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Abstract: In this contribution to the Festschrift for Prof. Remo Ruffini, we investigate a formulation of
quantum gravity using the Hořava–Lifshitz theory of gravity, which is General Relativity augmented
by counter-terms to render the theory regularized. We are then led to the Wheeler–DeWitt (WDW)
equation combined with the classical concepts of the branch-cut gravitation, which contemplates as
a new scenario for the origin of the Universe, a smooth transition region between the contraction
and expansion phases. Through the introduction of an energy-dependent effective potential, which
describes the space-time curvature associated with the embedding geometry and its coupling with
the cosmological constant and matter fields, solutions of the WDW equation for the wave function
of the Universe are obtained. The Lagrangian density is quantized through the standard procedure
of raising the Hamiltonian, the helix-like complex scale factor of branched gravitation as well as
the corresponding conjugate momentum to the category of quantum operators. Ambiguities in the
ordering of the quantum operators are overcome with the introduction of a set of ordering factors
α, whose values are restricted, to make contact with similar approaches, to the integers α = [0, 1, 2],
allowing this way a broader class of solutions for the wave function of the Universe. In addition
to a branched universe filled with underlying background vacuum energy, primordial matter and
radiation, in order to connect with standard model calculations, we additionally supplement this
formulation with baryon matter, dark matter and quintessence contributions. Finally, the boundary
conditions for the wave function of the Universe are imposed by assuming the Bekenstein criterion.
Our results indicate the consistency of a topological quantum leap, or alternatively a quantum
tunneling, for the transition region of the early Universe in contrast to the classic branched cosmology
view of a smooth transition.

Keywords: branch-cut cosmology; Wheeler–DeWitt equation; quantum gravity

1. Introduction

Motivated by the success of quantum mechanics (QM) and pseudo-complex general
relativity (pc-GR) in incorporating the mathematics principles of existential closure and
completeness [1] by extending their domains of realization, QM to the complex variables
sector [2], and pc-GR to the pseudo-complex domain [3–5], branch-cut gravitation theory
(BCGT), in its classical version, represents an analytically continued extension of general
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relativity [6] to the complex plane [7–13]. The descriptive augmented domain of quan-
tum mechanics by incorporating complex variables has broadened our perception of the
infinitesimally small scales, with direct physical manifestations [14,15]. In turn, these
notions led pc-GR, embedded in a pseudo-complex domain, to a suppression mechanism
of the primordial gravitational singularity and to the prediction of existence of dark energy
outside and inside cosmic mass distributions [3–5].

BCGT describes a hypothetical set of independent multiple universes existing in
parallel, based on the multiverse1 conception by Hawking and Hertog [16], each emerging
from its own singularity. Imposing that the multiverses compose a single universe, in the
Riemann limit, the multiple singularities merge, generating topological and complex
smooth structures of foliation leafs, continuously connected, described by Riemann surfaces.
The corresponding solutions of the analitically continued Einstein equations, represented
by the helix-shaped branch-cut function ln−1[β(t)], give rise to an alternative formulation
of the Friedmann equations, as a function of complex time t, given by2

(
d
dt ln−1[β(t)]

ln−1[β(t)]

)2

=
8πG

3
ρ(t)− kc2

ln−1[β(t)]
, (1)

and (
d2

dt2 ln−1[β(t)]

ln−1[β(t)]

)
= −4πG

3

(
ρ(t) +

3
c2 p(t)

)
. (2)

Equations (1) and (2), and their corresponding complex conjugate versions, describe a
smooth universe with a fine-tune transition region from contraction to expansion — purely
geometric in nature, that replaces the cosmological singularity (Figure 1). Similar proce-
dures allow to obtain analytically continued expressions for the energy-stress conservation
law, Hubble rate, deceleration parameter, Ricci scalar and the Ricci curvature, as well as the
corresponding complex conjugated expressions.

Figure 1. On the two left figures, characteristic plots of the Riemann surface associated with the
imaginary and the real parts of the function ln[β(t)], the scaling in time of the branch-cut universe
(the reciprocal of ln−1[β(t)]). The plot of the imaginary part shows connected glued domains: the
various branches of the function are glued along the copies of each upper half plane with their copies
on the corresponding lower half plane in a suitable way to make ln[β(t)] continuous. Each time the
variable β moves around the origin, ln[β(t)] moves to a different branch, with its values, on each
foliaition leaf, differing from its principal value by a multiple of 2πi. A similar analysis apply to
ln−1[β(t)]. On the two right figures, characteristic plots of ln−1[β(t)].

In branching gravitation, the primordial singularity is replaced by a family of Riemann
foliation leafs in which the branch-cut cosmic scale factor3 ln−1[β(t)] shrinks to a finite
critical size, shaped by the range-, foliation leafs regularization- and domain extension-
β(t)-function, with its range domain above the Planck length according to the Bekenstein
criterion4 [11]. In the contraction phase, as the patch size decreases with a linear dependence
on ln[β(t)], light travels through geodesics on each Riemann foliation leaf, circumventing
continuously the branch-cut, and although the horizon size scale with lnε[β(t)]/ ln[β(t)],
where ε denotes the dimensionless thermodynamics connection, the length of the path to
be traveled by light compensates for the scaling difference between the patch and horizon
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sizes. Under these conditions, causality between the horizon size and the patch size may be
achieved through the accumulation of branches in the transition region between the present
state of the universe and the past events [11]. In addition to causality, the flatness and the
horizon dilemmas of cosmology stand out. The flatness problem concerns the value of the
ratio between the total density of the universe and the critical density resulting in a very
small Planck value of the time-dependent and dimensionless cosmic spatial factor [17–19],
Ωc, which scales as ln2ε[β(t)]/ ln2[β(t)]. The horizon problem in turn arises exactly because
the patch corresponding to the observable universe was never causally connected in the
past [17–19]. The restoration of causality in BCGT brings an additional perspective with a
view to the future elucidation of these ’cosmological puzzles’ [12].

