
HBT measurements is indeed to explore the average momentum (or transverse mass)
dependence of the parameters that describe the source.

2. There are two objects, one in the PCMS (the wave function) and the other in the LCMS
(the source function). We could try to transform the wave function from the PCMS to
the LCMS and then use the simple form of the source function and obtain the result
in LCMS coordinates. However, the two-particle wave function of Equation (17) is
not a relativistic expression; thus, we refrained from trying to come up with the right
transformation of this object.

3. The third option was to evaluate the integral in the PCMS, as the two-particle Coulomb
wave function is only known in the PCMS. This meant that the Lévy source had to be
transformed from the LCMS to the PCMS.
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Below, we proceed with the third option listed above. We introduce some further notations:

the average transverse momentum in the LCMS KT , the transverse mass mT =
√

m2 + K2
T ,

and the βT = KT/mT factor. The Lorentz boost from the LCMS to the PCMS is then

Λν
µ =

1
m


mT −KT 0 0
−KT mT 0 0

0 0 m 0
0 0 0 m

. (18)

The Lévy distribution then transforms as a scalar from the LCMS to the PCMS, mean-
ing we had to evaluate Equation (11) at the coordinates r′ = Λ−1r, where the transformation
is the following: (

tL

~rL

)
=

1
m


mTtP + KTrP

out
KTtP + mTrP

out
mrP

side
mrP

long

. (19)

The temporal integral could then be easily evaluated and, subsequently, knowing
the form of D(~r, K) from Equation (13) above, we were left with the following expression
(where 2~k = ~q):

C(C)
2 (~q) =

∫
d3r|ψ(~k,~r)|2L(3D)

(√
1−β2

Trout, rside, rlong, α, 2
1
α Rout, 2

1
α Rside, 2

1
α Rlong

)
, (20)

where we dropped the P superscripts for simplicity, but every momentum and spatial
coordinate is in the PCMS. Furthermore, we could utilize a simple scaling relation of the
three-dimensional Lévy distribution:

L(3D)

(√
1− β2

Trout, rside, rlong, α, 2
1
α Rout, 2

1
α Rside, 2

1
α Rlong

)
∼

∼ L(3D)

(
~r, α, 2

1
α Rout/

√
1− β2

T , 2
1
α Rside, 2

1
α Rlong

)
,

(21)

a relation that could be derived by scaling the ~q integration variable in the definition of
L(3D), Equation (11). In this equation, ∼ stands for proportionality, and constant factors in
S(x, k) cancel from the two-particle correlation function. Thus, the integral we intended to
calculate was

C(C)
2 (~q, α, R1, R2, R3) =

∫
d3r|ψ(~k,~r)|2L(3D)(~r, α, R1, R2, R3), (22)

where R1 = 2
1
α Rout/

√
1− β2

T , R2 = 2
1
α Rside, R3 = 2

1
α Rlong. This expression could be

evaluated numerically.

2.2. Numerical Simulations

For the evaluation of the integral, we utilized the Metropolis–Hastings algorithm. This
algorithm can be used to evaluate integrals of the form

I =
∫

Ω
dx f (x) · g(x), (23)

where f (x) can be thought of as a probability distribution, and g(x) is the function of
interest [18,19]. In our case, the three-dimensional symmetric Lévy distribution was the
probability distribution, and the function of interest was from Equation (17):

f (x)dx := L(3D)(~r, α, R1, R2, R3)d3r, (24)

g(x) := |ψ(~k,~r)|2. (25)
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We could utilize two transformations. First, with the reflection relations of the conflu-
ent hypergeometric functions, we used the second term in Equation (17):

e2i~k~rF(−iη, 1, i(kr−~k~r))F(iη, 1,−i(kr +~k~r)) =

= F(1 + iη, 1,−i(kr−~k~r))F(1− iη, 1,−i(kr +~k~r)).
(26)

Additionally, we could transform the 3D symmetric Lévy distribution:

L(3D)(~r, α, R1, R2, R3) =
1

R1R2R3
L(1D)(s(~r), α, 1), (27)

where

s(~r) =

√√√√ r2
out
R2

1
+

r2
side
R2

2
+

r2
long

R2
3

, (28)

and L(1D) is the spherically symmetric version of the three-dimensional Lévy distribution,
as a function of the radial variable. Its its expression is then

L(1D)(x, α, 1) =
1

2π2x

∫ ∞

0
dq q2 sin(qx)e−

1
2 qα

. (29)

We could thus perform the integral in Equation (22); this was carried out using
spherical coordinates on the domain Ω = [0, rmax]× [0, 2π]× [0, π], with an rmax chosen
so that the integral of the Lévy distribution (I =

∫
L) was a maximum of 1% less than 1

(I ≥ 0.99).

