#
Kaon Femtoscopy with Lévy-Stable Sources from $\sqrt{{\mathit{s}}_{{}_{\mathbf{NN}}}}\mathbf{=}\mathbf{200}$ GeV $\mathbf{Au}\mathbf{+}\mathbf{Au}$ Collisions at RHIC

## Abstract

**:**

## 1. Introduction

## 2. Correlations

- a core (${S}_{\mathrm{C}}(X,K)$) consisting of primordial particles created by the hydrodynamically expanding, strongly interacting quark–gluon plasma, along with the decays of resonances with half lives of less than a few fm/c; and
- a halo (${S}_{\mathrm{H}}(X,K)$) consisting of the products created by the decay of long-lived resonances, including but not limited to $\eta $, ${\eta}^{\prime}$, ${K}_{S}^{0}$ and $\omega $, making it possible to decompose $S(X,K)$ as [25]:$$S(X,K)={S}_{\mathrm{C}}(X,K)+{S}_{\mathrm{H}}(X,K).$$

## 3. Lévy Distribution

## 4. Measurement

## 5. Results

## 6. Summary

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Lisa, M.; Pratt, S.; Soltz, R.; Wiedemann, U. Femtoscopy in relativistic heavy ion collisions. Ann. Rev. Nucl. Part. Sci.
**2005**, 55, 357–402. [Google Scholar] [CrossRef] [Green Version] - Makhlin, A.; Sinyukov, Y. Hydrodynamics of hadron matter under pion interferometric microscope. Z. Phys. C
**1988**, 39, 69. [Google Scholar] [CrossRef] - Csörgő, T.; Lörstad, B. Bose-Einstein correlations for three-dimensionally expanding, cylindrically symmetric, finite systems. Phys. Rev. C
**1996**, 54, 1390–1403. [Google Scholar] [CrossRef] [PubMed] - Csörgő, T.; Hegyi, S.; Novák, T.; Zajc, W. Bose-Einstein or HBT correlation signature of a second order QCD phase transition. AIP Conf. Proc.
**2006**, 828, 525–532. [Google Scholar] [CrossRef] - Oliinychenko, D. Overview of light nuclei production in relativistic heavy-ion collisions. Nucl. Phys. A
**2021**, 1005, 121754. [Google Scholar] [CrossRef] - Csanád, M.; Vargyas, M. Observables from a solution of 1 + 3 dimensional relativistic hydrodynamics. Eur. Phys. J. A
**2010**, 44, 473–478. [Google Scholar] [CrossRef] [Green Version] - Adams, J.; et al. Pion interferometry in Au + Au collisions at $\sqrt{{s}_{{}_{\mathrm{NN}}}}=200$ GeV. Phys. Rev. C
**2005**, 71, 044906. [Google Scholar] [CrossRef] [Green Version] - Adler, S.; et al. Bose-Einstein correlations of charged pion pairs in Au + Au collisions at $\sqrt{{s}_{{}_{\mathrm{NN}}}}=200$ GeV. Phys. Rev. Lett.
**2004**, 93, 152302. [Google Scholar] [CrossRef] [Green Version] - Adare, A.; et al. Lévy-stable two-pion Bose-Einstein correlations in $\sqrt{{s}_{{}_{\mathrm{NN}}}}=200$ GeV Au + Au collisions. Phys. Rev. C
**2018**, 97, 064911. [Google Scholar] [CrossRef] [Green Version] - Adler, S.; et al. Evidence for a long-range component in the pion emission source in Au + Au collisions at $\sqrt{{s}_{{}_{\mathrm{NN}}}}=200$ GeV. Phys. Rev. Lett.
**2007**, 98, 132301. [Google Scholar] [CrossRef] [Green Version] - Afanasiev, S.; et al. Source breakup dynamics in Au + Au Collisions at $\sqrt{{s}_{{}_{\mathrm{NN}}}}=200$ GeV via three-dimensional two-pion source imaging. Phys. Rev. Lett.
**2008**, 100, 232301. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Sirunyan, A.; et al. Bose-Einstein correlations in pp,pPb, and PbPb collisions at $\sqrt{{s}_{{}_{\mathrm{NN}}}}$ = 0.9–7 TeV. Phys. Rev. C
**2018**, 97, 064912. [Google Scholar] [CrossRef] [Green Version] - Achard, P.; et al. Test of the τ-model of Bose-Einstein correlations and reconstruction of the source function in hadronic Z-boson decay at LEP. Eur. Phys. J. C
**2011**, 71, 1648. [Google Scholar] [CrossRef] [Green Version] - Kincses, D.; Stefaniak, M.; Csanád, M. Event-by-event investigation of the two-particle source function in heavy-ion collisions with EPOS. Entropy
**2022**, 24, 308. [Google Scholar] [CrossRef] [PubMed] - Lednicky, R. Correlation femtoscopy: Origins and achievements. Phys. Part. Nucl.
**2020**, 51, 221–226. [Google Scholar] [CrossRef] - Bose, S. Plancks gesetz und lichtquantenhypothese. Z. Phys.
**1924**, 26, 178–181. [Google Scholar] [CrossRef] - Einstein, A. Quantentheorie des einatomigen idealen gases. Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl.
**1925**, 1, 3–14. [Google Scholar] - Goldhaber, G.; Fowler, W.; Goldhaber, S.; Hoang, T.; Kalogeropoulos, T.; Powell, W. Pion-pion correlations in antiproton annihilation events. Phys. Rev. Lett.
**1959**, 3, 181–183. [Google Scholar] [CrossRef] - Goldhaber, G.; Goldhaber, S.; Lee, W.; Pais, A. Influence of Bose-Einstein statistics on the antiproton-proton annihilation process. Phys. Rev.
**1960**, 120, 300–312. [Google Scholar] [CrossRef] - Hanbury-Brown, R.; Twiss, R. A new type of interferometer for use in radio astronomy. Lond. Edinb. Dublin Philos. Mag. J. Sci.