In short, in the BCGT formalism of spacetime, a 3 + 1 dimensional Riemannian
manifoldM with metric g, is foliated into a one parameter family of space-like slices (leafs)
or continuous trajetories (see Figure 1), with the spatial slices assumed to be closed. As a
corolary, the branched gravitation approach only expands the domain of realization of
the governing principles of general relativity, as well as the operations that underlie its
theoretical foundations.

Recently, we have proposed a topological canonical quantum approach [13] for the
classical branch-cut cosmology on basis of the renormalizable Hořava–Lifshitz theory of
gravity (HLGT) [20] and the Wheeler–DeWitt Equation (WdW) [21]. HLGT is General
Relativity augmented by counter-terms to render the theory regularized5. General Relativity
is not renormalizable and therefore not applicable for very small distances, such as those
associated with the beginning of the universe, central point of study at the BCGT. On the
other hand, HLGT, due to its anisotropic space-time scaling, is not Lorentz invariant in the
high energy UV regime. However, for small distances, the incorporation of higher order
derived terms in the spatial components of the curvature to the usual Einstein–Hilbert
action, gives rise to a theory free of ghosts and, therefore, HLGT is more appropriate to
describe quantum effects of the gravitational field, as for instance vacuum decay processes
in the early stages of the universe [24]. The parameters of the theory are the critical exponent
z and the foliation parameter λ, associated with a restricted foliation compatible with the
Lifshitz scaling. In the low energy limit z→ 1 the Lorentz invariance is recovered. In the
infrared limit, to recover the full diffeomorphisms symmetry and the usual foliation of the
ADM formalism, the z→ 1 limit must be accompanied by the limit λ→ 1 [24].

The WdW equation solutions, represented by a geometric functional of compact
manifolds and matter fields, describe the evolution of the quantum wave function of the
Universe [25,26]. A puzzling aspect of the WdW equation however is the absence of the
time variable. According to [22], the main problem with this issue in quantum gravity
is perhaps its closeness to a classical space–time picture. For Rovelli [27] the absence of
time is a feature of the classical Hamilton–Jacobi formulation of general relativity, and the
wave function is only a function of the “3-geometry”, namely the equivalence class of
metrics under a diffeomorphism, and not of the specific coordinate dependent form of
the metric tensor. According to the second law of thermodynamics, forward in time
represents the direction in which entropy increases and in which we obtain information, so
the flow of time would represent a subjective feature of the universe, not an objective part
of physical reality [27]. In this realm, in which the observable universe does not exhibit
time-reversal symmetry, events, rather than particles or fields, are the basic constituents of
the universe, implying that the evolution of physical quantities is related to the description
of the relationship between events [27–30]. For instance, given the wave function of the
universe as a functional constrained to a region configuration of a super-space that contains
a three-surface and matter fields, represented by Φ, where the metric is described by hij
the corresponding WdW wave function Ψ(hij, Φ) may be interpreted as describing the
evolution of Ψ(Φ) in the physical variable Φ.

In this contribution we go beyond the previous formulation. The momentum operators
are deduced and the quantum version of the Hamiltonian is obtained by addressing the
well-known ambiguity on the ordering of operators in the Wheeler–DeWitt Hamiltonian6.
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Although there exists infinite possibilities, a parameter α which defines the ordering of the
operators was restricted, for comparison purposes, to a special class of values, following
the options of some authors. More precisely, α = 1 [32], and α = 0, 2 [33].

Determining the composition of matter and energy in the Universe represents one
of the most important challenges in cosmology. The most recent developments suggest
that the Universe’s content, other than dark matter, is unaccounted for or missing. In
this contribution, in addition to a branched universe filled with underlying background
vacuum energy, primordial matter and radiation, in order to make contact with standard
model calculations, we supplement this formulation with baryon matter, dark matter
and quintessence contributions. Quintessence—a time-varying, spatially inhomogeneous,
and negative pressure component of the cosmic fluid—is a dynamic ingredient: its energy
density and pressure vary with time and is spatially inhomogeneous [34,35]. The main
motivation to consider the presence of quintessence is to address, in the future, the so-
called “coincidence problem”, related to the initial conditions necessary to produce the
quasi-coincidence of the densities of matter and quintessence in the present stage of the
universe [34,35]. Furthermore, in the approaches commonly presented in the literature,
the material composition of the primordial universe refers to the plasma of quarks and
gluons and leptons, and with regard to dark matter, a frequent approach is that of a
geometric effect through a cosmological constant. In this work, aiming at the future study
of the matter–antimatter asymmetry of the universe and baryogenesis, as well as the dark
matter described by a kind of cosmic fluid, with an equation of state of the form P = ωρ,
we consider the contribution of the additional terms. The theory coupling parameters,
gi(i = 0, 1, ..., 9), are in turn dimensionless running couplings constants.

