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Abstract: Upcoming LIGO–Virgo–KAGRA (LVK) observational runs offer new opportunities to
probe the central engines of extreme transient events. Cosmological gamma-ray bursts (GRBs) and
core-collapse supernovae (CC-SNe), in particular, are believed to be powered by compact objects, i.e.,
a neutron star (NS) or black hole (BH). A principal distinction between an NS and BH is the energy
reservoir in the angular momentum EJ . Per unit mass, this reaches a few percent in a rapidly rotating
NS and tens of percent in a Kerr BH, respectively. Calorimetry by EGW on a descending chirp may
break the degeneracy between the two. We review this approach, anticipating new observational
opportunities for planned LVK runs. GRB170817A is the first event revealing its central engine by a
descending chirp in gravitational radiation. An accompanying energy output EGW ' 3.5%M�c2 is
observed during GRB170817A in the aftermath of the double neutron star merger GW170817. The
progenitors of normal long GRBs, on the other hand, are the rare offspring of CC-SNe of type Ib/c.
Yet, the extended emission to SGRBs (SGRBEEs) shares similar durations and the same Amati-relation
of the prompt GRB emission of LGRBs, pointing to a common central engine. The central engine of
these extreme transient events has, hitherto, eluded EM observations alone, even when including
neutrino observations, as in SN1987A. The trigger signaling the birth of the compact object and
the evolution powering these events is expected to be revealed by an accompanying GW signal,
perhaps similar to that of GRB170817A. For GRB170817A, EGW exceeds EJ in the initial hyper-massive
neutron star (HMNS) produced in the immediate aftermath of GW170817. It identifies the spin-
down of a Kerr BH of mass ∼2.4M� defined by the total mass of GW170817. This observation is
realized in spectrograms generated by Butterfly matched filtering, a time-symmetric analysis with
equal sensitivity to ascending and descending chirps, calibrated by signal injection experiments.
It is implemented on a heterogeneous computing platform with synaptic parallel processing in
F90/C++/C99 under bash. A statistical significance of 5.5 σ is derived from multi-messenger event
timing, based on a probability of false alarm (PFA) factored over a probability p1 = 8.3 × 10−4

by causality and a p-value p2 = 4.9× 10−5 of consistency between H1 and L1 observations. For
upcoming observations, this approach may be applied to similar emissions from SNIb/c and GRBs
in the Local Universe, upon the mass-scaling of present results by the mass of their putative black
hole-central engines.

Keywords: black holes; gravitational waves; gamma-ray bursts

1. Introduction

With the detection of compact binary coalescence, which is well-established by LIGO–
Virgo–KAGRA (LVK) [1–3], advancing search methods promise astronomical observations
in a radically new window to unmodeled gravitational-wave (GW) transient sources. The
evolving Universe is rife with extreme transient sources associated with the endpoints of
massive stars and their compact stellar mass remnants, i.e., neutron stars (NS) and black
holes (BH). Stellar mass BHs are believed to form in the core collapse of massive stars at
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the tail of the Salpeter stellar initial mass function [4]. Those observed with LIGO–Virgo–
KAGRA (LVK) are in binaries sufficiently compact to merge within the Hubble time and
appear to originate in the late-time Universe, no earlier than around the peak of the cosmic
star formation rate [5]. LVK observations include a few mergers of double neutron star
(DNS) and NS-BH systems. The DNS merger GW170817 stands out for its associated
kilonova AT2017gfo and GRB170817A [6–9], providing the first member of the upcoming
joint EM-GW surveys expected from upcoming LVK observational runs. With improved
detector sensitivity, upcoming runs offer new opportunities to probe the formation and
evolution of the central engines of core-collapse supernovae (CC-SNe) and gamma-ray
bursts (GRBs).

Gamma-ray bursts were discovered serendipitously [10] as non-thermal high-energy
transient events with a bimodal distribution in duration, isotropically distributed over
the sky [11–14]. They appear as short (T90 . 2 s) and long GRBs (T90 & 2 s), mirrored
in relatively hard and soft extended spectra, respectively, with the latter satisfying the
Amati-relation [15] between the peak energy (Ep) and isotropic equivalent energy output
(Eiso), and related correlations [16–21]. While the prompt GRB emission has been attributed
to dissipation in shocks derived from ultra-relativistic baryon-poor jets (BPJs) (e.g., [22–24])
and references therein), our description is mostly phenomenological and a detailed theoret-
ical modeling is still lacking. Nevertheless, a BH appears favored over an NS in powering
their central engines [25–28]. BPJs may be produced in a black hole–torus system [29–32]
by virtue of baryon purity along open magnetic flux tubes subtended over the black hole
event horizon [33,34].

GW170817 demonstrates a DNS origin of the short GRB GRB170817A [6,35], while
normal long GRBs are known to be associated with the envelope-stripped CC-SNe of type
Ib/c (e.g., [36]). The latter follows the identification of their cosmological origin [37–41]
in the endpoint of massive stars [42–48]. Some short GRBs come with long-duration
extended emissions (SGRBEEs), which satisfy the aforementioned Amati-relation of long
GRBs [49,50]. GRB060614 stands out with a duration of T90 = 102 s (15–350 keV) [51–55].
With no evidence of an associated supernova [51], its initial hard spike, characteristic of
short GRBs, points to a common progenitor, believed to be a merger similar to GW170817,
as opposed to a failed supernova. Attributing its initial short hard spike to the formation of
its central engine, this would be obscured in a failed supernova by the opaque remnant
stellar envelope. By similarity in duration and spectra of EE to SGRBs and the prompt GRB
emission of LGRBs derived from mergers and, respectively, CC-SNe, these high-energy
emissions appear to derive from a common central engine. Their long durations point to
a secular time scale for the lifetime of their central engines, i.e., a dissipative rather than a
dynamical time scale, such as the fall-back of matter from debris or, respectively, a remnant
stellar envelope. This timescale possibly represents the lifetime of the spin of a rapidly
spinning Kerr BH interacting with the surrounding high-density matter [56].

Corrected for beaming, the prompt GRB emission of LGRBs has true energy in gamma
rays narrowly distributed about [57–59].

Eγ ' 9× 1050erg. (1)

LGRBs show a positive correlation of luminosity with variability [60], the latter down
to time scales δtvar = O(ms) [25]. The extreme luminosity of GRBs and their possible
counterparts in sources of ultra-high energy cosmic rays (UHECRs) may, in fact, originate
from the intermittent behaviors of their central engines (e.g., [61–65]). The dimensionless
measure of energetic time-variability [66,67]

αE =
Eγ

L0δtvar
= O

(
10−6

)
(2)

far exceeds the same of Eddington-limited sources, such as the micro-quasar GRS1915+105 [68],
showing their central engines to be extremely compact. Here, L0 = c5/G denotes the unit
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of luminosity in general relativity, given by the velocity of light c and Newton’s constant
G. Combined, ms variability and (2) point to a central engine powered by an NS or stellar
mass BH [33,69–73].

The energetic time-variability (2) ties in well with a stellar mass compact object pro-
duced in the core collapse of massive stars, when the nuclear burning phase ceases. Notably,
pulsars in supernova remnants are neutron stars, e.g., Vela and the Crab [74], and some
may be found in NS binaries, such as the Hulse–Taylor system PSR 1913+16 [75] and the
relativistic binary PSR J0737-3039 [76].

While the identification of pulsars with rotating neutron stars is unambiguous, the
electromagnetic spectrum offers compelling but inconclusive evidence of the nature of the
central engine of GRBs despite their common origin in (the remnants of) massive stars.
From the first principles, a BH cannot act similar to a pulsar by the inherent alignment
of the magnetic moment and spin [77,78]. On account of the Kerr metric [79], however,
the energy reservoir per unit mass in the angular momentum EJ/M of a rotating BH can
vastly “outsize” that of a rapidly spinning NS by an order of magnitude. This offers the
potential to break the degeneracy between the two, provided a suitable fraction of EJ
is channeled into radiation “unseen”—beyond the electromagnetic spectrum—given the
existing constraint (1).

LVK observations offer, for the first time, a means to extend our probe of central
engines to all current radiation channels, including gravitational radiation.

