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Abstract: We propose a promising model of discrete spacetime based on nonassociative geometry
and complex networks. Our approach treats space as a simplicial 3-complex (or complex network),
built from “atoms” of spacetime and entangled states forming n-dimensional simplices (n = 1, 2, 3).
At large scales, a highly connected network is a coarse, discrete representation of a smooth spacetime.
We show that, for high temperatures, the network describes disconnected discrete space. At the
Planck temperature, the system experiences phase transition, and for low temperatures, the space
becomes a triangulated discrete space. We show that the cosmological constant depends on the
Universe’s topology. The “foamy” structure, analogous to Wheeler’s “spacetime foam,” significantly
contributes to the effective cosmological constant, which is determined by the Euler characteristic of
the Universe.
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1. Introduction

In classical general relativity, the cosmological constant, Λ, added in the Einstein equa-
tions, governs the Universe’s accelerated expansion. However, the equivalence principle
of general relativity requires that every form of energy gravitates similarly. Therefore,
accordingly to this principle, the enormous energy of the quantum vacuum fluctuations
must produce a large gravitational effect. Moreover, the virtual particles contributing to the
vacuum energy density, ρvac, should alternate the value of the cosmological constant [1,2].
Although we do not know how to compute ρvac precisely, the quantum field theory (QFT)
allows one to estimate its value. Unfortunately, the estimates disagree with observational
data by a factor of 10122. It is the worst prediction of the theoretical physics, also known
as the cosmological constant problem (for a review, see the references [3–13]). There is
no generally accepted explanation for this discrepancy, although many papers have been
written on it.

In the middle of the last century, Pauli assumed that the vacuum energies of bosons and
fermions might compensate for each other [14]. This assumption is based on the fact that
the vacuum energy of fermions and bosons have opposite signs: the energy of bosons has a
positive sign, whereas that of fermions has a negative one. Later, Zeldovich developed this
approach to link the vacuum energy to the cosmological constant. Instead of eliminating
the divergences through a boson–fermion cancellation, he suggested a covariant Pauli–
Villars regularization yielding the finite residual vacuum energy and negative pressure
corresponding to a cosmological constant [1,2].

Recently, the approach based on the Pauli–Zeldovich cancellation of the vacuum
energy divergences has been revived to attack the cosmological constant problem by com-
bining both ideas [15–17]. The Pauli suggestion was used for canceling all the ultraviolet
divergences in the vacuum energy. Zeldovich’s approach was used to prove that the re-
maining finite part of the vacuum energy yields an effective cosmological constant. Several
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simple toy models, having particles with equal masses and spin 0 and 1/2, illustrated the
method, wherein interactions can be quite non-trivial. However, the problem is still far
from its resolution.

The standard formulation of the cosmological constant problem is problematic since
the spacetime and the vacuum energy density are highly inhomogeneous and wildly fluc-
tuate at the Planck scales. The importance of quantum fluctuations in spacetime topology
at small scales has been emphasized by many authors (see, for instance, refs. [18–24]). As-
suming that vacuum fluctuations at the Planck-length scale might generate a cosmological
constant requires quantum gravity [3,5,6,8–12]. The search for a quantum theory of gravity
faces the challenge of comprehending and describing the quantum nature of space and
time [25–27]. One can distinguish two general strategies to achieve these goals [28,29]. The
first strategy consists of quantizing a classical structure that later is recovered as a limit of
the quantum theory. The second strategy assumes that the classical structures are emergent
from the other theory, the more fundamental theory from the beginning. In the second
approach, a formulation of the quantum theory may require omitting the use of continuum
concepts a priori. This means that, at the Planck scale, the standard concept of spacetime
must be replaced by some discrete structure (see, for instance, refs. [29–39]).