3. Results

First, we compared our three-dimensional calculations and other available, spherically
symmetric calculations for Lévy sources. Then, we investigated the implications of the fact
that most measurements are in the LCMS, and the source is assumed to be spherical there
for one-dimensional analyses, but the integral of Equation (22) is in the PCMS.

3.1. Three-Dimensional Calculations

Three-dimensional calculations are rather time-consuming, and their numerical preci-
sion could also be problematic for implementation when investigating experimental data.
Instead, we aimed to find an approximation that was precise and fast enough to be utilized
in actual experimental analyses. Our approach here was that we fixed a set of parameters
(α, R1, R2, R3) and evaluated the integral at 1003 points in momentum space. This gave
us a fine enough resolution in momentum space for comparison purposes. First, let us
compare the two-particle correlation functions in the PCMS. In Figure 1, we can see the
Bose–Einstein correlation functions with Coulomb interactions (full BEC) and without any
final-state interactions (free BEC) from our 3D calculation and from the 1D calculation with
quadratic and arithmetic average scale parameters and the angle averaged values of the
3D calculation. In the spherical case, on the left-hand plot, everything was as we would
expect; however, on the right-hand plot, when we had a non-spherical source for the 3D
calculation, we can see that there was a large difference between the correlation functions,
both in the Coulomb interacting and in the free case.

However, we were interested in the question of whether we could use the 1D cal-
culation for the purposes of Coulomb correction only, viz., the ratio of the full and free
BEC functions (K = C(C)

2 /C(0)
2 ). One can see the comparison of Coulomb corrections in

Figure 2 with two sets of non-spherical parameters. The full BEC functions are here the
Coulomb-corrected three-dimensional correlation functions (full BEC = K · C(0)

2,3D). The
one-dimensional Coulomb corrections were evaluated at |~q| in the PCMS, i.e., at qinv and at
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an average R for R1, R2 and R3. Although the correlation functions were quite different,
we can see that the Coulomb corrections were very much the same. Now, we would like to
point out the fact that one-dimensional and three-dimensional Coulomb corrections are
very similar; therefore, in an experimental analysis, it is sufficient to use a one-dimensional
Coulomb correction with the right parameter values. The error caused by the spherical
Coulomb correction could be estimated, but it was not in the scope of this paper to give a
quantitative limit for this uncertainty.

)3 = q/
long

 = q
side

 = q
out

q [MeV/c] (for 3D: q
0 20 40 60 80 100

C
(q

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 Correlation functions in PCMS
 = 7 fm

3
 = 7 fm, R
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 = 7 fm, R

1
 = 1.4, Rα

Angle averaged 3D Full BEC

Angle averaged 3D Free BEC

3D Full BEC 

3D Free BEC 

1D Full BEC with quadratic mean R

1D Free BEC with quadratic mean R

1D Full BEC with arithmetic mean R

1D Free BEC with arithmetic mean R

)3 = q/
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 = q
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 = q
out
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)
0

0.2
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1.2
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2 Correlation functions in PCMS
 = 2 fm
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1
 = 1.4, Rα

Angle averaged 3D Full BEC
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3D Full BEC 

3D Free BEC 
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1D Free BEC with quadratic mean R

1D Full BEC with arithmetic mean R

1D Free BEC with arithmetic mean R

Figure 1. On the left-hand side, the two-particle correlation functions are shown in a spherical
case for the three-dimensional calculation in comparison with one-dimensional calculations in the
presence of Coulomb interactions in final-state interactions. On the right-hand side, a non-spherical
three-dimensional calculation is shown alongside one-dimensional calculations with quadratic and
arithmetic mean scale parameters.

)3 = q/
long

 = q
side

 = q
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1
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)/32
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1
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1
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)3 = q/
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 = q
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1D Coul. corr., R=(R
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Figure 2. The Coulomb corrections and the Coulomb-corrected three-dimensional two-particle
correlation function is shown in two non-spherical cases.