Searches for unmodeled GW emissions may be approached in spectrograms, covering
the bandwidth of sensitivity of the LVK detectors. Candidate GW transient emissions may,
herein, appear as chirps, ascending from mergers or descending in the spin-down of a
compact object, notably a neutron star or a black hole.

This appears opportune for extreme transient events powered by a BH interacting
with surrounding high-density matter, when gravitational radiation may be the dominant
channel of emission with the accompanying output in MeV neutrinos and electromagnetic
radiation [34]. Starting from the progenitor, we look for the trigger signaling the birth of
the central engine. Of particular interest is the DNS merger GW170817 [6] and, perhaps,
the more numerous energetic SNIb/c associated with LGRBs [80,81].

At the relative proximity of D ' 40 Mpc [82,83], GW170817 produces a compact
object triggering the onset of GRB170817A [6–9]. Extended emissions EGW in gravitational
radiation may tell us about the nature of the central engine of GRB170817A —NS or BH—in
addition to the physical properties of the progenitor GW170817 [84–87], realizing a key
objective of multi-messenger observations [88,89].

GW170817 reveals the extended evolution in complex multi-messenger emission, which
includes the kilonova AT2017gfo and GRB170817A of duration T8−70keV

90 = (2.9± 0.3) s [90],
following this DNS merger at time tm [91],

NS + NS → HMNS → BH + AT2017gfo + GRB170817A + · · · , (3)

where dots refer to emissions in MeV neutrinos and gravitational radiation. AT2017gfo has
been attributed to a powerful MeV neutrino-driven wind from the initial hypermassive
NS (HMNS) produced in the immediate aftermath of GW170817, although additional contri-
butions following delayed gravitational collapse cannot be excluded by (neutrino-driven)
neutron-rich winds from a relatively lower temperature torus [33,34] around a BH [92–96].

A LIGO gravitational-wave observation of (3) requires a sensitivity close to the limit
defined by the strain-noise amplitude of the detectors conforming to the theory of matched
filtering [97]. In particular, the ascending chirp GW170817 may be followed by an unmod-
eled descending chirp characteristic for the spin-down of the HMNS [98–100] and/or the
compact object powering GRB170817A. A suitable starting point to probe for unmodeled
signals in (3) is provided by the Butterfly matched filtering over a bank of time-symmetric
templates of intermediate duration, originally developed to identify a broadband Kol-
mogorov spectrum in bright GRBs of the BeppoSAX catalog at high frequencies [101]. This
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approach realizes equal sensitivity to ascending and descending chirps at a sensitivity on
par with CBC when this bank is sufficiently dense in ( f , ḟ ): the frequency f and its time
rate-of-change ḟ , suitably accelerated by heterogeneous computing [102].

We quantify the above-mentioned trigger by event timing. Given the uniform prior on
timing in astrophysics on time scales less than a Hubble time and in instrumentation, event
timing produces estimates of significance expressed in terms of the probability of false
alarm (PFA): a type I error, given the null hypothesis of the background, assuming no event.
Accurate event-timing parameterization is derived from probability density functions
(PDFs), particularly for the start times ts of burst events. Combining statistically indepen-
dent PFAs requires distinguishing between continuous and discrete stochastic variables
(e.g., [70,103–106]). This is opportune when event timing extends over the mean and the
difference of observations across two detectors, notably LIGO H1 and L1. Equivalent
to a unitary transformation given by the rotation over π/4, this generates statistically
independent PFAs. A leading-order interpretation of results derives from energy EGW and
frequency in the gravitational-wave emission at hand, subject to priors, such as the total
mass-energy of the system and limits on the mathematical–physical properties of HMNS
and Kerr BHs.

In this review, we revisit a recent direct detection of a descending chirp in gravitational
waves during GRB170817A and the observational consequences for its central engine. Given
the upcoming LVK observations, we emphasize the methods of analysis by anticipating
new opportunities to probe the central engines of GRBs and associated SNIb/c in the
Local Universe, given the significant improvement in sensitivity in upcoming LVK runs.
Accordingly, this review is organized as follows:

• The spin energy in the gravitational collapse of the initial HMNS (e.g., [100,107,108]),
to a Kerr black hole (Section 2);

• Event timing in multi-messenger observations (Section 3);
• Observing GW transient sources in time-symmetric spectrograms (Section 4);
• What triggered GRB170817A following GW170817? (Section 5);
• High-resolution event timing produced by exascale computing (Sections 6–8).

Sections 7 and 8 are included for completeness, closely following the original work
in [109].

In Section 9, we conclude with a discussion on observational consequences and an
outlook on possibly similar approaches to study the central engine of GRBs and SNIb/c in
the Local Universe with upcoming LVK observations in joint EM-GW observations.

2. Gravitational Collapse of an HMNS to a Kerr Black Hole

The multi-messenger events SN1987A and GRB170817A both have known progenitors:
the blue supergiant (Sanduleak-69 202) in the LMC at a distance of 50 kpc [110,111] with an
associated MeV neutrino burst [112,113] and, respectively, from the merger event GW170817
of a double neutron star (DNS). They have the initial formation of a (hyper)massive
NS in common, whose fate is inconclusive based on these progenitor data alone. For a
complete interpretation, it is essential, however, to determine its continuing evolution. (This
includes its potential prior evolution in the case of SN1987A, below). A continued (delayed)
gravitational collapse to a BH may have dramatic implications for the central engine
powering the supernova explosion and, respectively, GRB170817A, given the principal
distinction in the energy reservoir in the angular momentum EJ of an HMNS [114] and a
Kerr BH (e.g., [115]). After all, classical mechanics teaches us that the prompt gravitational
collapse increases EJ , preserving mass M and angular momentum J.

In (3), EJ gradually decreases during the merger phase GW170817, reaching the first
minimum at coalescence to an HMNS. If long-lived, EJ may continue a decline upon
radiating baryon-rich winds and, perhaps, gravitational radiation when sufficiently non-
axisymmetric deformations are present. Any loss of stability, however, by spin-down,
cooling, and internal re-distribution of J, may result in the delayed gravitational collapse
to a BH. If so, this enhances EJ as the following estimate shows. Conserving M and J in
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the prompt gravitational collapse preserves the specific angular momentum a = J/M of
the newly formed black hole and, hence, the dimensionless Kerr parameter a/M = sin λ.
The spin energy E−J ' (1/2)JΩ of the HMNS increases to E+

J = 2Mc2 sin2(λ/4) [56,79].
Specialized to GW170817, we estimate [109]

E+
J

E−J
=

(R/Rg)2

10 cos2(λ/4) cos2(λ/2)
' 2.5

(
R

18 km

)2
, (4)

where J = IΩ for the moment of inertia I ' (2/5)MR2 of the HMNS with the gravitational
radius Rg = GM/c2, radius R, and angular velocity Ω. Here, G is Newton’s constant and
c is the velocity of light, and we ignore further enhancement from, e.g., hyperaccretion
(e.g., [116,117]). This enhancement sets the stage for potentially significant extended emis-
sions EGW by coupling to non-axisymmetric high-density matter surrounding the black
hole at relatively moderate gravitational-wave frequencies [34], distinct from what might
derive directly from the progenitor HMNS.

Previously, we reported on the direct detection of a descending chirp in gravitational
radiation during GRB170817A [118]. Starting between the time of merger and the onset of
GRB170817A, its total energy output [81]

Egw = (3.5± 1)%M�c2 ' 6.3× 1052 erg (5)

is emitted at gravitational-wave frequencies fgw . 700 Hz. For quadrupole gravitational-
wave emissions, (5) is to be seen against the estimated bound on E−J in the spin energy of
the initial HMNS,

E−J =
π2

5
f 2
gw MR2 . 1.6× 1052

(
M

2.5M�

)(
R

18 km

)2
erg. (6)

With (5) exceeding (6) by a factor of about 4, even at a maximal radius R, Equation (5)
breaks the degeneracy between the HMNS and a BH. This holds true especially given the
start time ts . 1 s of (5), the post-merger to GW170817, when neutrino cooling and internal
dissipation are expected to produce a uniform rotator [119]. In contrast, Equation (5) is
consistent with EJ radiated off in the spin-down of a Kerr BH against a non-axisymmetric
high-density torus [81].