In [40–46], we proposed a new unified algebraic approach, based on nonassociative ge-
ometry, for describing both continuum and discrete spacetimes. In our model of spacetime,
time is quantized, and a random/stochastic process governs the evolution of spacetime ge-
ometry. As a result, we obtained a partially ordered set of events with spacetime geometry
encoded in the nonassociative structure of spacetime [46]. Among advanced models that
propose discreteness, three are related to our work: causal sets [47–49], causal dynamical
triangulations [32,50–56] and complex quantum network manifolds (CQNMs) [39,57,58].
The CS and CDT models are based on the hypothesis that spacetime is discrete and causality
is a fundamental principle. The CQNM approach treats spacetime as a simplicial complex,
with the quantum network states being characterized by quantum occupation numbers
assigned to the nodes, links and faces of 2-simplices.

This paper addresses the cosmological constant derivation within the discrete space-
time model proposed in [46] by employing the Pauli–Zeldovich cancellation of vacuum
bosonic and fermionic degrees of freedom. We treat 3-dimensional space as a simplicial
3-complex (complex network). Vertices (0-simplices) of the network are the atoms of space-
time, and it is assumed that they are fermions with a spin of 1/2. Edges, or 1-simplices,
are entangled particle states and have a spin of 1. The 2-simplex is built from 3 vertices.
Thus, the 2-simplex is formed as an entangled state with a total spin of 3/2. The 3-simplex
is the entangled state of 4 atoms with a total spin of 2. At large scales, a highly connected
complex network is a coarse, discrete representation of a smooth spacetime.

The properties of spacetime are described by methods of statistical physics based
on the information Shannon–Gibbs entropy [59–61]. For high temperatures, the space is
presented by a simpilicial 0-complex (or a disconnected discrete space). When decreasing
the temperature of the network, the process of triangulation begins with the formation
of low-dimensional complices and clusters. At the Planck temperature, Tp, the system
experiences a phase transition; for low temperatures, T � Tp, the network becomes a
simplicial 3-complex (or a triangulated discrete space).

We show that the "foamy" structure, analogous to Wheeler’s “spacetime foam” [18],
significantly contributes to the effective cosmological constant, Λe f f . The latter is defined
by the Universe’s Euler characteristic, χ; Λe f f = −8πχ`p/V, where `p denotes the Planck
length and V is the volume of the Universe. It is our main result.

The paper is organized as follows. Section 2 discusses the statistical properties of
complex undirected networks with a fixed number of vertices and a varying number
of links, described by the grand canonical ensemble. As a particular application, we
considered in detail simple (fermionic) graphs with only one edge allowed between any
pair of vertices. In Section 3, we briefly introduce a discrete spacetime model based on
nonassociative geometry. In Section 4, we introduce and explore in detail a spacetime
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model based on the fermionic network. In Section 5, we derive the cosmological constant
and show that the Euler characteristic of the Universe defines it. In the conclusion, we
summarize our results and discuss possible generalizations of our approach.

Throughout the paper, we use the natural units, setting c = h̄ = kB = 1.

2. Statistical Description of Complex Networks

Unlike the conventional approach to statistical mechanics, where the Gibbs distribution
is derived by assuming a system in weak interaction with the environment, the statistical
description of complex networks is based on the informational Shannon–Gibbs entropy,
subject to certain constraints [59–61]. For a graph G ∈ G, belonging to an ensemble of
graphs G, let us denote by P(G) the probability of obtaining this graph. Then, the Shannon–
Gibbs entropy reads

S = − ∑
G∈G

P(G) ln P(G). (1)

Assume that the following constraints are imposed: ∑G P(G) = 1 and E = ∑G H(G)P(G),
where H(G) is the graph Hamiltonian, and E is the expectation value of the energy of the
system. Next, employing the principle of maximum entropy,

δ
(
− ∑

G∈G
P(G) ln P(G) + λ

(
∑

G∈G
P(G)− 1

)
+ β

(
E− ∑

G∈G
H(G)P(G)

))
= 0, (2)

where λ and β are the Lagrange multipliers, we obtain the Gibbs distribution:

P(G) =
1
Z

e−βH(G), (3)

where the partition function is given by

Z = ∑
G∈G

e−βH(G). (4)

Using these results, we obtain

S = − ∑
G∈G

P(G) ln P(G) = ln Z + βE. (5)

The relation ∂S/∂E = 1/T shows that the Lagrange multiplier β = 1/T is the inverse
“temperature” of the network.