Finally, the boundary conditions for the wave function of the Universe are imposed
by assuming the Bekenstein criterion, which indicates the existence of an universal upper
bound of magnitude 2πR/h̄c to the entropy-to-energy ratio S/E of an arbitrary system of
effective radius R.

We proceed as follows:

• The line element squared within the branched cosmology is defined and can be
retrieved in Refs. [9,13].

• The action is defined, using the Horav̌a–Lifshitz theory of gravity, which is the General
Relativity augmented by counter-terms to render the theory regularized. For more
information, please consult Ref. [24]. The basic ingredients are now expressed in terms
of ln[β(t)], which substitutes the standard scale factor a(t). In Section 2.1, the classical
impulse variable is defined and the classical Hamiltonian constructed.

• A quantization procedure is applied, elevating the momentum operator and Hamilto-
nian to operators. As a result we obtain the Wheeler–DeWitt equation.

• Following this path, a parameter α appears which defines the ordering of the operators,
as applied in the past to the Wheeler–DeWitt equation. This leaves us with three
possible equations.

• These equations are solved using the Range–Kutta numerical analysis iterative method.
Unlike the approaches usually found in the literature, in our calculations we do not use
approximations. We then obtain new analytic solutions, depending on the boundary
conditions based on the Bekenstein’s theorem, which provides an upper limit for the
entropy. For more information, please consult [10–13,36].

2. Extended Class of the Branched Quantum Cosmological Solutions

In what follows we investigate a branched quantum formulation of the WDW equation,
whose the only dynamical variable, the helix-like scale factor analytically continued to the
complex plane, as well as its corresponding conjugate momentum, are raised to the rank of
quantum operators.

The equation developed by Wheeler and DeWitt, in 1967, represents a fundamental
approach for describing quantum gravity [21]. As stressed before, this model, based on the
Arnowitt-Deser-Misner decomposition of canonical general relativity in 3 + 1 dimensions,
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is additionally complemented by a boundary term proposed by the authors of Refs. [37–40].
Dirac’s canonical quantization procedure applied to the Einstein–Hilbert action results
in a second-order functional differential equation defined in a configuration superspace,
whose solutions depend in general on a three-dimensional induced metric and matter
fields [21,25,26,40].

2.1. Branch-Cut Formulation of the Weeler-DeWitt Equation

The complex scale factor ln−1[β(t)] represents, in branched cosmology, as stressed
before, the only dynamical variable7. The branched manifoldM is in turn layered on hy-
persurfaces, Σt, which are restricted to Riemann foliation leafs, characterized by a complex
time parameter, t, with the normalized branching line element analytically continued in
4 dimensions defined as [8,9]

ds2
[ac] = −σ2N2(t)c2dt2 + σ2(ln−1[β(t)]

)2
[

dr2(
1− kr2(t)

) + r2(t)
(

dθ2 + sin2θdφ2
)]

. (3)

In expression (3), the variables r and t represent, respectively, real and complex spacetime
parameters and k the spatial curvature of the multiverse, more specifically, negatively
curved (k = −1), flat (k = 0) or positively curved (k = 1) spatial hypersurfaces. N(t) in turn
represents the lapse8 function with σ2 = 2/3π denoting a normalisation factor.

In what follows, we consider as a starting point the renormalizable Hořava–Lifshitz
theory of gravity whose action, given by SHL, employs terms dependent on the scalar
curvature of the Universe and its derivatives, in different orders, defined in the form [20,41]:

SHL =
MP
2

∫
d3xdtN

√
−g

{
KijKij − λK2 − g0M2

p − g1R− g2M−2
P R2 − g3M−2RijRij

− g4M−4
P R3 − g5M−4R(Ri

jR
j
i)− g6M−4Ri

jR
j
kRk

i − g7M−4
P R∇2R

− g8M−4
P ∇iRjk∇iRjk

}
; (4)

in this expression as previously informed gi denotes the running coupling constants as-
sociated to the curvature-dependent terms and its derivatives, MP represents the Planck
mass, and ∇i are the covariant derivatives. The branching Ricci components of the three
dimensional metrics in Equation (4) are determined by imposing a maximum symmetric
surface foliation [13]. We then obtain

Rij =
2

σ2 ln−2[β(t)]
gij , and R =

6
σ2 ln−2[β(t)]

, (5)

where R represents the branching scalar curvature. The trace of the extrinsic curvature
tensor, Kij, which measures geometry modifications as well as the deformation rates of the
normal to a hypersurface as it is transported from one point to another, corresponds to
a sub-manifold, which depends on the particular embedding and takes the form (for the
details see [13])

K = Kijgij = −
3

2σN

(
d
dt ln−1[β(t)]

)
ln−1[β(t)]

. (6)

Through the use of standard canonical procedures of quantum field theory, a Lagrangian
density and the Hamiltonian of the model can be obtained (see [13,20,24,33,41–44]).
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3. Spacetime Topological Canonical Quantization

The Lagrangian density of the model is quantized, trough a spacetime topological
canonical quantisation9, by raising the Hamiltonian, the helix-like complex scale factor
of the branched gravitation as well as the corresponding conjugate momentum to the
category of quantum operators. The resulting formulation describes the evolution of the
wave function of the Universe—associated with hyper-surfaces Σln analytically continued
to the complex plane—in the cosmic scale factor ln−1[β(t)].

