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Abstract: The nature of dark matter (DM) is one of the most relevant questions in modern astrophysics.
We present a brief overview of recent results that inquire into the possible fermionic quantum nature
of the DM particles, focusing mainly on the interconnection between the microphysics of the neutral
fermions and the macrophysical structure of galactic halos, including their formation both in the linear
and non-linear cosmological regimes. We discuss the general relativistic Ruffini–Argüelles–Rueda
(RAR) model of fermionic DM in galaxies, its applications to the Milky Way, the possibility that the
Galactic center harbors a DM core instead of a supermassive black hole (SMBH), the S-cluster stellar
orbits with an in-depth analysis of the S2’s orbit including precession, the application of the RAR
model to other galaxy types (dwarf, elliptic, big elliptic, and galaxy clusters), and universal galaxy
relations. All the above focus on the model parameters’ constraints most relevant to the fermion mass.
We also connect the RAR model fermions with particle physics DM candidates, self-interactions, and
galactic observable constraints. The formation and stability of core–halo galactic structures predicted
by the RAR model and their relations to warm DM cosmologies are also addressed. Finally, we
provide a brief discussion of how gravitational lensing, dynamical friction, and the formation of
SMBHs can also probe the DM’s nature.

Keywords: dark matter; galactic structure; supermassive black holes; active galactic nuclei

1. Introduction

The main evidence for the existence of dark matter (DM) is implied by its gravitational
effects in a plethora of astrophysical and cosmological environments, including the cosmic
microwave background (CMB), baryon acoustic oscillations (BAO), galactic structures (its
formation, evolution, and morphology), gravitational lensing, stellar streams, and many
others. However, understanding its nature and precise overall mass distribution in galactic
structures within a particle DM paradigm remains an open question.

Several attempts have been made to explain this phenomenon through ordinary matter,
including active neutrinos [1,2] or macroscopic objects such as MACHOS [3]. However, a
microscopic origin of the DM particles regarding a new particle species not included in the
Standard Model remains the most likely hypothesis [4,5].

More recent cosmological observations obtained in the last three decades have favored
the adoption of the ΛCDM paradigm [6,7]: in the standard scheme, the DM is assumed to
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be produced in thermal equilibrium via weak interactions with the primordial plasma and
modeled as collisionless after its decoupling from the other particle species. In this scenario,
the DM decoupling is assumed to occur at a temperature smaller than the DM rest mass,
so the distribution corresponds to non-relativistic particles. The traditional DM candidate
within this paradigm is the so-called weakly interacting massive particle (WIMP), typically
a heavy neutral lepton with masses around 100 GeV/c2 [5]. Nonetheless, many other
DM candidates exist, either of bosonic or fermionic nature, such as axion-like particles or
sterile neutrinos, respectively, with somewhat different early Universe decoupling regimes
relative to WIMPs, though still in agreement with current cosmological observables (see,
e.g., [8,9] for extensive reviews in the case of axions and sterile neutrinos, respectively).

Besides their different early Universe physics, these different DM particles imply
different outcomes in the non-linear regime of structure formation, which may allow the
favoring of one candidate over the other. These non-linear processes typically correspond
to the gravitational collapse of primordial self-gravitating DM structures such as DM halos,
in which the quantum nature of the DM particles (either bosonic or fermionic) can cause
distinguishable patterns that data can test. Their effects on the precise shape and stability of
the DM density profiles, including the distinctive quantum effects (e.g., quantum pressure)
through the central regions of the halos, may open new important avenues of research in
the field. Indeed, in [10], it has been shown that these interesting quantum imprints in the
DM halos exist for bosonic DM, and in [11] for fermionic DM.

A key motivation to include the quantum nature of the particles in the study of
DM halos is the limited inner spatial resolution obtained within cosmological N-body
simulations for such formed structures. It encompasses huge uncertainties in (1) the central
DM mass distributions; (2) the relation/effects with the supermassive black hole (SMBH)
at the center of large galaxies; and (3) the relationship with the baryonic matter on inner-
intermediate halo scales, among others. Indeed, using classical (rather than quantum)
massive pseudo-particles as the matter building blocks in N-body simulations within the
ΛCDM cosmology does not allow the testing of quantum pressure effects in DM halos.