The above shows the power of calorimetry in gravitational radiation, breaking the
degeneracy between an (HM)NS and BH formed in continuing gravitational collapse.
Indeed, EM calorimetry falls woefully short; the combined output of GRB170817A and
AT2017gfo [120–124] is limited to

EEM ' 0.5%M�c2. (7)

Even so, EM observations provide us with crucial information on event timing.

3. Event Timing in Multi-Messenger Observations

SN1987A is instructive once again, for its similar arrival times of the MeV neutrino
burst in Kamiokande II and IMB [112,125,126], signaling the core collapse of its massive
stellar progenitor, well before the optical light of this type II supernova explosion in
the LMC at a distance of about 50 kpc. Likewise, GW170817 is picked up by LIGO H1
and L1 detectors, essentially simultaneously (L1 slightly before H1) to the progenitor of
GRB170817A in NGC4993 at a distance of 40 Mpc. (Accompanying the MeV neutrino
emission is a posteriori undetectable). These two delay times represent causality between
the progenitor star, trigger, and the ensuing events: SN 1987A and, respectively, the binary
progenitor of the ensuing high-energy transient GRB170817A.

While consistent, the two multi-messenger datasets in SN1987A and GRB170817A do
not necessarily cover the complete evolution from the progenitor to the final remnant.
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Moreover, Equation (3) shows an additional kilonova AT2017gfo, derived from neutron-
rich winds in evolution after the merger, which may include the delayed gravitational
collapse to and evolution of a rotating black hole. SN1987A might have had two precursor
triggers in the MeV emission (see [113]). A low-count but potentially significant MeV
neutrino burst was picked up by the Liquid Scintillation Detector (LSD) and KII a few hours
prior to the main KII-IMB MeV neutrino burst (reviewed in [127,128]). It may suggest a
possible two-stage process, starting with the formation of a DNS to radiate off the excess
angular momentum in the gravitational radiation before coalescence into a (proto)-NS
producing the primary MeV neutrino burst [126].

3.1. The Gap Time tg between GRB170817A and Its Progenitor GW170817

A complete observation covering the entire evolution from the progenitor to the final
remnant in (3), therefore, may involve additional precursor GW signals. In particular, the
true trigger of GRB170817A may be defined by a gravitational-wave signal that starts in the
gap between the merger GW170817 at tm and the time-of-onset of GRB170817A at tGRB,

tg = tGRB − tm ' 1.7 s. (8)

This gap time may be accounted for by the sum of the lifetime of the HMNS on the basis
of the duration tw of the MeV neutrino wind powering AT2017gfo [129] and a delay time
∆tGRB between the observed time-of-onset tGRB of GRB170817A,

tg = tw + ∆tGRB. (9)

Following the gravitational collapse of the HMNS, we identify ∆tGRB with the relativistic
delay time between GRB170817A and the start time ts ' tm + tw of the gravitational-wave
emission signaling the birth of its engine. Attributing GRB170817A to a dissipative front at
a distance r from the central engine, propagating at an angle θ relative to the line-of-sight
to the observer, ∆tGRB = (1− β cos θ)r/c; thus,

r =
c∆tGRB

(1− β cos θ)
≤ c∆tGRB ×min

[
2Γ2,

1
1− cos θ

]
, (10)

assuming the same velocity of propagation for both gravitational waves and electromag-
netic radiation (e.g., [130,131]) (also see [22]).

Assuming θ . 1/Γ for a Lorentz factor Γ of the ultra-relativistic jet powering the GRB,
∆tGRB ' r/2cΓ2 (cf. [23,132]). However, GRB170817A is likely seen off-axis at θ ' 20o [133].
Estimating r, this approximation may not apply, and the more conservative second term on
the right of (10) must be used instead.

Assuming AT2017gfo to be mostly powered by the MeV neutrino-driven neutron-rich
wind from the initial HMNS, its “blue” component [134,135] implies a finite lifetime of
this HMNS of about tw . 1 s [129,136–138]. (see [139–142] for a possibly long-lived super-
massive NS remnant). This still leaves a positive delay time 0 < tg − tw . 1 between the
gravitational collapse of the HMNS and GRB170817A, here identified with the relativistic
time delay (10). We proceed with the time of formation of the central engine of GRB170817A,
i.e., at a preceding trigger time ts,

C1 : ts − tm ε G (11)

where G = [tm, tGRB] denotes the interval of (8) (Figure 1) with an observable descending
chirp (Figure 2, Section 5) starting at

ts − tm = (0.92± 0.083) s, (12)

based on the mean of ts, inferred from an independent analysis of H1 and L1 data
(Section 8). This delay time of the gravitational collapse (12) is indeed consistent with
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tw = (0.98± 0.3) s [129] of the HMNS inferred from AT2017gfo [24,81,129,143–148] (re-
viewed in [9]).

Figure 1. Schematic of event timing in GW170817-GRB170817A, where tm denotes the merger time
and tGRB is the time-of-onset of the accompanying GRB170817A following a gap tg ' 1.7 s (bottom).
By causality, the central engine of GRB170817A forms in this gap: tm < ts < tGRB, with a potentially
accompanying output EGW , provided ts is resolved at a sufficiently high resolution (σts � tg). The
initial HMNS formed in the immediate aftermath of GW170817 experiences gravitational collapse to
a black hole disk or torus system if EGW exceeds the canonical bounds on the maximal spin energy of
the HMNS, given the observed frequency in gravitational radiation (4). (Reprinted from [109]).

Figure 2. PDF(ts) (blue) of the start time ts in a descending chirp in gravitational radiation with
duration ∼3.7 s contemporaneous with GRB170817A (T8−70keV

90 ' (2.9± 0.3) s [90]). The delay time
ts − tm ' 0.92 s (updated from [118]) satisfies causality (11) with σts � tg, carrying PFA (14). This
delay is consistent with the lifetime of the HMNS (green, [129]). By energy EGW and frequency fGW ,
it reveals black hole spin-down in the central engine of GRB170817A, following rejuvenation in
gravitational collapse of the initial HMNS. Estimates of the lifetime of the HMNS are included (as
reviewed in [9]). (Reprinted from [109]).

Combined with Γ ' 70 [133], ∆tGRB = tg − ts ' 0.8 s, we arrive at (cf. [149])

0.03 AU . r � 16 AU (13)

for 1� θ . 20o, where AU = 1.5× 1013cm. For the first time, EM-GW observations hereby
constrain (10), which is central to the process of prompt GRB emissions.

3.2. Event Timing by the Trigger Time ts of GRB170817A

In searches for gravitational-wave emissions triggered by gravitational collapse, Equa-
tion (11) defines the aforementioned gap condition, providing a causality constraint on ts
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with a uniform prior. These priors are considered canonical for timing in astrophysics,
(specifically over time scales less than a Hubble time) and are also widely adopted in
instrumentation. Over an observational time T, Equation (11) hereby carries PFA1—a type I
error—for it to be satisfied by mere chance under the null hypothesis (H0) of the stationary
detector noise,

p1 =
tg

T
. (14)

A specific implementation involves an indicator function χ(t) that marks an event time
te, here, the start time ts of a candidate’s emission feature, according to a global maximum
of χ(t) over the observation time T. χ(te) is a continuous stochastic observable, where te
is well-defined and unique. Under the null hypothesis, te is uniformly distributed over
[0, T], and (11) is satisfied by mere chance with probability p(te|H0) = 1/n, following a
partitioning of [0, T] over n = T/tg bins. This produces PFA (14).

In contrast, gravitational-wave emissions from a putative central engine of GRB170817A
(H1) change our expectation to p(te|H1), with a bias to (11), provided that χ(t) is suitably
devised to pick up its emission. Accordingly,

p(te|H1) ≥ p(te|H0) (15)

for te ε G, depending on the signal-to-noise ratio (SNR). A Monte Carlo simulation of
Pr(te ε G) illustrates a function of the SNR, where te is the location of the maximum of χ(t)
in data over n bins given by the sum of noise plus a signal from a source at G in a selected
bin [109]. In the absence of a signal, this probability reduces to the PFA, which, here, is
equal to the chance of winning a single bet in European roulette (e.g., [150]).