Changing variable in the form u(t) ≡ ln−1[β(t)], with du ≡ d ln−1[β(t)], the conjugate
momentum pu of the original branching gravitation dynamical variable ln−1[β(t)] becomes

pu = −u(t)
N

du(t)
dt

. (7)

As a result of applying these standard procedures, the following branching Hamiltonian
results (for the details see [13,20,24,33,41–44])

H =
1
2

N
u(t)

[
−p2

u + gku2(t)− gΛu4(t)− gr −
gs

u2(t)

]
, (8)

with the dimensionless running coupling constants redefined as [41,42]

gk ≡
2

3λ− 1
; gΛ ≡

ΛM−2
PI

18π2
(
3λ− 1

)2 ; gr = 24π2(3g2 + g3
)
;

gs ≡ 288π4(3λ− 1
)
(9g4 + 3g5 + g6). (9)

In these expression, gk, gΛ, gr, and gs represent, respectively, the curvature, cosmological
constant, radiation, and stiff matter coupling constant contributions. The gr, and gs coupling
constants can be positive or negative, without affecting the stability of the solutions. Stiff
matter contribution in turn is determined by the ρ = p condition in the corresponding
equation of state.

The quantisation of the Lagrangian density is achieved by raising the Hamiltonian,
the new dynamical variable u(t) and the corresponding conjugate momentum pu to the
category of operators, represented, respectively, as Ĥ(t), û(t), and p̂u:

H(t)→ Ĥ(t); u(t)→ û(t); and pu → p̂u = −ih̄
∂

∂u(t)
. (10)

In what follows, for simplicity, the hat symbol is not used in the operators û and p̂u most of
the time, as well as in most part of equations the time-dependence on the new variable u(t).

Ambiguities in the ordering of the quantum operators are overcome with the intro-
duction of a set of ordering factors, given by α = [0, 1, 2], following options found in the
literature [32,33], as previously mentioned, with p2 defined as

p2 ≡ − 1
uα(t)

∂

∂u(t)

(
uα(t)

∂

∂u(t)

)
. (11)

The approach based on the insertion of a set of ordering factors, makes it possible to obtain
a broader class of solutions for the Universe wave function.

Combining (8) and (11), we get the subsequent expression for the Wheeler–DeWitt
equation for the wave function of the Universe, Ψ(t):

H(t)Ψ(u) =

(
− 1

uα

d
du

(
uα d

du

)
+ V(u)

)
Ψ(u) = 0 (12)
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with the effective potential10

V(u) = −ηr + ηmu + ηku2 + ηqu3 − ηΛu4 − ηs

u2 , (13)

which we supplemented with two additional terms, ηmu, that describes the contribution
of baryon matter combined with dark matter, and ηqu3, a quintessence-term. From this
expression, for α = 0, we obtain the following equation under the action of a real potential11

represented by V(u): (
− d2

du2 + V(u)

)
Ψ(u) = 0 . (14)

With the choice α = 1 in expression (12), we get the equation(
−
{

1
u

d
du

+
d2

du2

}
+ V(u)

)
Ψ(u) = 0 . (15)

Finally, the choice α = 2 in expression (12), results in the following equation(
−
{

2
u

d
du

+
d2

du2

}
+ V(u)

)
Ψ(u) = 0 . (16)

With a view to comparing results based on the standard formulation, in what follows,
we set up the dimensionless coupling parameters of the effective potential with values
found in the literature, complementing the coupling constants of baryon and dark matter
and quintessence with a parametrization based on the total density parameter, Ω0, which
describes the ratio between the total average density of matter and energy in the early
Universe, ρT and the critical density, ρcrit. The most accepted value of the density parameter
nowadays is:

Ω0 ≡
ρT

ρcrit
= ΩB + ΩDM + ΩΛ ∼ 0.04 + 0.23 + 0.73 ∼ 1, (17)

where ΩB, ΩDM, and ΩΛ represent the baryon matter, dark matter and dark energy density
parameters, respectively. At this stage of our investigation, we do not intend to obtain
numerical data that may support future cosmological observations, but rather to seek first
to establish a formal consistency in the treatment of the quantum branch-cut gravitation,
with the aim of establishing observational predictions based on a consistent theoretical
formulation in the future. There are numerous formulations in the literature, based on
standard cosmology, that consistently deal with this problem, using improved technical
models. Just to name a few of these, we indicate [13,20,24,27,33,41–44], among many others.

