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Abstract: In this paper, we consider homogeneous cosmological solutions in the context of the Weyl
geometrical scalar–tensor theory. Firstly, we exhibit an anisotropic Kasner type solution taking
advantage of some similarities between this theory and the Brans–Dicke theory. Next, we consider an
isotropic model with a flat spatial section sourced by matter configurations described by a perfect
fluid. In this model, we obtain an analytical solution for the stiff matter case. For other cases, we
carry out a complete qualitative analysis theory to investigate the general behaviour of the solutions,
presenting some possible scenarios. In this work, we do not consider the presence of the cosmological
constant nor do we take any potential of the scalar field into account. Because of this, we do not find
any solution describing the acceleration of the universe.
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1. Introduction

As is well known, scalar–tensor theories of gravity were proposed some years ago
by Jordan [1], and Brans and Dicke [2]. Later, they were extended in a more general
framework [3–5]. In fact, they represent a generalization of the simplest scalar–tensor
theory of gravity which is the Brans–Dicke theory [6,7]. In general scalar–tensor theories of
gravity, the gravitational field is not described only by the usual tensor field gµν of general
relativity. In addition to this, we have one or several long-range scalar fields which also
mediate gravitational interaction.

Scalar–tensor theories of gravity have been a subject of renewed interest. Certainly,
one motivation for this is the belief that, at least at sufficiently high energy scales, gravity
becomes scalar–tensorial in nature [8] and, therefore, these theories are important in the
very early Universe. On the other hand, two important theoretical developments have
been achieved such as, for example, unification models based on superstrings, which natu-
rally associate long-range scalar partners to the usual tensor gravity of Einstein theory [9].
Another motivation for the investigation of scalar–tensor theories is that inflationary cos-
mology in this framework seems to solve the fine-tuning problem and, in this way, give us
a mechanism of terminating inflationary eras [10]. Apart from the solution of this problem,
the scalar–tensor theories by themselves have direct implications for cosmology and for
experimental tests of the gravitational interaction [11] and for this reason, they are relevant
in the investigation of the early Universe.

Among alternative theories of gravity, scalar–tensor theories are perhaps the most
popular ones. As we have pointed out before, in these theories, gravitational effects are
described by both a metric field gµν and a scalar field Φ. A well-known example is the
Brans–Dicke theory [2,12], in which the geometry of the underlying space-time manifold is
assumed to be Riemannian, and the scalar field replaces the gravitational constant being
interpreted as the inverse of a varying gravitational coupling parameter. In addition to
the reasons mentioned above, the scalar–tensor theories are studied because they admit
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key ingredients of string theories, such as a dilaton-like gravitational scalar field that has
a non-minimal coupling to the curvature [13]. On the other hand, a different approach,
in which the scalar field appears as part of the space-time geometry, namely, the Weyl
geometrical scalar–tensor theory, has been discussed recently in the literature [14]. Indeed,
in this new approach, one considers the space-time structure as a very special case of
the framework adopted in the original Weyl unified field theory [15,16], the geometrical
space-time structure being that of a Weyl integrable space-time (WIST) [17–21]. It is important
to remark that other gravity theories in which a scalar field plays a geometrical role have
also been proposed [22–24].

Recently, some theoretical aspects concerning the Weyl geometrical scalar–tensor
theory have been studied, in particular the behaviour of the solutions when ω, the scalar
field’s coupling constant, goes to infinity [25]. The investigation of cosmological vacuum
models for different scalar potentials has also been carried out [26]. In the present article, we
extend this research to include anisotropic models of Kasner type. Here, we take advantage
of some similarities between vacuum solutions of the Weyl geometrical scalar–tensor theory
and those coming from the Brans–Dicke theory. We also examine cosmological solutions in
the presence of matter, a scenario that has not yet been investigated in Weyl geometrical
scalar–tensor theory, and at the same time, we compare the results obtained with similar
solutions already known from general relativity and the Brans–Dicke theory.

The paper is organized as follows. In Section 2, we briefly review Weyl’s original
theory, which inspired the geometrical scalar–tensor approach. In Section 3, the field
equations of the Weyl geometrical scalar–tensor theory are obtained. Then, a Kasner
type solution is exhibited in Section 4, while in Section 5 we work with a homogeneous
and isotropic cosmological model having a perfect fluid as a source, such that we find
an analytical solution for the stiff matter case and we study the other cases using the
qualitative analysis of dynamical systems. Finally, Section 6 is devoted to our conclusions.