**1954**, 45, 663–682. [Google Scholar] [CrossRef] - Hanbury-Brown, R.; Twiss, R. Correlation between photons in two coherent beams of light. Nature
**1956**, 177, 27–29. [Google Scholar] [CrossRef] - Hanbury-Brown, R.; Twiss, R. A test of a new type of stellar interferometer on Sirius. Nature
**1956**, 178, 1046–1048. [Google Scholar] [CrossRef] - Yano, F.; Koonin, S. Determining pion source parameters in relativistic heavy-ion collisions. Phys. Lett. B
**1978**, 78, 556–559. [Google Scholar] [CrossRef] - Csanád, M.; Lökös, S.; Nagy, M. Expanded empirical formula for Coulomb final state interaction in the presence of Lévy sources. Phys. Part. Nucl.
**2020**, 51, 238–242. [Google Scholar] [CrossRef] - Csörgő, T.; Lörstad, B.; Zimányi, J. Bose-Einstein correlations for systems with large halo. Z. Phys. C
**1996**, 71, 491–497. [Google Scholar] [CrossRef] [Green Version] - Nolan, J. Parameterizations and modes of stable distributions. Stat. Probab. Lett.
**1998**, 38, 187–195. [Google Scholar] [CrossRef] - Csörgő, T.; Hegyi, S.; Novák, T.; Zajc, W. Bose-Einstein or HBT correlations and the anomalous dimension of QCD. Acta Phys. Polon. B
**2005**, 36, 329–337. [Google Scholar] - Csanád, M.; Csörgő, T.; Nagy, M. Anomalous diffusion of pions at RHIC. Braz. J. Phys.
**2007**, 37, 1002–1013. [Google Scholar] [CrossRef] [Green Version] - Csörgő, T. Correlation probes of a QCD critical point. PoS
**2008**, HIGH-PTLHC08, 027. [Google Scholar] [CrossRef] [Green Version] - El-Showk, S.; Paulos, M.; Poland, D.; Rychkov, S.; Simmons-Duffin, D.; Vichi, A. Solving the 3d Ising model with the conformal bootstrap II. c-minimization and precise critical exponents. J. Stat. Phys.
**2014**, 157, 869–914. [Google Scholar] [CrossRef] [Green Version] - Rieger, H. Critical behaviour of the three-dimensional random-field Ising model: Two-exponent scaling and discontinuous transition. Phys. Rev. B Condens. Matter
**1995**, 52, 6659–6667. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Halasz, M.; Jackson, A.; Shrock, R.; Stephanov, M.; Verbaarschot, J. Phase diagram of QCD. Phys. Rev. D
**1998**, 58, 096007. [Google Scholar] [CrossRef] - Stephanov, M.; Rajagopal, K.; Shuryak, E. Signatures of the tricritical point in QCD. Phys. Rev. Lett.
**1998**, 81, 4816–4819. [Google Scholar] [CrossRef] [Green Version] - Lacey, R. Indications for a critical point in the phase diagram for hot and dense nuclear matter. Nucl. Phys. A
**2016**, 956, 348–351. [Google Scholar] [CrossRef] [Green Version] - Lacey, R.; Liu, P.; Magdy, N.; Schweid, B.; Ajitanand, N. Finite-size scaling of non-Gaussian fluctuations near the QCD critical point. arXiv
**2016**, arXiv:1606.08071. [Google Scholar] - Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep.
**2000**, 339, 1–77. [Google Scholar] [CrossRef] - Csörgő, T.; Hegyi, S.; Zajc, W. Bose-Einstein correlations for Lévy stable source distributions. Eur. Phys. J. C
**2004**, 36, 67–78. [Google Scholar] [CrossRef] - Kurgyis, B.; Kincses, D.; Nagy, M.; Csanád, M. Coulomb interaction for Lévy sources. arXiv
**2023**, arXiv:2007.10173. [Google Scholar] - Adamczyk, L.; et al. Beam-energy-dependent two-pion interferometry and the freeze-out eccentricity of pions measured in heavy ion collisions at the STAR detector. Phys. Rev. C
**2015**, 92, 014904. [Google Scholar] [CrossRef] [Green Version] - Kincses, D. Shape analysis of HBT correlations at STAR. Phys. Part. Nucl.
**2020**, 51, 267–269. [Google Scholar] [CrossRef] - Bowler, M. Coulomb corrections to Bose-Einstein corrections have greatly exaggerated. Phys. Lett. B
**1991**, 270, 69–74. [Google Scholar] [CrossRef] - Sinyukov, Y.; Lednicky, R.; Akkelin, S.; Pluta, J.; Erazmus, B. Coulomb corrections for interferometry analysis of expanding hadron systems. Phys. Lett. B
**1998**, 432, 248–257. [Google Scholar] [CrossRef] [Green Version] - Csanád, M.; Lökös, S.; Nagy, M. Coulomb final state interaction in heavy ion collisions for Lévy sources. Universe
**2019**, 5, 133. [Google Scholar] [CrossRef] [Green Version] - Kincses, D.; Nagy, M.; Csanád, M. Coulomb and strong interactions in the final state of Hanbury-Brown–Twiss correlations for Lévy-type source functions. Phys. Rev. C
**2020**, 102, 064912. [Google Scholar] [CrossRef] - Afanasiev, S.; et al. Kaon interferometric probes of space-time evolution in Au + Au collisions at $\sqrt{{s}_{{}_{\mathrm{NN}}}}=200$ GeV. Phys. Rev. Lett.
**2009**, 103, 142301. [Google Scholar] [CrossRef] [Green Version] - Csanád, M.; Csörgő, T. Kaon HBT radii from perfect fluid dynamics using the Buda-Lund model. Acta Phys. Polon. Supp.
**2008**, 1, 521–524. [Google Scholar]