Figures 2–5 show the behavior of the effective potential for sets of values of the running
coupling constants. The behavior of the effective potential shows a domain of the stiff
matter term, contributing for the presence of singularities, both in the expansion and
contraction regions. These results show that the increase of the running coupling constants
of the stiff matter produces an enlargement of the singularity domain region. Evidently,
a more rigorous analysis of the role and consistency of these parameterizations is necessary.
For example, the adoption of coupling constants based on energy density parameter [33],
or, in the absence of the stiff matter, to examine the relative contributions of the other
contributions. In any case, a lesson learned from this work is the need to seek formal
alternatives for the inclusion of such contributions so as not to reinforce, —although such a
conclusion is far from categorical—, in an artificial and inconsistent way the dominance of
certain alternatives over others.
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Figure 2. Plot of the real part of the potential defined in Equation (13). In the top figure the coupling
constants values are: ηr = 0.6, ηm = 0.2855, ηk = 1, ηq = 0.7, ηΛ = 1/3, and ηs = −0.03. In the
bottom figure the coupling constants values are: ηr = 0.6, ηm = 0.2855, ηk = 1, ηq = 0.7, ηΛ = 1/3,
and ηs = +0.03. Values of parameters taken from [43,46,47].

Figure 3. Similar plot of the previous figure. Coupling constants values in the top figure: ηr = 0.024,
ηm = 0.2855, ηk = 1, ηq = 0.7, ηΛ = 1/3, and ηs = −0.468. Coupling constants values in the bottom
figure: ηr = 0.024, ηm = 0.2855, ηk = 1, ηq = 0.7, ηΛ = 1/3, and ηs = +0.468. Values of parameters
taken from [43,46,47].

Figure 4. Similar plot of the previous figure. Coupling constants values in the top figure: ηr = 0.0,
ηm = 0.2855, ηk = 1, ηq = 0.7, ηΛ = 1/3, and ηs = −234.0. Coupling constants values in the bottom
figure: ηr = 0.0, ηm = 0.2855, ηk = 1, ηq = 0.7, ηΛ = 1/3, and ηs = +234.0. Values of parameters
taken from [43,46,47].
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Figure 5. Similar plot of the previous figure. Coupling constants values in the top figure: ηr = −1.22,
ηm = 0.2855, ηk = 1, ηq = 0.7, ηΛ = 1/3, and ηs = 0.15. Coupling constants values in the bottom
figure: ηr = −0.5, ηm = 0.2855, ηk = 1, ηq = 0.7, ηΛ = 1/3, and ηs = 0.05. Values of parameters
taken from [43,46,47].

3.1. Complex Conjugation of the Friedmann’s-Type Wave Equations

In the branching gravitation, the Friedmann’s-type equations, analytically continued
to the complex plane, and expressed in terms of the new variables u(t), are [7–9]:(

d
dt u(t)
u(t)

)2

=
8πG

3
ρ(t)− kc2

u(t)
+

1
3

Λ , (18)

and (
d2

dt2 u(t)
u(t)

)
= −4πG

3

(
ρ(t) +

3
c2 p(t)

)
+

1
3

Λ , (19)

where Λ represents the cosmological constant (see Section 1). The corresponding complex
conjugated Friedmann’s-type equations are:(

d
dt u∗(t∗)
u∗(t∗)

)2

=
8πG

3
ρ∗(t∗)− kc2

u∗(t∗)
+

1
3

Λ∗ , (20)

and (
d2

dt2 u∗(t∗)
u∗(t∗)

)
= −4πG

3

(
ρ∗(t∗) +

3
c2 p∗(t∗)

)
+

1
3

Λ∗ . (21)

Equations (18)–(21) underlie the scenarios of branched gravitation in the imaginary sector,
as discussed before (see Figure 6): in the first scenario, in the region before the primordial
singularity, there is a continuous evolution of the Universe around a branch-cut in the tran-
sition region as a function of an imaginary time parameter, conjugated to the corresponding
time parameter of the later evolutionary region and no primordial singularity occurs; in
the second scenario, the branch-cut and the branch point disappear after realization of
the imaginary time by means of a Wick rotation, then this parameter is replaced by the
real and continuous thermal time, the temperature. As a result, a parallel evolutionary
mirror universe, adjacent to our own, is nested in the fabric of space and time, with its
evolutionary process receding into the cosmological sector of negative thermal time. In
the following, we adopt, as a consistent formal procedure, conjugated complex versions of
expressions (14)–(16). Furthermore, as a consequence of this procedure, solutions of the
wave function of the Universe that describe the quantum evolution (in the cosmic scale
parameter ln−1[β(t)]) of the scenarios described above can be obtained.
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Figure 6. Artistic representations of the cosmic contraction and expansion phases of the branch-cut
universe evolution scenarios. On the left figure, the branch-cut universe evolves from negative to
positive values of the imaginary cosmological time ti, circumventing continuously the branch-cut
and no primordial singularity occurs, only branch points. On the right figure the branch-cut and
branch point disappear after the realisation of imaginary time by means of a Wick rotation, which is
replaced here by the real and continuous thermal time (temperature), T. In this scenario, a mirrored
parallel evolutionary universe, adjacent to ours, is nested in the structure of space and time, with
its evolutionary process going backwards in the cosmological thermal time negative sector. Figures
based on artistic impressions [48].

3.2. Solutions and Boundary Conditions

The boundary conditions adopted in this work follows the conventional canons of
convergence, as well as stability and continuity of the solutions of the differential equations.
Moreover, as a new topic in this contribution, we analyze the boundary conditions of the
wave function of the Universe in the light of the Bekenstein criterion [36].