Event timing by (11) produces a PFA (14) fixed by context; here, it is GW170817-
GRB170817A. This is quite different from PFAs inferred from a statistic in a continuous
observable, such as SNR. In particular, (14) does not involve numerical or observational
parameters, such as trial factors, provided that (11) applies. The latter requires that the
measurement uncertainty in te be small relative to tg, i.e.,

σts−tm � tg � T, (16)

where σts−tm ' σts is derived from the PDF(ts) defined by the measurement at hand
(Section 7). In this sense, (11) represents a discrete event-timing condition. The minimum
of Pr(ts − tm ε G), PFA p1 (14) is an ordinary probability that can be easily combined with
other PFAs [151–153]. Box 1 highlights some key elements of this section.

Box 1. The delayed trigger time ts of GRB170817A.

• GW170817 initially produced an HMNS, evidenced by the kilonova AT2017gfo,
followed by GRB170817A across a duration gap of tg = tGRB − tm ' 1.7 s,
containing the time of the gravitational collapse of the HMNS to a BH, ts.

• The black hole is initially rapidly spinning, as evidenced by an output EGW '
3.5%M�c2 in fGW . 700 Hz, exceeding the spin energy E−J of the HMNS.

• The EM-GW event timing shows tight consistency in the lifetime tw = (0.98± 0.3) s
of the HMNS [129] and the start time ts − tm = (0.92± 0.083) s of the extended
emission (Figure 2).

• Based on EM-GW data, a relativistic time delay (10) shows that GRB170817A is
derived from a dissipative front at a distance (13) from the central engine.
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4. Observations of GW Transient Emission in Time-Symmetric Spectrograms

The prototypical spectrograms are produced by time-sliced fast Fourier transforms
(FFTs). High-resolution spectrograms are obtained by applying a filtering process that
covers the effectively dense cover of the desired bandwidth by discrete frequencies, subject
to the Nyquist sample rate criterion. When applied to searches for transient signals in noisy
data [97,154], a further restriction is derived from the choice of the time slice τ: a finite
bandwidth ∆ f ' 1/τ associated with each frequency is derived from the time–frequency
uncertainty relation,

τ∆ f & 1. (17)

This sensitivity allows for the detection of transient signals characterized by time-varying
frequencies f (t) with a finite slope ḟ = d f (t)/dt up to ∆ f /τ ' 1/τ2. Time-sliced FFT
hereby realizes a time-symmetric sensitivity, improved by a factor

√
N with N ' f τ,

according to the theory of matched filtering. When ḟ is large, the condition τ . 1/
√∣∣ ḟ ∣∣

limits τ. According to the theory of matched filtering, the signal-to-noise improvement is
hereby limited to

√
N . f

1
2
∣∣ ḟ ∣∣−1/4. (18)

Figure 3 shows the spectrograms by the time-sliced FFT to H1- and L1-data of GW170817.

Figure 3. (Upper and middle panels) Spectrograms (32 s) of about GW170817 for H1 and L1 were
generated by conventional time-sliced FFT (using GWXPLORE [149]). The ascending chirp produced
by the merger in the run-up to coalescence is clearly expressed. Following the coalescence event, a
descending chirp can be distinguished during GRB170817A. (lower panel) This outcome serves as
an illustration of a time-symmetric, unmodeled observation of a transient GW event. (Reprinted
from [149]).
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For instance, a chirp-changing frequency by a few hundred Hz over the course of a
few seconds has a slew rate of ḟ ' 100 s−2 and, hence, τ . 0.1. For frequencies below
1 kHz, (18) leaves an improvement of no more than a factor of a few.

4.1. Butterfly Matched Filtering

To go beyond (18), we circumvent (17) by considering an alternative filter bank of
chirp-like templates of frequencies with finite ḟ , with compact support over a choice of τ.
Chirp-like templates enable the capture of signals with finite ḟ over some intermediate time
scale τ of the phase coherence. (In searches for unknown signals, τ is a search parameter).
To this end, we consider a two-dimensional bank of templates densely covering a region
in ( f , ḟ ). Time symmetry can be preserved by construction, i.e., by taking the differences
between such chirp-like templates and their time-reversed counterparts. This approach has
been successfully applied in the identification of the broadband Kolmogorov turbulence
in the Poisson noise-dominated light curves of bright GRBs in the BeppoSAX catalog [101].
Figure 4 shows the resulting spectrum, which can be resolved with an order of magnitude
beyond what is achieved with the conventional Fourier analysis. An early porting to the
gravitational-wave data analysis to SN2010br is reported in [155].

Figure 4. (Left panel) Butterfly matched filtering schematically indicated by patterns (“green”) with
a minimum slew rate δ at each point (t, f (t)) in the time–frequency domain. It is realized by a
dense bank of chirp-like time-symmetric templates of intermediate duration. (Reprinted from [155]).
Signal tracks pass through the green butterfly patterns and are suppressed otherwise. In particular,
horizontal tracks of constant frequency signals are suppressed, whereby butterfly matched filtering
is complementary to conventional Fourier–based filtering methods. (Right panel) Broadband Kol-
mogorov spectrum in an ensemble-averaged spectrum, extending to the Nyquest frequency of 1 kHz
of 42 bright long GRBs in the BeppoSAX catalog, by filtering over a dense bank of 8.64 million tem-
plates (purple line). By displaying the extension of the Kolmogorov spectrum into high frequencies,
this result demonstrates a sensitivity to turbulence that is more than an order of magnitude superior
to the conventional Fourier analysis (blue). (Reprinted from [101]).

In searches for unknown signals, a key parameter is the intermediate time scale of
the phase coherence τ, which may be present in the signal with a minimum δ > 0 in the
time ratio-of-change of frequency (Figure 4). The core idea of Butterfly matched filtering
involves using a filter composed of a bank of time-symmetric templates with a duration τ;
these templates are dense in both f and ḟ . τ should be restricted to the values intermediate
to the total duration of the candidate signal and the total search period. Additionally, the
change of frequency in time satisfies∣∣∣∣d f (t)

dt

∣∣∣∣ ≥ δ > 0. (19)

Figure 4 provides a schematic representation using butterflies, indicating a finite range of
slew rates (19) at each point in the time–frequency domain.
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Time-symmetric templates are created by linearly superposing a segment from a mas-
ter template with its time-reversed counterpart. The resulting time-symmetric templates
ensure equal sensitivity to ascending and descending chirps [101],

uk(t′) = zk(t′)− zk(τ − t′) (0 ≤ t′ ≤ τ), (20)

where zk(t′) refers to a chirp-like template with compact support over a duration τ.
Generally, the performance gain in picking up signals with time-varying frequencies

via matched filtering is expected to depend on the type of noise. The Poisson noise-
dominated analysis of Figure 4 shows an improvement in sensitivity by (20), up to an order
of magnitude over the conventional Fourier analysis. The gravitational strain-noise data
can be effectively modeled as colored Gaussian noise, and further, with numerous lines,
notably the violin modes of suspension wires. While Poisson noise is tightly correlated
with the signal strength, the gravitational-wave detector noise is completely decoupled
from signals passing by. The sensitivity gain of Butterfly matched filtering over the Fourier
analysis may, therefore, be similar but not identical to the result shown in Figure 4. An
explicit calculation is obtained by appealing to the theoretical gain in the signal-to-noise
ratio by

√
N in the matched filtering, where N denotes the number of periods captured

phase-coherently over the intermediate time scale τ set by the duration of a template.