**Figure 1.**Sample ionisation energy loss as a function of momentum × charge (

**a**) for all available charged particles and (

**b**) after being cut only for the charged kaons to be isolated.

**Figure 2.**$C\left(q\right)$ as a function of ${q}_{\mathrm{LCMS}}$ for positively charged kaon pairs in the ${m}_{\mathrm{T}}$ range (703–777 MeV/${c}^{2}$) and the centrality range (0–30%). The red dots denote the measured data, and the blue lines (solid and dotted) denote the fit. The systematic uncertainties are shown as hollow rectangles.

**Figure 3.**R as a function of ${m}_{\mathrm{T}}$ for 0–30% centrality. The hollow, blue squares denote positively charged kaon pairs and the solid, and blue circles denote negatively charged kaon pairs, along with their error bars. The systematic uncertainties are shown as hollow (${K}^{+}{K}^{+}$) and shaded (${K}^{-}{K}^{-}$) rectangles.

**Figure 4.**$\lambda $ as a function of ${m}_{\mathrm{T}}$ for 0–30% centrality. The hollow, blue squares denote positively charged kaon pairs, and the solid, blue circles denote negatively charged kaon pairs, along with their error bars. The systematic uncertainties are shown as hollow (${K}^{+}{K}^{+}$) and shaded (${K}^{-}{K}^{-}$) rectangles.

**Figure 5.**$\alpha $ as a function of ${m}_{\mathrm{T}}$ for 0–30% centrality. The hollow, blue squares denote positively charged kaon pairs, and the solid, blue circles denote negatively charged kaon pairs, along with their error bars. The systematic uncertainties are shown as hollow (${K}^{+}{K}^{+}$) and shaded (${K}^{-}{K}^{-}$) rectangles.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mukherjee, A.
Kaon Femtoscopy with Lévy-Stable Sources from *Universe* **2023**, *9*, 300.
https://doi.org/10.3390/universe9070300

**AMA Style**

Mukherjee A.
Kaon Femtoscopy with Lévy-Stable Sources from *Universe*. 2023; 9(7):300.
https://doi.org/10.3390/universe9070300

**Chicago/Turabian Style**

Mukherjee, Ayon.
2023. "Kaon Femtoscopy with Lévy-Stable Sources from *Universe* 9, no. 7: 300.
https://doi.org/10.3390/universe9070300