2. Weyl’s Theory

In the first scalar–tensor theories, the so-called Jordan–Brans–Dicke theories, it is
assumed, as in general relativity, that the space-time geometry is purely Riemannian. On the
other hand, if the Palatini variational method is applied to deduce the field equations from
the action, then in a large class of scalar–tensor theories, a non-Riemannian compatibility
condition between the metric and the affine connection appears naturally (for a more
general result, see [27]). In this way, we have a theory that establishes the space-time
geometry from first principles, that is, the space-time manifold is dynamically generated
by the choice of the particular coupling of the scalar field in the gravitational sector. In the
case where the action is that of the Brans–Dicke theory, this procedure leads to the so-called
Weyl integrable space-times, a particular version of the geometry conceived by H. Weyl in
his attempt to unify gravity and electromagnetism [15]. Note, however, that here, it is the
scalar field that is being geometrized.

It is true that the Weyl geometry is one of the simplest generalizations of Riemannian
geometry, in which the Riemannian compatibility condition between the metric and the
affine connection is weakened. This was an ingenious way that Weyl devised to intro-
duce a covariant vector field σµ in the geometry, which bears a great similarity with the
electromagnetic four-potential. Weyl went on and introduced the second-order tensor
Fµν = ∂µσν − ∂νσµ, which he interpreted as representing another kind of curvature, namely,
the length curvature. As a consequence of this modification in the Riemannian compatibility
condition, the covariant derivative of the metric tensor does not vanish, as in Riemannian
geometry, and the length of vectors when parallel transported along a curve may change.
However, such theory suffered from a severe criticism by Einstein, who objected that the
nonintegrability of length implies that the rate at which a clock measures time, i.e., its
clock rate, in this case would depend on the past history of the clock. As a consequence
of this fact, spectral lines with sharp frequencies would not appear and the spectrum of
neighbouring elements of the same kind would be different [28]. This became known
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in the literature as the second clock effect (incidentally, the first clock effect refers to the
well-known effect corresponding to the “twin paradox”, which is predicted by special and
general relativity theories).

Weyl’s new compatibility condition is given by ∇αgµν = σαgµν, and is easily verified
that this condition is invariant under the conformal transformation gµν → ḡµν = e f gµν

carried out simultaneously with the gauge transformation σµ → σ̄µ = σµ + ∂µ f , where f
is an arbitrary scalar function. The discovery of this new symmetry is now considered by
some authors as the birth of modern gauge theories [29]. Now, if Fµν = 0 (null second
curvature), which is equivalent to say that the one-form σ is closed (dσ = 0), then there is
no electromagnetic field. In this case, we know that, from Poincaré’s lemma [30], it follows
that there exists a scalar field φ, such that σµ = ∂µφ, and, instead of a vector field σ, we are
left with a scalar field φ, which, in addition to the metric, is the fundamental object that
characterizes the geometry. A space-time endowed with this particular version of Weyl’s
geometry came to be known as a Weyl integrable space-time.

3. The Field Equations

As we have already mentioned, in the Weyl geometrical scalar–tensor theory, the
underlying space-time manifold is that of a Weyl integrable space-time [17]. In this sense,
the Weyl nonmetricity condition involves a purely geometrical scalar field φ and is explicitly
given by [14]

Oαgµν = gµνφ,α. (1)

Moreover, one can define the Weyl connection, whose coefficients in a local coordinate
basis read

Γα
µν = {α

µν} −
1
2

gαβ(gβµφ,ν + gβνφ,µ − gµνφ,β), (2)

with {α
µν} representing the usual Christoffel symbols.