The impossibility of packing the energy and entropy of the primordial Universe into
finite dimensions considering spatially connected regions within the particle horizon of a
given observer, locus of the most distant points that can be observed at a specific time t0 in
an event, made Bekenstein [36] conjecture an upper bound, given by 2πR

h̄c , for the entropy S
and energy E of a system contained in a spherical region of radius R:

2πR
h̄c
≥ S/E so S ≤ SB =

2π

h̄c
ER, (22)

in which SB denotes the upper limit of Bekenstein entropy.
Considering in a simplified way the proper distance d(t) of a pair of objects, in an

arbitrary time t and its relationship with the proper distance d(t0) in a reference time
t0, d(t) = u(t)d(t0), this implies that for t = t0, u(t0) = 1. We consider the boundary
condition |u(t0) = 1|, assuming the time t0 as the locus of the most distant points that can be
observed, in tune with the Bekenstein criterion. With this assumption, due to the structural
characteristics of the proposed effective potential and the extended class of solutions for
the wave equations, the wave function of the Universe obeys the following boundary
conditions in the expansion sector of the primordial Universe: Ψ(1) = 1, Ψ′(1) = 0 and
Ψ(1) = 0, Ψ′(1) = 1. Similarly, in the contraction sector of the primordial Universe, we
have the boundary conditions: Ψ(−1) = −1, Ψ′(−1) = 0 and Ψ(−1) = 0, Ψ′(−1) = −1,
in opposition to the “no boundary” condition [25].

In Figure 7, we plot a sampling solutions family of Equation (14) corresponding to the
expansion region of the universe, using a set of values from [43,46,47]. The solutions are in
agreement with the corresponding results presented in the literature, although we have not
resorted, unlike other authors, to approximations to solve the corresponding differential
equations. Approaches adopted by other authors, based on approximations, mainly in
the primordial singularity region, limit their numerical analysis, although they have not
significantly influenced the global and oscillatory behavior of the solutions.

In Figures 8–13 we show the solutions of Equations (14)–(16). As shown in the
figures, for the region domains between u = −1 and u = 1 the differential equations
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have no solutions. In our interpretation, this domain corresponds to the region in which a
topological quantum leap occurs in accordance with the Bekenstein criterion [11,13].

The main characteristics of these solutions are the oscillatory behavior, whose ampli-
tudes are decreasing as the universe expands, implying an Universe described by oscillating
quantum states tending toward a stable ordering at some future time. In the opposite direc-
tion, the systematic increase of the oscillatory amplitudes of the wave function as a function
of the scale factor ln−1[β(t)] suggests the accumulation of branches, as indicated by the
BCGT for restoration of causality. The effect of accumulating branches actually occurs in
both the expansion and contraction regions near the transition region.

Figure 7. Sampling solution family of Equation (14) with the values of the coupling constants:
ηr = 0.6, ηm = 0.2855; ηk = 1; ηq = 0.7; ηΛ = 1/3; ηs = −0.03. Values of parameters taken
from [43,46,47].

Figure 8. Solutions of Equation (14). The values of the coupling constants are: ηr = 0.6, ηm = 0.2855,
ηk = 1, ηq = 0.7, ηΛ = 1/3, and ηs = −0.03. Values of parameters taken from [43,46,47].

Figure 9. Solutions of Equation (14). The values of the coupling constants are: ηr = −1.22,
ηm = 0.2855, ηk = 1, ηq = 0.7, ηΛ = 1/3, and ηs = 0.15. Values of parameters taken from [43,46,47].
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Figure 10. Solutions of Equation (15). The values of the coupling constants are: ηr = 0.6, ηm = 0.2855,
ηk = 1, ηq = 0.7, ηΛ = 1/3, and ηs = −0.03. Values of parameters taken from [43,46,47].

Figure 11. Solutions of Equation (15). The values of the coupling constants are: ηr = 0.6, ηm = 0.2855,
ηk = 1, ηq = 0.7, ηΛ = 1/3, and ηs = −0.03. Values of parameters taken from [43,46,47].

Figure 12. Solutions of Equation (16). The values of the coupling constants are: ηr = 0.6, ηm = 0.2855,
ηk = 1, ηq = 0.7, ηΛ = 1/3, and ηs = −0.03. Values of parameters taken from [43,46,47].

Figure 13. Solutions of Equation (16). The values of the coupling constants are: ηr = 0.6, ηm = 0.2855,
ηk = 1, ηq = 0.7, ηΛ = 1/3, and ηs = −0.03. Values of parameters taken from [43,46,47].
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4. Conclusions

We summarize our most relevant results. We adopt as an underlying proposition a
compact universe, filled with homogeneous matter, which exists forever in a quantum state,
either static or oscillating, without imposing in an ad hoc way a restriction limit for the
cosmological scale factor and for the wave function of the Universe, as its disappearance at
any limit of the scale factor (see Ref. [49]). Although its disappearance occurs naturally in
the transition region of the branched model, as a natural consequence of the imposition of
the Bekenstein criterion, in the expansion and contraction phases, the oscillatory behavior
of the wave function of the Universe is characterized by an increase in its amplitudes in
the anterior region of the transition phase, indicating consistency with the proposition
of accumulating branches to reestablish causality. In the expansion region, going back
in time, the same effect occurs. These results indicate that in the limit u(t) → ∞ (or
ln−1[β(t)]→ ∞), Ψ(u)→ 0, implying a Universe described by oscillating quantum states
tending towards a stable configuration at some future time. The opposite behavior is
verified in the mirror sector of the model. In the mirror sector, the Universe evolves from a
stable to an unstable quantum state, and in the visible sector, from an unstable to a stable
quantum state. This behavior is contrary to the entropy behavior of the system, which
decreases in the evolutionary process of the mirror universe and increases in the visible
sector. Making these phenomena compatible seems a challenging task.