4.1.1. Sensitivity Gain over the Time-Sliced Fourier Analysis

Regarding signals with time-varying frequencies, the gain in sensitivity of Butterfly
matched filtering over the time-sliced Fourier analysis can be seen as follows. Consider a
quasi-monochromatic signal admitting a Taylor series expansion f (t) = f0 + t f1 +

1
2 t2 f2 +

O
(
t3), where fn = dn f (t)/dtn refers to the n-th derivative at t = 0 of its frequency

f (t) as a function of time t. The matched filtering over a duration τ attempts to track
the associated change in phase, ϕ(τ) = 2π

(
f0τ + 1

2 f1τ2 + 1
6 f2τ3 +O

(
τ4)). The Fourier

analysis captures ϕ0 = 2π f0τ over a duration τ until this is out of phase by π, relative
to the true total phase ϕ(τ), causing destructive interference. That is, 1

2 f1τ2 . 1/2, i.e.,
τ . τA, τA = 1/

√
f1 is commensurate with the above-mentioned derivation based on

the time–frequency uncertainty relation. Extending this argument to Butterfly matched
filtering, which captures ϕ1 = 2π

(
f0τ + 1

2 f1τ2
)

, we insist that 1
6 f2τ3 . 1/2, i.e., τ . τB

with τB = (3/ f2)
1/3. The improvement in N ' f0τ is given by the ratio of these bounds,

τB/τA = 31/3 f 1/2
1 / f 1/3

2 , implying a sensitivity improved by

gain ' 31/6 f 1/4
1 f−1/6

2 (21)

of Butterfly matched filtering over the time-sliced Fourier analysis.

4.1.2. Application to Gravitational-Wave Data

By δ > 0 in (19) being sufficiently large, constant frequency signals hereby tend to be
relatively suppressed, distinguishing Butterfly matched filtering from conventional Fourier
analysis. This effective suppression of constant frequency is demonstrated in the line sup-
pression of unwhitened LIGO data [155], and is further improved by pre-whitening [109,118].

An illustrative example is a signal featuring a change in frequency ∆ f with the charac-
teristic time scale of decay τs. In this case, f1 ' ∆ f /τs and f2 ' ∆ f /τ2

s and, hence,

gain ' 31/6(∆N)1/12, (22)

where ∆N = τs∆ f . By applying (22) to a descending chirp in gravitational radiation below
700 kHz down to 200 Hz over τs = 3 s, we have ∆ f = 500 Hz and ∆N = 1500. This leads to
a gain of '2.2. In the application to gravitational-wave observations, this gain effectively
brings the source closer by a factor of 2. This factor of 2 represents a significant improvement
in search sensitivity roughly equivalent to one decade improvement in LIGO sensitivity.
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The results of the individual H1 and L1 spectrograms may further be considered
in (H1,L1)-spectrograms merged by frequency coincidences (Figure 5), providing further
improvement, in contrast, by a factor of

√
2. The total gain over the time-sliced Fourier

analysis of a single detector output is, hereby, 3.12.
By extending (21) and (22) to include dense filtering up to fn, we expect a gain over

the time-sliced FFT:

gain =

√
τn

τ0
' f

1
4

1

(
(n + 2)!
2 f(n+1)

) 1
2(n+1)

'
(
(n + 2)!

2
∆N

n
2

) 1
2(n+2)

'


1 n = 0
2.2 n = 1
3.4 n = 2

. (23)

For instance, when using n = 2 and dense filtering in ( f , ḟ , f̈ ), an additional gain of '1.54
over Butterfly matched filtering (n = 1) is achieved, as well as a gain of '4.80 over time-
sliced FFT (n = 0) in the merged (H1,L1) spectrograms. Indeed, Figure 5 shows improved
visual contrast consistent with the gain (23) for the ascending–descending chirp in Figure 3.
Box 2 highlights some key findings of this section.

Figure 5. The ascending–descending emission during GW170817-GRB170817A in merged (top panel)
and individual (middle panels) H1,L1 spectrograms, where merging is by frequency coincidences
| fH1 − fL1| < 10 Hz (top panel). Included is GRB170817A (lower panel). (Reprinted from [109]).

Box 2. High-resolution spectrograms: Fourier versus Butterfly matched filtering.

• GW transients may be ascending or descending chirps in gravitational radiation
of mergers and, respectively, the spin-down of a compact object.

• GW transients can be searched for in high-resolution spectrograms covering
the bandwidth of sensitivity of LVK over a time scale τ of time-slicing.

• In Fourier-based spectrograms, sensitivity (18) is limited by the time–frequency
relation (17).

• A gain in sensitivity (23) obtains in Butterfly matched filtering over a bank of
time-symmetric chirp-like templates densely covering a region of

(
f , ḟ
)

spaces.
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5. Ascending–Descending GW Transient Emission during GW170817-GRB170817A

Quite generally, CBC and remnant compact objects shedding angular momentum in
gravitational radiation are manifested in ascending and, respectively, descending chirps.
Butterfly matched filtering [155] aims to capture ascending and descending chirps alike,
selectively amplifying signals whose frequencies are slowly wandering in time and sup-
pressing signals whose frequencies are essentially constant.

5.1. Observation in H1L1 Data

The result (5) is seen in (H1,L1)-spectrograms generated by Butterfly matched filtering.
It has equal sensitivity to ascending and descending chirps by construction (20), all else
being equal. Previous LIGO searches by power-excess methods, as discussed in [6,156,157],
have been found to fall short of a detection threshold of Egw & 650%M�c2 [158]. This search
threshold is within the excluded zone [109], beyond the total mass-energy of GW170817,
with a sensitivity to signals post-merger being 0.3% compared to Egw = 2.25%M�c2 in
GW170817 [6].

Figure 5 shows a probe of H1L1 data covering GW170817-GRB170817A by Butterfly
matched filtering. The extended ascending–descending emission suggests gravitational
radiation contemporaneous with GRB170817A. Produced by its central engine, this would
represent emissions from compact remnant(s) of GW170817.

For a detailed consideration of the extended emission feature in Figure 5, we calibrate
the sensitivity of our spectrograms to estimate the energy output EGW in the descending
branch as a potential constraint on the nature of the central engine of GRB170817A, followed
by the parameter estimation and estimates of statistical significance.

5.2. Calibrated Response Curves

Sensitivity can be calibrated using response curves generated through signal injection
experiments. Here, we focus on signal characteristics for the spin-down of a compact object:
a descending chirp in gravitational radiation (5).

For descending chirps resulting from the spin-down of a compact object due to gravi-
tational radiation, the following “1 + 3” parameterization is used:

f (t) = ( fs − f0)e−(t−ts)/τs + f0 (24)

appended as a delayed descending chirp to a model ascending chirp of GW170817. These
curves comprise a start time ts—the trigger time—and three nuisance parameters, the
(τs, fs, f0) time scale of descent τs, the start frequency fs, and the late-time frequency f0.
Alternatively, (24) is “2 + 2” when estimating (ts, τs) with nuisance parameters ( fs, f0).

Figure 6 shows the results of the descending chirp models following a model merger
signal GW170817 at its distance D = 40 Mpc. These injections are performed before
GW170817A, ensuring a sufficient distance to avoid interference with GW170817, yet
remaining close enough to essentially share the same data quality.

Thus, Figure 6 shows two ascending–descending signals: the first corresponds to
the injected signals, and the second represents GW170817 along with its accompanying
delayed extended emission feature. Figure 6 includes results of the two-parameter injection
experiments over energies and time scales

EGW = (0− 8% )M�c2, τs = (1− 4.5) s, (25)

given the source distance D = 40 Mpc of GW170817 [83], keeping fs = 680 Hz, and
f0 = 98 Hz.

A descending chirp of the form (24) is captured by scanning over all the parameters
(ts, τs, fs, f0), by χ image analysis over the H1L1 data of T = 2048 s, containing GW170817.
This process is realized in 214 steps in (τs, fs, f0) at 33 Hz in ts for a total of 109 values [109].
The response curves of Figure 6 are averaged over 41 tiny (surrogate) time slides between
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H1 and L1, which corresponds to their light crossing travel time of 10 ms. Box 3 some key
conclusions on the central engine of GRB170817A.

Figure 6. (Top left panel) Response curves from modeled merger plus (delayed) post-merger signals
by injection experiments on H1L1 data containing GW170817 with parameter recovery (top right
panel) by χ̂ image analysis of (H1,L1)-spectrograms merged by frequency coincidences (lower panel).
Response curves cover descending chirps with Egw of a few %M�c2 and time scales of descent τs

covering the post-merger emission feature in GW170817. The dashed line indicates the mean χ̂

peaks, averaged over time slices ∆t that are within the 10 ms light-travel time between the H1 and L1
detectors (Reprinted from [109]). (A movie showcasing the injection experiments can be found at
https://zenodo.org/record/4390382, accessed on 25 May 2023).