In turn, the field equations of the Weyl geometrical scalar–tensor theory can be written
as [25]

Gµν = −
(ω− 3

2 )

Φ2

(
Φ,µΦ,ν −

gµν

2
Φ,αΦ,α

)
− 1

Φ
(Φ,µ;ν − gµν�Φ )−

gµν

2Φ
V(Φ)− 8πTµν, (3)

�Φ =
1
ω

(
−1

2
dV
dΦ

Φ + V(Φ)

)
, (4)

where here, we are using the field variable Φ = e−φ, ω = const, V(φ) corresponds to the
scalar field potential, and Tµν represents the Weyl invariant energy–momentum tensor
of the matter fields. We denote by Gµν and � the Einstein tensor and the d’Alembertian
operator, respectively, defined with respect to the Christoffel symbols. If V(Φ) = 2ΛΦ, one
can introduce the cosmological constant Λ. However, let us take Λ = 0, and then the field
equations are given by

Gµν = −W
Φ2

(
Φ,µΦ,ν −

1
2

gµνΦ,αΦ,α
)

− 1
Φ

Φ,µ;ν − 8πTµν, (5)

�Φ = 0, (6)

where W = ω− 3
2 . Additionally, we can obtain from (5) and (6) that

Rµν = −8πTµν +
8πT

2
gµν −

W
Φ2 Φ,µΦ,ν −

Φ,µ;ν

Φ
, (7)
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with Rµν denoting the Ricci tensor and T = gµνTµν. Equations (6) and (7) constitute the
field equations we use in the following.

4. Kasner Type Solution

As is well known, the Kasner metric was obtained by the mathematician E. Kasner
in 1921 and represents an exact solution to Einstein’s field equations. It describes an
anisotropic universe without matter, that is, it is a vacuum solution. Historically, interest in
the Kasner solution came from the fact that, although it may have a singularity (“big bang”
or a “big crunch”), an isotropic expansion or contraction of space is not allowed, and this
led to the generic singularity studies, the so-called BKL singularities [31].

The Kasner type solution in the Brans–Dicke theory of gravity is given by [2,32]

ds2 = dt2 + R2
1dx2 + R2

2dy2 + R2
3dz2, (8)

with
Ri = ri(at + b)

pi
1+C , (9)

(i = 1, 2, 3) and the Brans–Dicke scalar field

ϕ = ϕ0(at + b)
C

1+C , (10)

where a, b, ri, and ϕ0 are constants. The relations ∑pi = 1 and

∑p2
i = 1− C(ωC− 2) (11)

between the constants pi, C and the scalar field coupling constant ω are also satisfied.
The space-time given by (8) corresponds to a homogeneous universe, without matter

and rotation, with distinct expansions along the three orthogonal axes, which reflects
anisotropy. Note that if a = 1 and b = 0, Equations (9) and (10) may be written as

Ri = rit
pi

1+C , (12)

ϕ = ϕ0t
C

1+C . (13)

In order to obtain a solution in the Weyl geometrical scalar–tensor theory, let us
consider the following result: a vacuum solution of the Weyl geometrical scalar–tensor
theory can be found if we make the change ω → W = ω − 3/2 in the correspondent
vacuum solution of the Brans–Dicke theory. In fact, the two theories are not physically
equivalent given that in Weyl’s geometrical scalar–tensor theory test particles follow affine
Weyl geodesics (autoparallels) and not metric geodesics as in the case of the Brans–Dicke
theory. Nonetheless, there is a formal equality between the vacuum field equations of the
two theories [14].

Thus, the Kasner type solution in the Weyl geometrical scalar–tensor theory is given
by Equation (12) and

Φ = Φ0t
C

1+C , (14)

where ∑pi = 1 and

∑p2
i = 1− C(WC− 2) = 1− C

[(
ω− 3

2

)
C− 2

]
. (15)

Now, if we choose C =
2

W
, it follows that

∑p2
i = 1. (16)
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Furthermore, (12) and (14) become

Ri = rit
W pi
W+2 = rit[(ω−3/2)/(ω+1/2)]pi , (17)

Φ = Φ0t
2

W+2 = Φ0t[2/(ω+1/2)]. (18)

In the limit ω → ∞, (17) and (18) tend to

Ri = tpi , (19)

Φ = Φ0, (20)

where we have taken ri = 1. On the other hand, from (1) and (2) we find that

∇αgµν = −gµν

(
Φ,α

Φ

)
, (21)

Γα
µν = { α

µν}+
1

2Φ
gαβ
(

gβµΦ,ν + gβνΦ,µ − gµνΦ,β
)
, (22)

by considering the scalar field in the form Φ = e−φ. Thus, when ω → ∞, the space-time
geometry becomes Riemannian as we have

∇αgµν = 0, and Γα
µν = { α

µν}. (23)

Therefore, also taking into account (19) and (20), the Kasner solution of general
relativity is recovered in this limit.