For an undirected network with a fixed number of vertices and a varying number of
links, the probability of obtaining a graph G can be written as [59,62–64]

P(G) =
1
Z exp

(
β(µL(G)− H(G))

)
, (6)

where Z = ∑G∈G exp
(

β(µL(G)− H(G))
)

is the partition function, β = 1/T is an inverse
network temperature, µ is the chemical potential and L(G) = ∑i<j aij is the number of
links in the graph G. An adjacency matrix, aij, takes a value of 1 or 0 in the i, j entry for
each existing or non-existing link between pairs of nodes (ij). The network connectivity is
characterized by the connection probability pij, i.e., the probability that a pair of nodes (ij)
is connected. This probability is equivalent to the expected number of edges 〈aij〉 between
vertices i and j, namely 〈aij〉 = pij.
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To obtain the grand potential, Ω, which we will refer to as the Landau free energy,
we use the relation Ω = −β−1 lnZ . Next, one can recover the Helmholtz free energy F,
internal energy E and entropy S using the following relations:

F = Ω + µL, E = F + TS, (7)

S = −∂Ω
∂T

∣∣∣
µ

. (8)

At last, with Landau free energy, one can find the expected number of links: L = −∂Ω/∂µ.
Let us assign the “energy” εij to each edge 〈i, j〉. Then, the graph Hamiltonian can be

written as H(G) = ∑i<j εijaij, and the partition function is given by [63]

Z = ∑
G∈G

∏
i<j

eβ(µ−εij)aij . (9)

Using the partition function, one can obtain the connection probability of the existing link
between nodes i and j as the derivative of the partition function [65–68]:

pij = −
∂ lnZ
∂(βεij)

. (10)

Fermionic Graphs

Consider a set of undirected graphs with only one edge allowed between any pair of
vertices (so-called fermionic graphs). The computation of the partition function yields

Z = ∏
〈ij〉

(
1 + eβ(µ−εij)

)
, (11)

where the product is over the ordered pairs 〈ij〉. Employing Equation (10), we obtain the
Fermi–Dirac distribution [59]:

pij =
1

eβ(εij−µ) + 1
. (12)

Using the relation Ω = −β−1 lnZ , we obtain

Ω = −β−1 ∑
i<j

ln
(
1 + eβ(µ−εij)

)
. (13)

The computation of the expected number of links, L = −∂Ω/∂µ, yields

L = ∑
i<j

1

eβ(εij−µ) + 1
. (14)

3. Building Discrete Spacetime

Our approach is based on nonassociative geometry, a statistical description of complex
networks, and the following assumptions [42,46,69]:

• Vertices or nodes of the network are “atoms” of spacetime.
• The distance between two neighboring atoms cannot be less than the fundamental

length, `p.
• Spacetime geometry is encoded in the nonassociative structure of the network.
• The interaction between atoms of spacetime, being nonlocal, defines the spacetime

geometry.
• Time is quantized and the evolution of spacetime geometry is governed by a ran-

dom/stochastic process.
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• The spacetime dimension is a dynamical variable.

We treated a discrete space as a simplicial 3-complex (see Figure 1). Vertices (0-
simplices) of the network are the atoms of spacetime, and it was assumed that they are
fermions with a spin of 1/2. Edges, or 1-simplices, are entangled particle states with a spin
of 1. The 2-simplex is built from 3 entangled atoms; its total spin is 3/2. The 3-simplex has
4 atoms. It is considered as the entangled state with a spin of 2.

The curvature of 2-simplices is associated with their faces and described by an elemen-
tary holonomy. It contrasts the Regge model, where curvature resides at vertices [70–72].
The elementary holonomy of a 2-simplex can be written as h = 1± ∆S/R2, where ∆S is
its area, 1/R2 is the curvature and an upper/lower sign corresponds to positive/negative
curvature, respectively. The null curvature corresponds to the limit R→ ∞.