The application of the Coulomb correction in three-dimensional analyses is quite straight-
forward. If the measurement is in the LCMS and one has the momenta qL = qL

out, qL
side, qL

long
and the Lévy scale parameters Rout, Rside, Rlong for particles with an average transverse
momentum of KT , which gives βT , then one proceeds as follows. We used the assumption
that the Coulomb correction transformed as a scalar. We evaluated the Coulomb correc-
tion (which was calculated in the PCMS) at momenta qP = (

√
1− β2

TqL
out, qL

side, qL
long) and
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scale parameters R1 = Rout/
√

1− β2
T , R2 = Rside, and R3 = Rlong. Accordingly, we used

qinv =
√
(1− β2

T)q
L2
out + qL2

side + qL2
long and an average of R1, R2, and R3 when we used a 1D

Coulomb correction. For example, we could use the quadratic average:

RPCMS =

√
R2

out
1− β2

T
+ R2

side + R2
long. (30)

Therefore, the Coulomb correction that could be applied in a three-dimensional mea-
surement was the following:

K3D =
C(C)

2,1D(qinv, RPCMS, α)

1 + exp (−|qinvRPCMS|α)
, (31)

where C(C)
2,1D is the result from the integral of Equation (22) in a spherical case with a radius

of RPCMS according to Equation (30) and at momentum qinv, which can be calculated for
every point in a three-dimensional measurement in the LCMS.

3.2. Spherical (One-Dimensional) HBT Measurements

Below, we investigate the implications of our calculations for one-dimensional HBT
measurements. When we performed a one-dimensional measurement in the LCMS, we
assumed that the source was spherical in this frame, i.e., R = Rout = Rside = Rlong, and

we had a single momentum variable qLCMS =
√

qL2
out + qL2

side + qL2
long. But the Coulomb

correction was calculated in the PCMS with R1, R2, R3. This meant that a spherical source

in the LCMS would imply a non-spherical (R1 = R/
√

1− β2
T , R2 = R3 = R) source in the

PCMS and the need for a three-dimensional Coulomb correction. However, we saw above
that the non-spherical Coulomb correction could be well approximated with a spherical
Coulomb correction if we used the right average R, viz., instead of RLCMS = R, we had
to use

RPCMS =

√
1− 2

3 β2
T

1− β2
T

R, (32)

if we used a quadratic average R. Another problem stemmed from the fact that we could
not reconstruct qinv from qLCMS. An obvious solution would be to measure all momentum
variables instead of just the length of the momentum difference, but then the advantage
of the 1D measurement over the 3D measurement (the possibility of a measurement with
higher statistical significance) would be lost. We could try to overcome this obstacle in some
other ways. One solid approximation could be the following: measure an A(qLCMS, qinv)
distribution of particle pairs, and then use this to obtain a weighted Coulomb-correction,
as shown below.

Kweighted(qLCMS) =

∫
A(qLCMS, qinv)K(qinv)dqinv∫

A(qLCMS, qinv)dqinv
. (33)

In Figure 3, we see the Coulomb correction and the corrected three-dimensional two-
particle correlation functions for KT = 0.8 GeV/c in the LCMS. The parameters were chosen
so that in the LCMS we had an approximately spherically symmetric source (Rout = 2.06 fm,
Rside = Rlong = 2 fm). We can see that there was a clear difference between the two one-
dimensional corrections, with one having an LCMS average R and the other having an
average in accordance with Equation (32). In the low-q region, there was some difference
between the angle-averaged, one-dimensional, and three-dimensional Coulomb corrections.
Also, the numerical precision of the three-dimensional calculation made it challenging to
decide between the options. However, we can see that from q > 20 MeV/c, the angle-
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averaged and the three-dimensional Coulomb correction were in good agreement with
the one-dimensional Coulomb correction with the average R of Equation (32), and there
was a consistent difference compared to the other one. The fact that the angle-averaged
case was most similar to the one-dimensional case with the transformed average R of
Equation (32) indicated that using the latter for one-dimensional measurements was best.
On the left-hand side, the three-dimensional correlation function was taken at a diagonal
line in the LCMS (qout = qside = qlong), and on the right-hand side along the out axis. We
did not rely on a weighted average for the one-dimensional Coulomb correction, as we
could calculate qinv.

)3= q/
long

= q
side

= q
out

q [MeV/c] (for 3D: q
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C
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2
= 2.06 fm, RLCMS

1
= 1.4, R�

matrix is diagonal in LCMS2R
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Angle avg 3D CC
Angle avg 3D BEC

1D Coul. corr. w/ lcms avg R

Full BEC w/ 1D Coul. w/ lcms avg

1D Coul. corr. w/ pcms avg R

Full BEC w/ 1D Coul. w/ pcms avg
2β1−/o3D Coul. corr. with R

Full BEC w/ 3D Coul. in LCMS

3D Free BEC LCMS
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= q
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, q3= q/
out

q [MeV/c] (for 3D: q
0 20 40 60 80 100 120 140 160 180 200

C
(q

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 = 0.8 GeV/c
T

Coulomb correction in LCMS, K
= 2 fm

3
= 2 fm, R

2
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Figure 3. The Coulomb corrections and the Coulomb-corrected three-dimensional two-particle
correlation function are shown in the LCMS when the source was spherical in the LCMS but not for
the calculation. On the left-hand side, we took the three-dimensional Coulomb correction along a
diagonal line, and on the right-hand side along the qout axis.