5. A Perfect Fluid Cosmological Model

The Friedmann–Robertson–Walker metric with a flat spatial section is given by

ds2 = dt2 − R2(t)
[
dr2 + r2

(
dϑ2 + sin2 ϑdχ2

)]
, (24)

where R(t) denotes the scale factor. In this cosmological model, the matter content is a
perfect fluid represented by the energy–momentum tensor

Tµν = (p + ρ)uµuν − pgµν, (25)

with p = λρ, 0 ≤ λ ≤ 1, p being the thermodynamic pressure, ρ the energy density, and
uµ = (1, 0, 0, 0) the four-velocity vector field. Then, field Equations (6) and (7) reduce to

3R̈
R

= −4πρ(1 + 3λ)−W
Φ̇2

Φ2 −
Φ̈
Φ

, (26)

R̈
R
+

2Ṙ2

R
= 4πρ(1− λ)− ṘΦ̇

RΦ
, (27)

Φ̈
Φ

+
3ṘΦ̇
RΦ

= 0. (28)

The dot means differentiation with respect to time. Moreover, due to the assumption of
spatial homogeneity, the scalar field Φ is supposed to be a function of t only. Additionally,
with the definitions θ = 3Ṙ

R and Ψ = Φ̇
Φ , one can express (26)–(28) in the form

θ̇ = − θ2

3
− 4πρ(1 + 3λ)− (W + 1)Ψ2 − Ψ̇, (29)
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θ̇ = −θ2 + 12πρ(1− λ)− θΨ, (30)

Ψ̇ = −Ψ2 − θΨ. (31)

By combining (29)–(31), we can derive the equation

θ2

3
− WΨ2

2
+ θΨ = 8πρ. (32)

After some calculations and by using Equations (5) and (6), it is easy to show that

Tµν
;ν =

T
2

Φ,µ

Φ
− Φ,ν

Φ
Tµν, (33)

which reduces to

ρ̇ = −
[
(1 + λ)θ +

(
1 + 3λ

2

)
Ψ
]

ρ (34)

in the context of the cosmological model considered.

5.1. Stiff Matter Solution

Next, we obtain the equations of a dynamic system which lead us to carry out a rich
analysis of the solutions. For this purpose, let us consider the following equation, which
results from (29)–(31):

θ̇ = − (1 + λ)

2
θ2 +

(1− 3λ)

2
θΨ− 3W(1− λ)

4
Ψ2. (35)

This equation, together with (31), constitutes a homogeneous autonomous planar
dynamic system. It is important to note that the solutions of this system, θ(t) and Ψ(t),
must necessarily satisfy the constraint imposed by Equation (32).

Cosmological scenarios modelled by stiff matter have been investigated recently,
particularly in connection with the problem of dark matter [33]. Now, let us consider the
stiff matter case in the geometrical scalar–tensor theory. Then, it follows from (35), in the
case known as stiff matter (λ = 1), that

θ̇ = −θ2 − θΨ. (36)

Clearly, an immediate solution of the system of Equations (31) and (36) is given by
Ψ = −θ, which leads to the particular solution (θ = θ0 , Ψ = Ψ0), θ0 and Ψ0 being constants.
Hence, we have 3Ṙ

R = θ0, Φ̇
Φ = Ψ0, which then leads to

R(t) = R0 exp
(

θ0t
3

)
, (37)

Φ(t) = Φ0 exp(Ψ0t), (38)

where R0 and Φ0 are constants, which we recognize as a de Sitter type solution, with the
scalar field also having an exponential behaviour. Furthermore, from (32), we can find

ρ = − (3W + 4)
48π

θ2
0 . (39)

Now, by defining α = θ + Ψ 6= 0, let us find the general solution for the stiff matter
case. To do this, one can add Equations (31) and (36) to obtain

α̇ + α2 = 0, (40)
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whose solution is
α =

1
t + D

, (41)

where D is a constant. In turn, from Equation (34) with λ = 1, it follows that

ρ̇ + 2αρ = 0, (42)

whose solution is
ρ =

ρ0

(t + D)2 , (43)

with ρ0 constant.
To obtain the expression of θ, let us consider (32) and (43) and use that Ψ = α− θ = 1

t+D − θ.
In this way we are led to

θ =
B

t + D
, (44)