Box 3. What is the central engine of GRB170817A?

• The ascending–descending chirp in GW170817 represents a merger followed
by delayed spin-down of a Kerr black hole during GRB170817A.

• This observation is seen in spectrograms generated by Butterfly matched filter-
ing calibrated by signal injection experiments.

• EM-GW event timing shows consistency between T8−70keV
90 = (2.9± 0.3) s of

GRB170817A [90], TGW ' 3.7 s and time scale of descent τs = (3.0± 0.1) s.

6. Exascale Computing by Synaptic Parallel Processing

Observations of unknown signals require two (or more) detectors with comparable
nominal behaviors to cross-correlate independent candidate signals. Over large datasets,
such as full observational runs, the generation of spectrograms through matched filtering
presents a novel computational challenge in generating spectrograms produced by matched
filtering, covering a sufficiently broad range and density in ( f , ḟ ). For a candidate feature
in a spectrogram, the next step is to quantify its properties by parameter estimation. This
notably includes the extraction of the probability density function (PDF) of a choice of
parameters, such as those encountered in event timing. Matched filtering is a computer-
intense task involving cross-correlation between the data and templates, which scales
bilinearly with the data length and size of the template bank. Substantial additional compu-
tational costs are, therefore, incurred, particularly in the process of parameter estimation.

https://zenodo.org/record/4390382
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6.1. Acceleration by High-Performance Computing

To meet this challenge, we appeal to modern computational approaches in hardware
and software. Specific methods to accelerate matched filtering by a few orders of magnitude
derive from efficient algorithms, modern computing hardware, and network computing:

• Efficient evaluation in the Fourier domain using the fast Fourier transform (FFT);
• Heterogeneous computing by offloading inverse FFTs to graphics processor units (GPUs);
• Distributed computing on a platform, load-balanced by synaptic parallel processing.

The requirement for these computational components is more evident by illustrating the
scale of computation in obtaining a single spectrogram, using cross-correlation, for instance,
for H1L1 data around GW170817-GRB170817A. Consider data with durations of T = 2048 s
in H1 and L1 containing this event, partitioned in 32 s segments. With a template bank of 219

templates, a single spectrogram of the entire T duration of data requires cross-correlations
for 64× 219. This is equivalent to 373 tera-floating point operations (teraFLOPs) in single
precision (SP, f32), assuming that FFT is used and the data are sampled at 4096 Hz. This will
be increased to 60 petaFLOPs when extending over Q = 161 time slides (below). Calibration
over 56 injections requires some 3.3 exaFLOPs to produce response curves in Figure 6.

The gain in evaluating correlations in the Fourier domain when array sizes are suffi-
ciently large is well-known. A further gain is obtained by heterogeneous computing by
offloading inverse FFTs to GPUs, realizing the speed-up of at least an order of magnitude
(Figure 7). For matched filtering, this requires care in circumventing bandwidth limitations
of the peripheral computer interface express (PCIe) between GPU(s) and the host CPU. The
key involves the use of pre- and post-callback functions, with the latter limiting the GPU
output to the tail of the matched filtering output, which may contain a candidate signal,
discarding the bulk of the output [102].

Invariably, this approach involves some mixed-language programming, e.g., F90/C++
for the host and C99 for the GPU kernels. Open compute language (OpenCL) is a commonly
used interfacing between the host and GPU [159,160]. Quite generally, the gain in the
compute performance when offloading tasks to GPUs depends on the arithmetic intensity
(e.g., [161]), expressing a ratio of demand on the compute versus memory resources. In
practice, the latter includes limitations in the PCIe bandwidth between the GPU and host.
The computed performance of the FFT exhibits a typical break as a function of the array
size due to a loss in arithmetic intensity when the array size exceeds the limit of the local
memory of the GPU’s compute units. Across the board, the performance drops well
below the theoretical peak-compute performance, limited by memory bandwidth to global
memory; access is relatively slow when a large number of clock cycles are involved.

Figure 7 shows variations in the arithmetic intensity of the OpenCL implementation
clFFT on GPUs obtained in a benchmark. When array sizes are large, the results are about 7%
of the theoretical peak-compute performance, showing the need for high-bandwidth memory
(HBM) and, to scale acceleration, multiple GPU nodes. Circumventing the aforementioned
PCIe bandwidth limitations is essential in the application of matched filtering.

6.2. Dynamical Load Balancing by Synaptic Parallel Processing

When analyzing a large number of data frames, high throughput can be realized by
distributed computing on a platform of multi-GPU nodes organized over one or more
local area networks (LANs). In the face of a heterogeneous platform consisting of nodes
with varying compute performances, further optimization is obtained with dynamical load
balancing by use of synaptic parallel processing [162]. This approach takes advantage of the
embarrassingly parallel processing of a collection of independent tasks. Independent tasks
can be specified in a list of instructions given by line items for dissemination on a platform
of heterogeneous compute nodes organized in one or more local area networks (LANs).
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Figure 7. (Left panel) Emulation of gain increase with the array size in matched filtering, evalu-
ated by FFT versus direct evaluation. (Right panel) Benchmark of the OpenCL routine CLFFT in
CSP/OutOfPLace as a function of the array size N for two batch sizes measured by allocation M
in global memory. Array sizes exceeding 212 require calls to global memory due to the limited
size of the local memory in the matrix transpose, causing a drop in performance limited by 1 TB/s
of bandwidth in HBM. CLBUTTERFLY [102] uses a default segment of N = 217 samples (32 s at a
4096 Hz sampling rate with a batch size over M = 128 per 4096 s frame). (Reprinted from [109],
https://zenodo.org/record/6475673,https://zenodo.org/record/1242679, accessed on 25 May 2023).

Dynamical load-balanced processing is realized through synaptic computing, where
individual nodes independently request line items from a shared task list with atomic
access [162]. Access may be passive or through a traditional handshake protocol. This
approach does not involve a central server, apart from a network-attached storage (NAS)
device to collect output from all tasks onto a central location. In fact, this approach is the
reverse of traditional approaches, where a server assigns tasks to clients.

7. Parameter Estimation in an Extended Foreground of (H1,L1)-Spectrograms

An event-timing analysis requires high-resolution parameter estimation by extracting
probability density functions (PDFs) of observables, such as the start time ts and related
parameters in (24). The expectation value and uncertainty can be inferred by calculating the
mean and standard deviations from the data, which are needed for inferring the statistical
significance of a candidate feature based on (11) and, independently, the consistency of
observations in the independent detector channels (H1 and L1). Below, we discuss the
PDFs obtained from H1 and L1, specifically the mean values from the merged (H1,L1)
spectrograms. The independent H1 and L1 analysis is deferred to the following section.

For the descending chirp in gravitational radiation, a PDF(ts, τs) is extracted, based
on the parameter estimation (24) applied to the merged (H1,L1) spectrograms, using an
indicator function χ(ts, τs, f0, f1). Our indicator function measures the correlation strength
between H1 and L1 [81,109] as a function of all four parameters in (24). The evaluation
involves heterogeneous computing and, to save memory, the output is limited to χ̂(ts, τs)
at maxima over ( f0, f1).

7.1. PDFs from the Extended Foreground Analysis over Small Time Slides

A traditional foreground analysis with zero time slides between H1 and L1 data
defines χ̂(ts, τs). A PDF(ts, τs) is obtained by repeating this estimate over a large number
(Nc = 99) of small time slides ∆t between H1 and L1 over the extended foreground

|∆t| < τ. (26)

Time slides ∆t are selected from a distribution of small and large time slides distributed
symmetrically around zero, including a neighborhood of 0 (by 41 tiny time slides within
the light travel time of 10 ms between H1 and L1).

https://zenodo.org/record/6475673, https://zenodo.org/record/1242679
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The PDF(ts) and PFF(τs) are derived from PDF(ts, τs) by tracing out τs, respectively, ts,
i.e., the projection of a cluster defined by χ̂(ts, τs) in the (ts, τs) plane of the parameter space
over (26).