Figure 1. A network presented as a simplicial 3-complex.

As an example, consider the homogeneous 2D network with positive curvature. This
network can be mapped onto the two-dimensional sphere with radius R, which we treat as
a discrete toy model of the two-dimensional Universe (see Figure 2: Left). The network is
wholly disconnected, and the space is represented by the simplicial 0-complex (Middle),
which is a partially triangulated space, described by a simplicial 2-complex. Together with
isolated 0-simplices and 1-simplices, one can observe the formation of two-dimensional
clusters connected by simplicial 1-complexes (Right). The network becomes completely
connected, corresponding to the triangulated space.

Figure 2. Homogeneous discrete space with positive curvature. Left: a simplicial 0-complex (a non-
triangulated, completely disconnected space). Middle: a simplicial 2-complex (a partially triangulated
space). Right: a homogeneous simplicial 2-complex (a triangulated space).
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4. Spacetime as a Complex Network

A simplicial complex admits only one link between two given nodes. Therefore, only
fermionic graphs can be used for its description as a complex network. In what follows, we
consider the modified version of the Hamiltonian proposed in [69],

H = ν ∑
〈ij〉

aij − J ∑
〈ijk〉

λijkaijajkaki. (15)

Here, λijk = 1 + ε〈ijk〉∆S〈ijk〉/R2
〈ijk〉 denotes the elementary holonomy of a 2-simplex as-

sociated with the triplet of sites 〈i, j, k〉 forming a left triangle concerning the edge 〈ij〉,
and ε〈ijk〉 = ±1. The first term in (15) describes the contribution of the quantum bosonic
vacuum fluctuation and curvature, and the second one represents the quantum fermionic
vacuum fluctuations. The summation over 1-simplices and 2-simplices is denoted as 〈ij〉
and 〈ijk〉, respectively.

Within the mean field approximation, the Hamiltonian (15) is replaced by the effective
Hamiltonian

H =2J ∑
〈ijk〉

λijk pij pjk pki + ∑
〈ij〉

εijaij, (16)

where the effective energy is given by

εij = ν− 3J ∑
k

λijk pjk pki. (17)

The equilibrium state of the system is described by the generalized Fermi–Dirac distribution
for the connection probability (12),

pij =
1

eβ(εij−µ) + 1
. (18)

Employing Equation (17), one can rewrite (18) in the equivalent form

pij =
1
2

(
1 + tanh

(
β

2

(
µ− ν + 3J ∑

k
λijk pjk pki

)))
(19)

We assume that the network is highly connected for low temperatures, and that it has
a low connectance for high temperatures:

pij →
{

1, if T → 0
0, if T → ∞

(20)

This implies that the space is represented by a simplicial 0-complex for high temperatures
(or a completely disconnected discrete space), and it becomes a simplicial 3-complex (or a
triangulated space) for low temperatures.

In the limit of low/high temperatures, the energy of the system is given by

E =

{
E0 = N1ν− N2 Jλ, if T → 0

0, if T → ∞
(21)

where N1 = ∑〈ij〉 is the total number of edges (1-simplices) of the network, N2 = ∑〈ijk〉
denotes the number of the 2-simplices, λ = 1 + ε∆S/`2

p and

ε =
`2

p

N2∆S ∑
〈ijk〉

ε〈ijk〉
∆S〈ijk〉
R2
〈ijk〉

. (22)
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Here, ∆S is the average area of 2-simplices. The dimensionless parameter ε defines the
average curvature of the network. In particular, ε = 0 describes the network with the null
average spatial curvature. By employing Equation (21), in the limit of a low temperature,
we obtain the vacuum energy density as

ρ0 =
E0

V
=

1
V
(N1ν− N2 Jλ), (23)

where V is the volume of the Universe.