Ψ =
1− B
t + D

, (45)

where

B =
3(W + 1)±

√
3[(3 + 2W)− 16πρ0(4 + 3W)]

4 + 3W
, (46)

while the condition (3 + 2W)− 16πρ0(4 + 3W) ≥ 0 is required to be satisfied.
On the other hand, if we replace (44) and (45) in (32), we obtain

ρ =
1

8π(t + D)2

[
B2

3
− W

2
(1− B)2 + B(1− B)

]
. (47)

The solutions for the scale factor and the scalar field can be obtained by integrating
the expressions θ = 3Ṙ

R and Ψ = Φ̇
Φ , giving the following:

R(t) = R0(t + D)B/3, (48)

Φ(t) = Φ0(t + D)1−B, (49)

with R0 and Φ0 being constants.
It should be noted that the constant B can also be written as

B = 1− 1
4 + 3W

±
√

3[(3 + 2W)− 16πρ0(4 + 3W)]

4 + 3W
. (50)

Thus, for a large W, we obtain

B = 1− 1
3W
±
√

1
3W

(2− 48πρ0) . (51)

Let us now consider that ρ0 = f (W)
24π , f (W) being a function which tends to one when

W is large. Therefore, B takes the form

B = 1− 1
3W

= 1 + O
(

1
W

)
. (52)

Under these conditions, one can obtain from (49) that

Φ(t) = Φ0 + O
(

1
W

)
. (53)
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When Φ behaves as in (53) for a large W, it has been verified that any vacuum solution
of the Weyl geometrical scalar–tensor theory reduces to the corresponding general relativis-
tic solution in the limit W → ∞ [25]. This fact also occurs here, since Equations (48) and (49)
become equal to the Einstein solution

R(t) = R0t1/3, (54)

Φ = Φ0, (55)

for W → ∞ (we take D = 0). Naturally, the geometry of the space-time becomes Rieman-
nian, according to Equations (21)–(23).

5.2. Qualitative Analysis for λ 6= 1

For values of the parameter λ in the interval 0 ≤ λ < 1, we use the qualitative
analysis theory [34], by which many of the general characteristics of the integral solutions
of the system can be studied without working out explicit solutions θ(t) and Ψ(t). For this
purpose, let us start by writing Equations (31) and (35) of the dynamic system as

θ̇ = F(θ, Ψ) = − (1 + λ)

2
θ2 +

(1− 3λ)

2
θΨ− 3W(1− λ)

4
Ψ2, (56)

Ψ̇ = H(θ, Ψ) = −Ψ2 − θΨ. (57)

An equilibrium point of the system, i.e., a solution that occurs when F(θ, Ψ) =
H(θ, Ψ) = 0, is the origin of the phase plane, the point M (θ = 0, Ψ = 0). This solu-
tion represents Minkowski’s space-time, being the only finite equilibrium point that is
significant in the system.

In the qualitative analysis of solutions of Equations (56) and (57), one must construct
the phase diagrams. For this, we make use of the Poincaré compactification method, which
projects the phase plane into a sphere. A second mapping, in turn, projects this sphere
orthogonally onto a disk, whose circumference represents the infinity of the initial phase
plane [34].

5.3. Invariant Rays and Regions of Negative Energy Density

Initially, in our analysis, we obtain the invariant rays of the dynamic system defined
above. For this, let us make the change of variables θ = r cos β and Ψ = r sin β, r and β
being polar coordinates of the plane. In this way, we find

θ̇ = r2
[
− (1 + λ)

2
cos2 β +

(1− 3λ)

2
cos β sin β− 3W(1− λ)

4
sin2 β

]
= r2F(β), (58)

Ψ̇ = r2
[
− sin2 β− cos β sin β

]
= r2H(β). (59)

Now, from the relations between the variables θ, Ψ, r, β, and Equations (58) and (59),
it can be shown that

β̇ = r
(
−F(β) sin β + H(β) cos β

)
. (60)

Next, we obtain the invariant rays, which, by definition, consist of solutions where the
ratio Ψ

θ = tan β = const. Thus, putting β̇ = 0 in expression (60) leads to

tan β =
H(β)