In the last decade, increasing attention has been given to the study of DM halos in
terms of quantum particles, given that they may alleviate/resolve many of the drawbacks
still present in the traditional CDM paradigm on small scales (i.e., typically below ∼10 kpc
scales). The bulk of these models is composed of the following three categories:

(i) Ultralight bosons with masses1 mbc2 ∼ 1–10× 10−22 eV, known as ultralight DM,
fuzzy DM, or even scalar field DM [12–22].

(ii) The case of fully degenerate fermions (i.e., in the zero temperature approximation under
the Thomas–Fermi approach) with masses mdfc2 ∼ few ×102 eV [23–26], or the case of
self-gravitating fermions but distributed in the opposite limit, i.e., in the dilute regime
(i.e., in Boltzmannian-like fashion), which, however, do not imply an explicit particle
mass dependence when contrasted with halo observables (see, e.g., [27]).

(iii) The more general case of self-gravitating fermions in a semi-degenerate regime (i.e.,
at finite temperature), which can include both regimes in the same system, i.e., to be
highly degenerate in the center and more diluted in the outer region (see [26,28–31]
for a list of generic works). Recently, the phenomenology of this theory regarding the
study of DM in real galaxies (using specific boundary conditions from observations)
was developed in full general relativity either including the escape of particles [32–37]
or not [38], and leading to particle masses in the range of m f c2 ∼ few 10–100 keV. The
latter model is usually referred to in the literature as the Ruffini–Argüelles–Rueda
(RAR) model (it has been sometimes called the relativistic fermionic–King model).

A relevant aspect of the above models is the DM particle mass dependence on the
density profiles, which differs from phenomenological profiles used to fit the results from
classical N-body numerical simulations. Moreover, these types of self-gravitating systems of
DM open the possibility of having access to the very nature, mass, and explicit dependence
on their phase–space distributions at the onset of DM halo formation in real galaxies (see,
e.g., [20] and refs. therein for bosons and, e.g., [11,26,33] and refs. therein for fermions).
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In this review, we will focus on fermionic candidates as described in (iii), describe
the huge progress in the last decade in their theory and phenomenology, and comment on
future perspectives. This work is organized as follows. In Section 2, we recall the main
features of the RAR model, the theoretical framework, including the fermion equation
of state (EOS), the general relativistic equations of equilibrium, and the properties of the
solutions, such as the DM density profile and galactic rotation curves. Section 3 is devoted
to applying the RAR model to the description of the MW and the constraints that the
galactic data of the rotation curves impose on the fermion mass. Special emphasis is
also given to the high-quality data of the motion of the S-cluster stars in the proximity of
Sgr A*. We outline in Section 4 the application of the RAR model to other galaxy types,
specifically to dwarf spheroidal, spiral, and elliptical galaxies, as well as galaxy clusters.
The extension of the model to various galaxies allows us to verify its agreement with
universal observational correlations. Section 5 discusses this topic. Section 6 discusses the
possibility of the sterile neutrinos being the massive fermions of the RAR model, including
the constraints on possible fermion self-interactions. Section 7 discusses the formation and
stability of the fermionic DM from a cosmological evolution viewpoint, e.g., the non-linear
structure and the relation with warm DM cosmologies. Section 8 outlines some additional
astrophysical systems and observations that can help to constrain DM models, e.g., the
gravitational lensing, the DM dynamical friction on the motion of binaries, and the link
between DM halos and SMBHs at the centers of active galaxies. Finally, Section 9 concludes.