4.1. Toy Homogeneous Model

In what follows, we consider the case of a homogeneous network, assuming that
aij = a. With this assumption, the Hamiltonian (15) can be recast as follows:

H = −Jλ ∑
〈ijk〉

a3 + ν ∑
〈ij〉

a. (24)

We assume that each 2-simplex is represented by an equilateral triangle with edges of
length `p so that ∆S =

√
3`2

p/4. Using this relation, we obtain

λ = 1 +

√
3

4
ε. (25)

Within the mean-field approximation, the Hamiltonian (24) is replaced by the effective
Hamiltonian

H = 2Jλ ∑
〈ijk〉

p3 + ∑
〈ij〉

εa = N1εa + 2N2 Jλp3, (26)

where N1 is the total number of 1-simplices, N2 is the total number of 2-simplices of the the
network, and ε = ν− 3Jλp2 is the effective energy. The equilibrium state of the system is
described by the Fermi–Dirac distribution,

p =
1

eβ(ε−µ) + 1
. (27)

Substituting ε = ν− 3Jλp2, one can rewrite (27) as

p =
1
2

(
1 + tanh

(
β

2

(
µ− ν + 3Jλp2

)))
. (28)

In the limit of low/high temperatures, the energy of the system is given by

E→
{

E0 = νN1 − JλN2, if T → 0
0, if T → ∞

Equations (20) and (28) impose the following constraints on the chemical potential:{
µ(T) > ν− 3Jλ, if T → 0
βµ(T)→ −∞, if T → ∞

(29)

Thus, for 0 < T < T0, we obtain a triangulated space and, for T > T0, the space becomes
disconnected.

For illustrative purposes, we chose the dependence of the chemical potential on
the temperature to be µ(T) = µ0(1− (T/Tp)2). The typical behavior of the connection
probability is shown in Figure 3. The graph is depicted for the choice of parameters: ε = 0,
µ0 = 3Tp and J = ν = TP, where TP = 1.4 · 1032K is the Planck temperature. One can see
that the system experiences a phase transition at the critical temperature Tp forming the
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fermionic condensate with the maximally entangled states. This transition is quick, and the
Universe becomes a wholly triangulated space at the temperature ∼1031K� TG, where
TG∼1029K is the temperature of the grand unification epoch beginning.

Figure 3. Connection probability as a function of dimensionless temperature, τ = T/Tp (left) and
inverse dimensionless temperature (right).

4.2. Spacetime Evolution

In our approach, space and time are quantized in the Planck units, and a random/
stochastic process governs spacetime evolution. The cosmological scale factor, an, is defined
by a random walk with a reflecting barrier R0 at n = 0 and a step `p, where `p is the Planck
length. After n steps, the average cosmological scale factor grows as [46]

〈an〉 = a0 +
√

2n/π, (30)

where a0 = R0/`p is the scale factor related to the initial 3-simplex defining the minimal
size of the Universe.

Numerical simulations show that creating the primordial Universe corresponds to
the temperature Ti∼1031K (see Figure 3). Therefore, considering Ti as the initial time of
the Universe’s evolution is reasonable. After ∼108 steps in Planck units of time, which
correspond to pre-inflationary time, ti∼10−35s (time of the beginning of inflation) and
temperature Tpr ≈ 1027K, the cosmological scale factor would be apr∼a0 +

√
2/π104. A

comparison with the pre-inflationary Universe’s scale factor, apr∼104a0, estimated within
the ΛCDM-model as apr/a0 ≈ Ti/Tpr, yields a good agreement with our prediction.

We assume that space consists of many fluctuating simplicial regions that grow as
“mini-universes” (clusters) and form a multiverse. The mini-universes may merge and
create pre-inflationary universes (bubbles). This multiverse state can be metastable and
lead to the nucleation of bubbles and their further merging due to the first-order phase
transition (inflation). Suppose that the duration of the phase transition is short enough.
In this case, the nucleation of bubbles of the new phase and their merging may have an
exponential character typical for the inflation era of the Universe.