F(β)
. (61)
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Again, with the help of Equations (58) and (59), it follows from (61) that

tan β

(
W
2

tan2 β− tan β− 1
3

)
= 0. (62)

For W < − 3
2 , the roots of (62) are β1 = 0 and β2 = π. The solutions representing

these invariant rays appear in phase diagrams such as curves AM and MA′, respectively
(see Figure 1, for example). When W > − 3

2 , in addition to the roots β1 and β2 already
mentioned, there are four more:

β3 = tan−1

[
−3

2

(
1 +

√
1 +

2W
3

)]−1

, β4 = β3 + π, (63)

β5 = tan−1

[
−3

2

(
1−

√
1 +

2W
3

)]−1

, β6 = β5 + π, (64)

which correspond to the curves BM, MB′, CM, and MC′, respectively (see Figure 2, for in-
stance). These invariant rays depend on W and, as its value increases, the following
behaviour is observed: the line BB′ rotates anticlockwise approaching the θ-axis, while the
line CC′ moves clockwise tending to make an angle of −180◦ with the positive direction of
the θ-axis. It should also be noted that if W = − 3

2 , the lines BB′ and CC′ coincide, making
an angle of −33.69◦ with the θ-axis.

Figure 1. W < − 3
2 (ω < 0).

To continue, let us check if there are regions of the phase diagrams in which ρ < 0.
In these regions, the solutions should not be admitted as physical solutions, at least classically.
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Figure 2. − 3
2 < W < − 4

3 (0 < ω < 1
6 ).

We start by replacing Ψ = θ tan β in (32). We thus obtain

−θ2
(

W
2

tan2 β− tan β− 1
3

)
= 8πρ. (65)

It is easy to verify, taking into account (62), that the invariant rays lying on the lines
BB′ and CC′ represent vacuum solutions. Moreover, we have no region with a negative
energy density if W < − 3

2 . On the other hand, when W > − 3
2 , we find regions where ρ < 0

that are delimited by the invariant rays that lie on the lines BB′ and CC′. In the next section,
these regions are represented as dotted regions in the phase diagrams, which widen as
the value of W increases, tending to leave the classically allowed solutions localized in a
narrow region that includes the θ-axis.

5.4. Phase Diagrams

Now, one can obtain the basic representation of Weyl’s cosmological solutions on the
Poincaré sphere (the phase diagrams). This allows us to make a qualitative analysis of the
solutions at infinity. First, let us make some comments about the diagrams (Figures 1–3),
which are valid for λ 6= 1 and are separated into intervals of W (or ω)1.

Initially, for W < −3/2 (see Figure 1), the closed curves appearing in the diagram
represent nonsingular cosmological models, which start in the infinitely distant past from
Minkowski’s space-time (the point M (0, 0)) and tend to it again in the infinitely distant
future; these universes present an initial phase of contraction, and then move into an
expansive phase. For some of these solutions, the scalar field Φ is increasing (if Ψ > 0),
while for the others, it is decreasing, in which case Ψ < 0. On the other hand, it is possible to
have singular solutions with a constant scalar field (Ψ = 0): they are represented by the AM
curves, which correspond to solutions that start with a “big bang”, and then undergo an
expansive phase, finally tending to Minkowski’s space-time, and the MA′ curves, solutions
that start from Minkowski’s space-time (in the infinitely distant past, with the cosmic time
t→ −∞), and follow a contraction regime until the final collapse.
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Figure 3. W > 0 (ω > 3
2 ).

In fact, the curves AM and MA′ also correspond to solutions of general relativity,
since from (56) with Ψ = 0, it follows that

θ̇ = − (1 + λ)

2
θ2, (66)

whose solution is
1
θ
=

(1 + λ)

2
t + δ, (67)

where δ is an arbitrary constant. Therefore, by setting δ = 0, we obtain the known
scale factor

R(t) = R0t2/3(1+λ). (68)

In Figure 2, we consider the interval −3/2 < W < −4/3. In this diagram, there are six
invariant rays: AM, MA′, BM, MB′, CM, and MC′. It is interesting to recall that the dotted
regions in the diagram contain solutions with ρ < 0, so that the curves restricted to these
regions do not correspond to physical models. Furthermore, solutions lying on the lines
BB′ and CC′ are vacuum solutions (ρ = 0), possessing singularities in their geometries,
i.e., they are “big bang” models (BM and CM) or models that collapse (MB′and MC′),
but with the scalar field varying. In the region where ρ > 0, one finds solutions similar to
those in the previous diagram and also expanding universes with decreasing Φ (BM) and
collapsing universes with increasing Φ (MB′).