Our interpretation of the disappearance of the wave function of the Universe, in turn,
in the region between u = −1 and u = 1, where a topological quantum leap or tunneling
occurs according to Bekenstein’s criterion, although with a certain harmony with the
Vilenkin’s quantum tunneling proposal [50], differs from most known proposals for the
corresponding boundary conditions12. This is because these proposals, although based on
different conceptions and assumptions, have in common the prediction of an inflationary
stage of evolution in order to reconcile the causality problem of the primordial Universe.
In turn, causality involving the horizon size and the patch size, as stressed before, may
be accomplished in branch-cut cosmology through the accumulation of branches in the
transition region between the present state of the Universe and the past events [10].

The hypothesis of the isotropy of the branch-cut Universe, one of the pillars of cos-
mology, and its mirror partner may be questioned based on deviations observed in recent
decades by means of cosmological probes [52]. Anisotropy of the Universe, in our concep-
tion, has two branches to be approached. One branch refers to the evolutionary anisotropy
of the mirror universe to our own. Furthermore, another, to the anisotropic directional
evolution in both universes. This is a topic that deserves systematic study in the future.
Although it is still early for a more effective direction in this study, some aspects deserve
attention, such as, for example, the consequences of adopting a non-symmetric approach
and a different ordering of the dimensionless thermodynamics connection ε, the role of
dark matter in the evolution of the branch-cut universe, the role of fluctuations in the
primordial spectrum and seeds in the the early universe, and also questions regarding the
multiverse content. Likewise, alternative models that address this issue in a complementary
way to ours, such as the bouncing model of Ijjas, Steinhardt, and Loeb [17], or Belinsky and
Khalatnikov [42,53] proposition for a generic solution of the Einstein equations near their
cosmological singularity, based on a generalization of the homogeneous model of Bianchi
type IX, deserve our attention in the near future.

The presented proposal strengthens the idea of the transition region of the branched
Universe acting as a ‘portal’ for cosmic material, playing the role this way of an ’eternal
seed’ [54] for the expanding emergent cosmic scenario.

Finally, a peculiar aspect of the class of solutions presented concerns the insertion of
the operators ordering parameter α. As we can see in the presented solutions (Figures 8–13),
different values of α, in combination with different choices of running coupling constants
affect the amplitudes of the wave function of the Universe and therefore, according to
our interpretation, the accumulation of branches in order to restore causality. Evidently,
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the results presented are still at a preliminary stage of investigation, requiring a more
systematic approach in order to broaden its scope.

The conclusions of this work lead to numerous underlying questions, whose under-
standing has motivated in-progress investigations.
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Notes
1 Hawking and Hertog, in 2018, revisited the multiverse concept, conjecturing that the output of eternal inflation does not produce

an infinite fractal-type multiverse, but is finite and reasonably smooth.
2 For simplicity the cosmological constant term has been suppressed.
3 We emphasize that these equations do not represent a direct parameterization or generalization of the conventional Friedmann

equations described in a single-pole metric and likewise the new cosmic scale factor does not represent a simple parameterization
of the standard theory scale factor. Due to the non-linearity of Einstein’s equations, such a direct generalization or parametrization
would be inconsistent. For the details, see [7–9,12].

4 The impossibility of packing energy and entropy according to the Bekenstein Criterion into a finite size makes the transition
phase between contraction and expansion very peculiar, imposing a topology where space-time shapes itself topologically around
a branch point.

5 The Hořava–Lifshitz (HL) formulation main goal is to get a renormalizable theory by means of higher spatial-derivative terms
of the curvature which are added to the Einstein–Hilbert action [20]. A recurring problem addressed in the analysis of the
Hořava–Lifshitz theory of gravity is related to the preservation of general diffeomorphism, a fundamental constraint of general
relativity [22]. Although this is not the main topic of discussion, we would like to address that, in the case of restricted foliation
preserving diffeomorphism invariance of the Hořava–Lifshitz theory, a well behaved Hamiltonian for gravity may be found [23].

6 For an interesting discussion of this topic see Ref. [31].
7 We emphasize once more that ln−1[β(t)] represents the reciprocal of ln[β(t)] and β(t) identifies the range and cuts of the helix-like

cosmological factor in branched gravitation. ln−1[β(t)] characterizes complex topological leafs of singular foliations by means of
Riemann surfaces.

8 N(t) does note represent a dynamical quantity; in turn it denotes a pure gauge variable.
9 As is well know, there are several quantization methods, as for instance, the canonical quantization and the related Dirac

scheme, Segal and Borel quantizations, geometric quantization, various ramifications of deformation quantization, Berezin and
Berezin–Toeplitz quantizations, prime quantization and coherent state quantization. For a broad overview see [45]. The advantage
of the canonical procedure to quantize a classical theory resides in the preservation of the original formal structure, symmetries
and conservation laws. The denomination ‘spacetime topological canonical quantization’ is due to the combination of the
conventional canonical quantization procedure applied to a variable, the helix-like complex cosmic scale factor of the branched
gravitation, u = ln−1[β(t)], raised to the category of quantum operator, which presents an intricate topology.