5. The Cosmological Constant Problem

Writing the Einstein equations as

Rµν −
1
2

gµνR = 8πGTµν − gµνΛ, (31)

one can observe that space with a non-zero cosmological constant produces the same
gravitational field as matter with mass density ρΛ = Λ/8πG and pressure PΛ = −ρΛ.
Thus, one can speak about the energy density of the vacuum and its pressure.
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According to the equivalence principle of general relativity, the energy of the quantum
vacuum fluctuations must produce a gravitational field, and the semiclassical Einstein
equations describe their contribution:

Rµν −
1
2

gµνR = 8πG〈Tµν〉 − gµνΛ, (32)

where 〈Tµν〉 = 〈0|Tµν|0〉 is the expectation value of the quantum vacuum energy–momentum
tensor.

Lorentz invariance requires that 〈Tµν〉 takes the form

〈Tµν〉 = −ρvacgµν, (33)

where ρvac = 〈0|T00|0〉 is the expectation value of the energy density of the matter fields in
the vacuum state. Employing (33), one can recast Equation (31) as

Rµν −
1
2

gµνR = 8πGTµν − gµνΛe f f , (34)

where Λe f f = Λ + 8πρvac`2
p is the effective (observable) cosmological constant.

The QFT estimates the vacuum density energy as ρvac ∼ m4
p, where mp is the Planck

energy. The current Hubble expansion rate H0 yields an upper bound for Λe f f [73],

Λe f f = 3H2 ≤ 3H2
0 ∼ 10−122`−2

p ∼ 10−122ρvac`
2
p, (35)

where H = ȧ/a =
√

Λe f f /3 is the Hubble constant describing the acceleration of the Uni-
verse. Thus, one has a huge disagreement between the observed value of the cosmological
constant and the theoretical prediction of its value resulting from the QFT.

The general form of the vacuum energy density, including the contribution of different
fermionic and bosonic fields, can be written as [74–76]

ρ = a4Λ4
uv + a2Λ2

uv M2 + a0M4 ln
Λ2

uv
M2 , (36)

where M is the mass of corresponding field, and Λuv is the ultraviolet energy cut-off. In
particular, if the vacuum is completely homogeneous and static, all the parameters vanish,
corresponding to a zero cosmological constant. In the presence of the interface between
two different vacua, the energy density can depend not only on the mass M but also on the
mass of the quantum field in the neighboring vacuum [76].

The standard computation of the cosmological constant assumes that the spacetime is
homogeneous and isotropic, and that the theory is Lorentz-invariant. These assumptions
are reasonable at a cosmological scale but questionable at a small (Planck) scale [73,77,78].
In addition, the QFT cannot be applied on Planckian scales since spacetime is discrete.
Instead of QFT, we use the statistical description of the spacetime, treating the latter as a
complex network.

Borrowing the approach of the QFT, we define the effective cosmological constant as

Λe f f = 8π`2
pρvac, (37)

where ρvac is the energy density of the vacuum state defined by the contribution of all
bosonic and fermionic fields of the simplicial complex, M. If one takes into account the
contributions from all simplices, we obtain

ρvac = −
1
V

3

∑
i=0

(−1)i|Ei|, (38)
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where Ei is the vacuum energy of the i-simplex. Replacing the vacuum energy of simplices
by its upper bound, |Ei| = mp, and assuming ε = 0, in the limit of T → 0, we obtain

ρvac = −
mp

V

3

∑
i=0

(−1)i Ni, (39)

where Ni is the number of i-simplices in the network. Employing Eqaution (37), we find

Λe f f = −
8π`p

V
χ(M), (40)

where χ(M) = ∑3
i=0(−1)i Ni is the Euler characteristic of the simplicial complex M [79].