A candidate signal is identified by the cluster centered about (t∗s , τ∗s ), defined by the
maximum χ̂∗ = χ̂(t∗s , τ∗s ) of χ̂(ts, τs) over (26), as shown in Figure 8. (When estimating
(t∗s , τ∗s ), ( fs, f0) are the nuisance parameters projected out by taking maxima, as χ−image
analysis runs over all four parameters for each time slide ∆t). The degree of clustering in
the (ts, τs) space is quantified by the number of elements in a box

|ts − t∗s | < τ, |τs − τ∗s | < τ, (27)

normalized to the total number Nc of time slides (26). A 100% result defines an extremal
cluster in the parameter space (ts, τs).

For background, ensembles of peaks χ̂∗ (and their degrees of clustering) are identified
in each of the 1024 cells with a duration of w = 2 s, covering an analysis over a total
duration of T = 2024 s using the aforementioned snippets of H1L1 data. Each cell has a
total of Q = 161 time slides over [−32, 32] s, including (26). According to (26) and (27), up
to Nc can be clustered.

7.2. Clustering in Parameter Space

Absent of a gravitational-wave signal, ts and τs are uncorrelated and fail to cluster
with a uniform statistic in ts. In response to a gravitational-wave signal passing by, however,
ts and τs cluster about a central value, which is representative of a correlation between
H1 and L1 (Figure 8). The degree of clustering arising from such correlation strength is
representative of the signal strength that, if present, will be persistent over the extended
foreground (26). Crucially, extremal clustering provides a robust guard against false positives:
weak signals or glitches occurring independently in H1 or L1 inevitably generate local
maxima in χ̂, but fail to produce extremal clustering.

Figure 9 evidences the uniqueness of extremal clustering in the extended emission
feature, identifying

ts = (1843.24± 0.1) s, (28)

and satisfying the aforementioned causality condition (11). In particular, (11) is satisfied by
PDF(ts) (upon projecting out τs) with

ts − tm = (0.86± 0.10) s, τs = (2.91± 0.17) s. (29)

The start time ts ε G of the descending chirp in Figure 2 defines a trigger of GRB170817A,
establishing the descending chirp as the emission from the central engine of GRB170817A
in (3) [81]. In fact, Ref. (29) satisfies the more stringent causality condition in Butterfly
matched filtering,

C′1 : tm + τ < ts < tm + tg, (30)

where τ ' 0.5 s refers to the duration of the templates in our Butterfly matched filtering.
The first PFA derives from ts, satisfying C1 by mere chance under the null hypothesis

of a background of noise only with no gravitational wave passing by. According to (14), we
have [118]

p1 =
tg

T
=

1.7
2048

= 8.3× 10−4. (31)

It follows that C1 carries a PFA p1 with an equivalent two-sided Gaussian-equivalent
significance of 3.33 σ and a false alarm rate (FAR) of about 1 per month. (FAR = PFA/T
(e.g., [163])). Box 4 summarizes the high-resolution observations on event timing in
GRB170817-GRB170817A.
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Figure 8. PDF(ts, τs) in (24) from the χ image analysis of (H1,L1)-spectrograms over Q = 161
time slides. Extremal clustering (100%) of the global maximum χ̂∗ = 8.76 appears in the extended
foreground over Nc small time slides (26). PDF(ts) shows a time delay ts − tm = (0.86± 0.1) s
(tm = 1842.43 s) of a descending chirp, satisfying C1, signaling the gravitational collapse to a Kerr
black hole that triggers GRB170817A in (3). The PDF(τs) is consistent with T8−70keV

90 = 2.9± 0.3 s
of GRB170817A [90], identified with the lifetime of black hole spins interacting with surrounding
high-density matter. (Reprinted from [109]).

Figure 9. The extremal clustering in ts and τs of the descending chirp in (H1,L1)-spectrograms,
merged by frequency coincidences | fH1 − fL1| < 10 Hz, is unique in clustering considered among all
1024) cells of w = 2 s covering [0, T]. (Reprinted from [109]).



Universe 2023, 9, 279 19 of 29

Box 4. High-resolution event timing in the extended foreground by the exascale HPC.

• Exascale HPC is achieved by synaptic parallel processing on a heterogeneous
compute platform [162] in the mixed F90/C++/C99 using OpenCL and bash.

• Gavitational-wave observations in (3) provide event timing in high-resolution
PDF(ts) by Butterfly matched filtering over an extended foreground over small
time slides (10).

• The estimated ts satisfies the causality condition (11) and the more restricted
condition (30).

8. Consistent Event Timing in Independent H1 and L1 Analyses

A further criterion for observation is the consistency in event timing in independent
H1 and L1 analyses:

C2 : [ts] = ts,H1 − ts,L1 (32)

is zero within the resolution of our observation. This is evaluated by their respective
PDFs(ts, τs). The event timing analysis between H1 and L1 yields a PFA that is statistically
independent of the previous PFA (14). Recall that the mean and differences of two estimates
represent a rotation of the two-channel data over π/4 which corresponds to a unitary
transformation of H1 and L1 data. The total PFA is obtained by factoring over these
two PFAs.

We note that the joint PDF over (ts,H1, ts,L1, τs,H1, τs,H1) has an equivalent expression
over (ts, τs, [ts], [τs]), where (ts, τs) is the mean and square brackets refer to the differences:
[ts] = ts,H1 − ts,L1, [τs] = τs,H1 − τs,L1. In the previous section, the mean is effective in the
merged (H1,L1)-spectrograms.

With no gravitational wave passing by, H1 and L1 detectors are uncorrelated. In this
case, the mean and difference in (ts, τs) are statistically independent. The aforementioned
PDF then factorizes as pA(ts, τs)pB([ts], [τs]). We are at liberty to project out differences,
leaving pA(ts, τs) and (31), further projecting out τs based on (30). Projecting out (ts, τs)
reduces the same to pB([ts], [τs]) independent of the context; that is, blind to GW170817-
GRB170817 under the null hypothesis in (3).

Consistency is measured by cross-correlating the PDF(ts) obtained for H1 and L1. This
gives rise to a PFA in the consistency of the time difference with zero, taking into account
finite resolution in the two PDFs of ts.

PDF(ts)s are obtained from H1 and L1 at high resolution, about an order of magnitude
below τ, by sampling over a large number of trials. (In the case at hand, the resolution
remains above the light travel time between the two LIGO detectors). For this purpose,
PDF(ts)s are generated by nm trials: n = 10 template seeds in Butterfly matched filtering
with output branched into m = 32 H1 and L1 spectrograms over the offsets 0, 1, · · · , up to
stride m.

Butterfly matched filtering uses a dense rather than orthogonal bank of templates,
with each possibly providing an approximate match over the intermediate time scale of
the phase coherence τ [101,102]. The output of data samples are typically covered by a
multiplicity of neighboring templates. On average, time-stepping

∆tik = tik+1
− tik (33)

in ti is hereby below the sample time of 1/4096 s of the H1L1 data, giving ∆tik, which is
typically 0 or 1/4096 s, with STD ' 40µs. Therefore, on average, there are 7 samples in a
stride of m = 32, with a small STD of the order of O(10−2) Hz [109]. The high resolution is
derived from offsets m0 = 1, 2, · · · , m, effectively, by subsampling.

Figures 10 and 11 show the results of independent H1 and L1 analyses by PDF(ts) for
each one. For the total duration T = 2048 s of H1L1 data, the local maximum of χ̂(ts, τs)
shows a correlation of ρ[ts ],[τs ] = 1.29× 10−4, where [ts] = t∗s,H1 − t∗s,L1 and [τs] = τ∗s,H1 − τ∗s,L1.
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This is expected in independent H1 and L1 analyses [109]. PDFs(ts) of H1 and L1 are maxi-
mally correlated at a time slide that is consistent with zero within the resolution δtres = 0.025 s
of our binning. This maximum is global; it is maximal among all the maxima identified in
each of the 64 segments of 32 s, covering the entire analysis over T = 2048 s. By (32),

p2 =
4δtres

T
= 4.88× 10−5 (34)

is the p-value of consistency with two-sided Gaussian-equivalent significance of 4.06 σ and
the FAR of ∼1 per 1.4 years. The factor of 4 in (34) is a combination of 2 coefficients. The
first is a factor of 2, which originates from taking the absolute value in |[ts]| < δtres at the
peak of the cross-correlation between PDF(ts,H1) and PDF(ts,L1). Additionally, the uniform
prior in astrophysical timing tH1 and tL1 leads to a top-hat distribution in [ts], giving another
factor of 2.