10 The conditionHΨ(t) = 0 excludes the multiplicative term 1
2

N
u(t) in Equation (8).
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11 Despite that we consider only the real part of the effective potential, the variable u is complex, and the solutions still have
a broader scope, describing the behavior of the wave function of the Universe both for the contraction region, prior to the
primordial singularity, and for the later expansion cosmological region.

12 The tunneling boundary condition of Vilenkin [51] in particular has two degrees of freedom: the scale factor and a homogeneous
scalar field. A tunneling wave function then describes an ensemble of universes tunneling from “nothing” to a de Sitter space,
and then evolving along the lines of an inflationary scenario and eventually collapsing to a singularity [51].
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[CrossRef]
25. Hartle, J.B.; Hawking, S.W. Wave function of the Universe. Phys. Rev. D 1983, 28, 2960. [CrossRef]
26. Hawking, S.W. The boundary conditions of the Universe. Pontif. Acad. Sci. Scr. Varia 1982, 48, 563.
27. Rovelli, C. The strange equation of quantum gravity. Class. Quantum Gravity 2015, 32, 124005. [CrossRef]
28. Rovelli, C. The Order of Time; Riverhead Books: New York, NY, USA, 2019.
29. Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, UK, 2004.
30. Rovelli, C.; Smerlak, M. Thermal time and Tolman–Ehrenfest effect: ‘temperature as the speed of time’. Class. Quantum Gravity

2011, 28, 075007. [CrossRef]
31. Steigl, R.; Hinterleitner, F. Factor ordering in standard quantum cosmology. Class. Quantum Gravity 2006, 23, 3879–3894. [CrossRef]
32. Hawking, S.W.; Page, D.N. Operator ordering and the flatness of the universe. Nucl. Phys. B 1986, 264, 185. [CrossRef]
33. Vieira, H.S.; Bezerra, V.B.; Muniz, C.R.; Cunha, M.S.; Christiansen, H.R. Class of solutions of the Wheeler–DeWitt equation with

ordering parameter. Phys. Lett. B 2020, 809, 135712. [CrossRef]
34. Caldwell, R.R.; Dave, R.; Steinhardt, P.J. Cosmological Imprint of an Energy Component with General Equation of State. Phys.

Rev. Lett. 1998, 80, 1582. [CrossRef]
35. Zlatev, I.; Wang, L.; Steinhardt, P.J. Quintessence, Cosmic Coincidence, and the Cosmological Constant. Phys. Rev. Lett. 1999, 82, 896.

[CrossRef]
36. Bekenstein, J.D. Universal upper bound on the entropy-to-energy ratio for bounded systems. Phys. Rev. D 1981, 23, 287. [CrossRef]

http://doi.org/10.5840/jphil1989861028
http://dx.doi.org/10.1142/S0218301309012045
http://dx.doi.org/10.1002/andp.19163540702
http://dx.doi.org/10.1002/asna.201913748
http://dx.doi.org/10.1002/asna.202113992
http://dx.doi.org/10.1002/asna.202113993
http://dx.doi.org/10.1002/asna.20220086
http://dx.doi.org/10.1002/asna.20220070
http://dx.doi.org/10.1002/asna.20220079
http://dx.doi.org/10.1002/asna.20220101
http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1103/PhysRevLett.126.090401
http://dx.doi.org/10.1007/JHEP04(2018)147
http://dx.doi.org/10.1103/PhysRevD.89.023525
http://dx.doi.org/10.1088/1361-6382/aac482
http://dx.doi.org/10.1016/j.physletb.2019.06.056
http://dx.doi.org/10.1103/PhysRevD.79.084008
http://dx.doi.org/10.1103/PhysRev.160.1113
http://dx.doi.org/10.1103/PhysRevD.83.044049
http://dx.doi.org/10.3390/universe8040237
http://dx.doi.org/10.1103/PhysRevD.28.2960
http://dx.doi.org/10.1088/0264-9381/32/12/124005
http://dx.doi.org/10.1088/0264-9381/28/7/075007
http://dx.doi.org/10.1088/0264-9381/23/11/013
http://dx.doi.org/10.1016/0550-3213(86)90478-5
http://dx.doi.org/10.1016/j.physletb.2020.135712
http://dx.doi.org/10.1103/PhysRevLett.80.1582
http://dx.doi.org/10.1103/PhysRevLett.82.896
http://dx.doi.org/10.1103/PhysRevD.23.287


Universe 2023, 9, 278 16 of 16

37. Gibbons, G.; Hawking, S.W. Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 1977, 15,
2752–2756. [CrossRef]

38. York, J.W. Boundary terms in the action principles of general relativity. Found. Phys. 1986, 16, 249–257. [CrossRef]
39. York, J.W. Role of Conformal Three-Geometry in the Dynamics of Gravitation. Phys. Rev. Lett. 1972, 28, 1082–1085. [CrossRef]
40. Lukasz, A.G. Novel solution of Wheeler–DeWitt theory. Appl. Math. Phys. 2014, 2, 73–81.
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