Let us list the possible approaches to deal with Coulomb interactions in one-dimensional
measurements carried out in an LCMS. We only list the options that make use of a one-
dimensional calculation for the integral in Equation (22); in these cases, the factor of Ref. [13]
can be used. A simpler solution would be to use the Gamow factor, where the source size is
neglected. The most sophisticated approach would be to use the angle-averaged Coulomb
correction from a three-dimensional calculation, but this would be an overly complex solu-
tion. The possibilities for making use of a one-dimensional Coulomb integral calculation
are the following, ordered by increasing sophistication:

1. Simply use C(C)
2 (qLCMS, RLCMS), which means that one formally substitutes qLCMS =

qinv and RPCMS = RLCMS.
2. Take into account the fact that qinv 6= qLCMS but neglect the same for the scale pa-

rameters, and use the weighting method of Equation (33); however, implement this
not for the Coulomb correction, but for the correlation function instead. Thus, use
C2,weighted(qLCMS, RLCMS) for the fitting:

C2,weighted(qLCMS, RLCMS) =

∫
A(qLCMS, qinv)C2(qinv, RLCMS)dqinv∫

A(qLCMS, qinv)dqinv
. (34)

3. Following the same approach as above, use RLCMS for the Coulomb correction and
use a weighted average, though for the Coulomb correction this time. This approach
is more sensible if one considers Figure 1, where we saw that the correlation functions
could look rather different even if in Figure 2 the Coulomb corrections looked very
much the same. Now, one uses Kweighted(qLCMS, RLCMS) · C

(0)
2 (qLCMS, RLCMS) for

fitting.
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4. One improvement to the methods mentioned above would be to consider the trans-
formation of scale parameters; thus, use the average as in Equation (32). The simpler
version is the same as no. 3 above, i.e., weighing the correlation function and using
C2,weighted(qLCMS, RPCMS) for fitting. Here, however, one loses the explicit form of

C(0)
2 in the LCMS, which is known.

5. The most sophisticated option would be to use RPCMS only for the Coulomb correc-
tion and use the weighting of Equation (33). The function used for fitting is now
Kweighted(qLCMS, RPCMS) · C

(0)
2 (qLCMS, RLCMS).

6. Finally, an approach that is easier to implement than the previous methods making
use of a distribution A(qLCMS, qinv) is to make an approximation for the qLCMS-qinv
relationship that is appropriate for the Coulomb correction. One could be motivated
by the left-hand plot of Figure 3, as the one-dimensional Coulomb correction with
RPCMS and the angle-averaged three-dimensional calculation were in relatively good

agreement. The relationship qinv =
√

1− β2
T/3qLCMS could be used, as it would hold

for the diagonal line qout = qside = qlong. Therefore, the function that could be used

for fitting would be K(
√

1− β2
T/3qLCMS, RPCMS) · C

(0)
2 (qLCMS, RLCMS).

Additionally, either the distribution of particle pairs from same events (usually de-
noted with A) or some background distribution that has no quantum-statistical effects (B)
could be used for weighting C2 and K [4]. Here, one could argue in favor of the latter; how-
ever, it is expected to make a small difference. The soundest approach for one-dimensional
analyses is no. 5 in the above list.

4. Conclusions

We investigated Coulomb interactions for HBT measurements in the presence of
Lévy sources. Our results can be applied to three-dimensional and one-dimensional
measurements alike. The results also hold for Gaussian or Cauchy sources, because these
are special cases of the Lévy source (α = 2 for Gaussian and α = 1 for Cauchy). We
learned that a one-dimensional Coulomb correction could be reasonably effectively applied
for three-dimensional measurements if we used the appropriately defined average of the
three directional scale parameters (as in Equation (30) above) and implemented the qinv
invariant momentum difference as the momentum variable for the Coulomb correction.
For one-dimensional measurements in the LCMS frame, we saw that one should use the
average scale parameter as defined in Equation (32) and evaluate the Coulomb correction
at qinv as we calculated this in the PCMS frame, which in practice could be estimated
with a weighted Coulomb correction according to option no. 5 in the previous section.
The above-detailed treatment of Coulomb interactions in heavy-ion collisions could be
readily applied to experimental measurements. To our knowledge this indeed has now
been achieved in several analyses from SPS through RHIC to LHC, based on the technique
outlined in this paper [8,9,20–24].
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