For W > − 4
3 , it turns out that there are no nonsingular solutions in the diagrams.

In Figure 3 (W > 0), in addition to solutions that appeared in Figure 2 when ρ ≥ 0, we
now observe the existence of expanding universes with increasing Φ (C′M) and collapsing
universes with decreasing Φ (MC). As mentioned before, if W increases, the line BB′

moves anticlockwise approaching the line AA′, while the line CC′ moves clockwise, also
approaching AA′; as a consequence, the “forbidden” regions (sectors MB′C′ and MBC),
where ρ < 0, become wider. In the limit W → ∞, the line AA′ remains in the region where
the energy density ρ is positive, representing the solutions of general relativity given by (68).
Actually, for each value of W, the line AA′ contains the solutions (68) because Φ = const
(which implies Ψ = 0) is a solution to Equation (6).



Universe 2023, 9, 283 12 of 14

In most of the diagrams, the equilibrium points do not appear as isolated points.
In these cases, they correspond to multiple equilibrium points, constituting the invariant
rays. In the other cases, they appear on the Poincaré sphere as points at the infinity, whose
nature are indicating in Table 1 below.

Table 1. Behaviour of the equilibrium points on the Poincaré sphere.

Intervals A, A′ B, B′ C, C′

W < −3/2 Saddle points - -

−3/2 < W < −4/3 Saddle points Two-tangent nodes Saddle points

W > −4/3 (W 6= 0) Saddle points Two-tangent nodes Two-tangent nodes

6. Conclusions

In this paper, we sought to find cosmological solutions in the context of the Weyl
geometrical scalar–tensor theory. The vacuum field equations of this theory are formally
identical to those of the Brans–Dicke theory, so we were able to obtain a Kasner type
solution from the corresponding solution in the Brans–Dicke theory. We also found that,
in the limit ω → ∞, the Kasner solution of general relativity was recovered. On the other
hand, we investigated the existence of solutions for homogeneous and isotropic models
sourced by a perfect fluid. In this case, we found an analytic solution for stiff matter
and also showed that the corresponding solution of general relativity could be obtained in
the limit W → ∞. For values of the parameter λ 6= 1, no analytical solution was possible,
and we used dynamical systems theory to display the phase diagrams of the solutions
in intervals of W (or ω). When W > 0, we highlighted solutions representing universes
with ρ > 0 and an increasing geometric scalar field, which started with a “big bang” and
expanded to a final phase that tended toward Minkowski’s space-time (the curves C′M).

An interesting fact regarding the phase diagrams examined here is that there was
no difference between the cosmological models when different values of the parameter
λ were considered. In that sense, it can be seen that Equation (62), which determines the
invariant rays, did not depend on λ. Moreover, it should be noted that in the present
context, matter was not a source of the geometric scalar field Φ in Equation (6). By contrast,
in the Brans–Dicke theory, the scalar field equation is

�ϕ =
8πT

2ω + 3
, (69)

where, as is well known, T denotes the trace of the energy–momentum tensor. For the case
of a perfect fluid source, T = T(λ) and T = 0 only when λ = 1

3 . As a consequence, in the
present scalar–tensor theory, cosmological models differed according to the value of the
parameter λ [35].

In this work, we did not consider the presence of the cosmological constant, nor did
we take any potential of the scalar field into account. Because of this, we did not find
any solution describing the acceleration of the universe. Incidentally, models describing
cosmological scenarios in which the acceleration of the cosmos is driven by a scalar field,
quintessence models [36,37] and Chaplygin gas models [38,39] among others [40], have
been investigated with interest. Two lines of research that we leave for further work are
(i) an investigation of the role the geometric scalar field could play in approaching the
problem of dark matter and (ii) considering scenarios where the cosmological constant is
present with the hope that they can give some light to the problem of dark energy.
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1 The cases W = − 3

2 , W − 4
3 and W = 0 were not analysed because they contain multiple equilibrium points or singularities.
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