In the mean of the PDF(ts)s of H1 and L1, the delay time in the gravitational collapse
to a black hole satisfies

ts − tm = (0.92± 0.09) s, (35)

consistent with (29), in the mean from the merged (H1,L1)-spectrograms. The delay times
(35) and (29) identify the trigger of GRB170817A by the associated descending chirp in
gravitational radiation. It is notably consistent with the lifetime tw = 0.98+0.31

−0.26 s of the
progenitor HMNS derived from (neutron-rich) outflow propagation times and the mass of
blue ejecta [129]; its survival time is based on neutrino cooling and internal dissipation of
rotational energy (e.g., [119]). Maximal clustering (35) comes with PDF(τs). Mean values of
τs in H1 and L1 are, respectively, τs = (3.1± 0.1) s and τs = (2.9± 0.2) s. τs = (3.1± 0.1) s
(H1) and τs = (2.9± 0.2) s (L1) associated with the cluster (35) satisfy the mean

τs = (3.00± 0.09) s. (36)

The result (36) is consistent with τs, derived from (29) in the merged (H1,L1)-spectrograms;
(29) and (36) are representative of the lifetime of the black hole spin and provide constraints
on T8−70keV

90 of GRB170817A [90,109]. Box 5 summarizes the two independent analyses.

Figure 10. One sample of PDF(ts, τs) comprising nm = 320 elements from individual H1 and L1
analyses, shown around the merger time tm = 1842.43 s. Over T = 2048 s of data, time differences
[ts] = t∗s,H1 − t∗s,L1 and [τs] = τ∗s,H1 − τ∗s,L1 are at local maxima of χ̂(ts, τs) over 64 segments of 32 s. These
two trials are uncorrelated, evidenced by a correlation ρ[ts ],[τs ] = 1.29× 10−4. (Reprinted from [109]).
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Figure 11. PDFs(ts) of H1 and L1 centered around ts − tm = (0.92± 0.09) s and τs = (3.00± 0.09) s.
Binned over δtrew = 0.025 s, the cross-correlation (over each segment covering the snippet of H1L1
data of T = 2048 s) uniquely identifies a global maximum in segment 58 corresponding GW170817,
consistent with a zero time difference in the bin δtres. (Reprinted from [109]).

Box 5. Statistically independent PFAs of the trigger time ts of GRB170817A.

• Independent event timings derive from the mean and difference in ts, equiva-
lent to a unitary transformation of H1 and L1 data, here obtained from merged
and individual H1 and L1 spectrograms.

• PFA1 (14) derives from causality (11) satisfied in merged spectrograms. A sec-
ond PFA2 (34) derives from consistency in individual H1 and L1 spectrograms.

• A total PFA with an equivalent Z-score of 5.5 is factored over the ordinary
probability (14) and the p-value (34).

9. Conclusions and Outlook

The EM ν observations of SN1987A demonstrate the power of multi-messenger ob-
servations in identifying the formation of an NS that would otherwise be hidden by the
opaque stellar envelope. In the absence of a rigorous identification of the nature of the
remnant [164], however, the true trigger of the explosion eludes this neutrino observation.
It is unknown whether the NS underwent further collapse to become a BH.

9.1. Principal Results

The EM-GW observations of GRB170817A provide evidence for the progenitor system
of a short GRB: the DNS system GW170817. In this case, there is an additional observation
of a trigger in the gap of 1.7 s between GW170817 and GRB170817A. It signals the start
time ts of a descending chirp in gravitational radiation characteristics of the spin-down of
a compact object powering the central engine of GRB170817A, with extended emissions
covering the entire duration of this burst (Box 1). This is the first detection of a non-merger
gravitational wave signal, discovered in high-resolution spectrograms (Box 2). Note that
the finite delay time (35) in gravitational collapse to a Kerr black hole (Box 3), in agreement
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with independent estimates of the lifetime of the HMNS (Figure 2), rules out a BH-NS
merger progenitor to GRB170817A [165].

PFA1 (31) and PFA2 (34) pertain to the mean and difference in ts based on the merged
(H1,L1) spectrograms and, respectively, individual H1 and L1 spectrograms obtained from
event timing constraints C1,2, evaluated by statistically independent PDFs(ts) therein. The
PDFs(ts) of ts are extracted by means of HPC, accelerated by software, hardware, and
distributed computing (Box 4). A Z-score of 5.49 is derived from the joint PFA p1 × p2 =
4.05× 10−8, and is on par with the GW170817-GRB170817A association [6] (Box 5). Table 1
summarizes these PFAs.

The first direct observation of the spin-down of a Kerr BH is of principal significance
to extreme transient events, by the universality of black holes in modern astronomy and
the unique power of Kerr black holes compared to neutron stars. The high confidence level
of this observation (Table 1) and the agreement in event timing in EM-GW (Boxes 1 and 3)
suggest that this process may be observed in upcoming LVK observational runs.

Table 1. Event timing of EGW (5) in (3) with type I error statistics, independently in causality (C1: p1)
and consistency (C2: p2) in independent H1 and L1 analyses over a duration T. Central values and
uncertainties refer to the mean and standard deviations of PDFs. (Reprinted from [109]).

H1 L1 H1 L1 H1,L1 H1,L1 Merged
(H1,L1)

Merged
(H1,L1)

ts − tm [s] ts − tm [s] τs [s] τs [s] ts − tm [s] τs [s] ts − tm [s] τs [s]
0.9130± 0.1366 0.9234± 0.1122 3.1± 0.1 2.9± 0.2 0.92± 0.08 3.00± 0.09 0.86± 0.10 2.91± 0.17

T [s] p1 FAR−1
1 p2 FAR−1

2 p1 × p2 FAR−1

2048 1.7/2048 1 month 0.1/2048 1.4 yr 4.05× 10−8 1.6 kyr
204,800 1.7/204,800 782 yr 0.1/2048 1.4 yr 4.05× 10−10 >160 kyr

Figure 12 presents a chronicle of (3) summarizing the observational results.

9.2. Outlook on Upcoming LVK Observations

The present results have potentially significant implications for upcoming observa-
tions of NS-NS mergers. These mergers inevitably have masses that are different from
GW170817, resulting in commensurably different lifetimes of the initial HMNS produced
in the coalescence. Observing multiple DNS mergers (sufficiently nearby) offers the op-
portunity to measure the correlation between the total system mass and the lifetime of the
initial HMNS (reviewed for O4 in [149]), providing a potentially powerful constraint of the
equation of state of neutron star matter.

In [81], the descending chirp is observed to agree remarkably well with quadrupole
gravitational radiation emitted at a radius of K ' 4 times the ISCO around the Kerr BH
formed in the gravitational collapse of the initial HMNS at the time (35). Since black holes
do not retain the memory of their progenitors, except for the total mass and angular mo-
mentum, these findings are particularly interesting in the context of type Ib/c supernovae
that give rise to black holes. This is also relevant in relation to their connection (albeit with a
small branching ratio) to normal long GRBs [67] and superluminous supernovae [166,167].

LVK O4-5 observations are more favorable for detecting joint EM-GW signals from SN
Ib/c, considering their relatively larger mass compared to the remnants of DNS mergers. A
high black hole mass provides an advantage in terms of the potential for enhanced energy
emissions at relatively low frequencies. These low frequencies align with or may overlap
with the bandwidth of maximal sensitivity of LVK detectors. While rare, a failed GRB-SNe
may, nevertheless, be luminous in gravitational radiation, and more frequent than DNS
mergers, which may be tested with upcoming LVK probes in SN Ib/c events within the
Local Universe.
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Figure 12. Chronicle of GW170817 with merger time tm and start time tm < ts < tg of a descending
branch signaling the birth of the central engine of GRB170817A with delayed time-of-onset ∆tGRB =

tGRB − ts ' 0.8 s (10). The energy reservoir in the angular momentum EJ is rejuvenated in the
(delayed) gravitational collapse of the initial HMNS at ts, producing E+

J of the black hole, exceeding
the physical limits of the HMNS. (Reprinted and revised from [109]).
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