Thus, a non-vanishing cosmological constant implies a non-trivial topology of spacetime.
To estimate the Euler characteristic, we use Equation (40), writing

χ(M) = −Λ0
V

8π`3
p

, (41)

where Λ0 ≡ Λe f f `
2
p. Unfortunately, the real size of the Universe is unknown. For a lower

estimate, we take V as the volume of the observable Universe, V ≈ 3.566× 1086 cm3. This
yields V/8π`3

p∼10183. Taking Λ0 ∼ 10−122, we obtain |χ(M)|∼1061. This huge number
means that the topology of spacetime is highly non-trivial due to vacuum fluctuations,
which lead to forming a foamy structure, a version of Wheeler’s “spacetime foam” [18].

Remark 1. If M is a simplicial decomposition of the three-dimensional manifold, then χ(M) = 0 [79].
Thus, a non-trivial topology of the Universe is mandatory for a non-vanishing cosmological constant.

6. Discussion and Conclusions

We have shown how complex networks with hidden geometry lead to the emergence
of discrete spacetime from entanglement. This phenomenon can be treated as a first-
order phase transition from the free fermionic gas to the fermionic condensate formed by
maximally entangled states of spacetime’s atoms. This transition and the formation of our
Universe occurred before the grand unification epoch.

In our approach, spacetime is treated as an evolving complex network, and a ran-
dom/stochastic process governs its evolution. The first feature of our model of discrete
spacetime is the obvious absence of an initial singularity. The other important feature is a
natural emergence of a causal structure and an arrow of time. The irreversibility of evolu-
tion occurs due to information loss and the existence of the fundamental Planck length. In
the pre-inflation epoch, the cosmological scale factor grows as a(t) ∝

√
t, which agrees with

changing the cosmological scale factor for a radiation-dominated era. The post-inflationary
Universe results from the nucleation and merging of baby mini-universes, occurring during
a strong first-order phase transition [80–82]. The existence of the fundamental length as a
minimal admissible length scale in the Universe implies that the emergence of space in the
expanding cosmological models is a continuous process. The models with eternal inflation
support this point of view [80,83].

Among recent attempts to describe a discrete spacetime, the closest to our approach
is the CQNM. The main difference between the CQNM and our model is the method of
building the discrete space. Whereas the CQNM treats the discrete space as a simplicial de-
composition of the n-dimensional manifold (n = 2, 3), in our approach, a three-dimensional
simplicial complex presents the discrete space. As a consequence, our model allows for
a non-trivial topology compared to the CQNM admitting only trivial topology. Another
critical difference is the description of the curvature. In our approach, the curvature is
associated with the faces of 2-simplices and presented by the elementary holonomy. The
elementary holonomy converts into the manifold’s curvature in the continuous limit. In
the CQNM, the curvature is defined on each network node by the degree of the node and
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the number of triangles passing through the node. The connection with the manifold’s
curvature in the continuous limit is an open issue.

We point out that the standard formulation of the cosmological constant problem is
problematic since the spacetime and the vacuum energy density are highly inhomogeneous
and wildly fluctuate at the Planck scales. We have shown that the non-trivial topology of the
Universe is mandatory for a non-vanishing cosmological constant. The “foamy” structure,
analogous to Wheeler’s “spacetime foam” [18], significantly contributes to the effective
cosmological constant defined by spacetime’s topology. Explicitly, Λe f f = −8πχ(M)`p/V,
where χ(M) is the Euler characteristic of the simplicial complex M, and V is its volume.
Taking V as the volume of the observable Universe, we find χ∼1061. This enormous
number implies that the topology of spacetime is highly non-trivial due to vacuum fluctua-
tions. The fluctuations create the foamy structure that may be formed by micro-universes
connected by the Einstein–Rosen bridges with wormhole topology. One can consider
the obtained dependence of the cosmological constant on the Euler characteristic as a
self-tuning solution to the cosmological constant problem, free from the fine-tuning issue
associated with the cosmological constant. Among open issues requiring further study, one
can list the contribution of the curvature and vacuum fluctuations of quantum fields to
the cosmological constant during the grand unification epoch. Another critical question is:
has the observable magnitude of the cosmological constant been gained before or after the
inflation epoch? In conclusion, our approach paves the avenue to solving the cosmological
constant problem. This work is in progress.
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