2. The RAR Model: Theoretical Framework

The RAR model was proposed to evaluate the possible manifestation of the dense
quantum core–classical halo distribution in the astrophysics of real galaxies, i.e., as a viable
possibility to establish a link between the dark central cores to DM halos within a unified
approach in terms of DM fermions [38]. The RAR model equilibrium equations consist of
the Einstein equations in spherical symmetry for a perfect fluid energy-momentum tensor.
The Fermi–Dirac statistics give the pressure and density, while the closure relations are
determined by the Klein and Tolman thermodynamic equilibrium conditions [38]. The
solution to this system of equations leads to continuous and novel profiles for galactic dark
matter halos, whose global morphology depends on the fermionic particle mass. Such
morphology has a universal behavior of the type dense core-dilute halo that extends from
the center to the galactic halo, which allows us to provide solutions to various tensions
faced by standard cosmological paradigms on galactic scales. The outermost part of such
distributions makes it possible to explain the galactic rotation curves (in a similar way as
traditional dark matter profiles do), while their central morphology is characterized by
high concentrations of semi-degenerate fermions (due to the Pauli exclusion principle) with
important astrophysical consequences for galactic nuclei (see [39–41] for its applications).
Similar core-halo profiles with applications to fermionic DM were obtained in [30] and more
recently in [31] from a statistical approach within Newtonian gravity.

The above corresponds to the original version of the RAR model, with a unique family
of density profile solutions that behaves as ρ(r) ∝ r−2 at large radial distances from the
center. This treatment was extended in [32] by introducing a cutoff in momentum space
in the distribution function (DF) (i.e., accounting for particle escape effects) that allows us
to define the galaxy border. The extended RAR model conceives the DM in galaxies as a
general relativistic self-gravitating system of massive fermions (spin 1/2) in hydrostatic and
thermodynamic equilibrium. Following [32], we solve the Tolman–Oppenheimer–Volkoff
(TOV) equations using an equation of state (EOS) that takes into account (i) the relativistic
effects of the fermionic constituents, (ii) finite temperature effects, and (iii) particle escape
effects at large momentum (p) through a cutoff in the Fermi–Dirac distribution fc,
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fc(ε ≤ εc) =
1− e(ε−εc)/kBT

e(ε−µ)/kBT + 1
, fc(ε > εc) = 0 , (1)

where ε =
√

c2 p2 + m2c4 − mc2 is the particle kinetic energy, εc is the cutoff particle
energy, µ is the chemical potential from which the particle rest energy is subtracted, T is the
temperature, kB is the Boltzmann constant, c is the speed of light, and m is the fermion mass.

This extended version of the RAR model differs from the original one presented
in [38] only in condition (iii). The inclusion of the cutoff parameter allows a more realistic
description of galaxies since it allows us (1) to model their finite size and (2) to apply
relaxation mechanisms that realize in nature the Fermi–Dirac distribution in Equation (1),
where the entropy can reach a maximum, unlike the original RAR model with no particle
escape condition, i.e., εc → ∞ (see [31] for a discussion). In fact, it is important to highlight
that quantum phase–space distribution (Equation (1)) can be obtained from a maximum
entropy production principle [29]. It has been shown that there is a stationary solution of
a generalized Fokker–Planck equation for fermions that includes the physics of violent
relaxation and evaporation, appropriate within the non-linear stages of galactic DM halo
structure formation [29]. The full set of dimensionless parameters of the model is

β = kBT/(mc2), θ = µ/(kBT), W = εc/(kBT), (2)

where β, θ, and W are the temperature, degeneracy, and cutoff parameters, respectively. We
do not consider anti-fermions because the temperature fulfills T � mc2/kB.

The stress-energy tensor is that of fermionic gas modeled as a perfect fluid,

Tαν = diag
[
c2ρ(r), P(r), P(r), P(r)

]
, (3)

whose density and pressure are associated with the distribution function fc,

ρ = m
2
h3

∫ εc

0
fc(p)

(
1 +

ε(p)
mc2

)
d3 p , (4)

P =
1
3

4
h3

∫ εc

0
fc(p) ε

1 + ε(p)/2mc2

1 + ε(p)/mc2 d3 p, (5)

where the integration is carried out over the momentum space bounded by ε ≤ εc.
The system is considered to be spherically symmetric, so we adopt the metric

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dθ2 + r2 sin2 θdφ2, (6)

where (r,θ,φ) are the spherical coordinates, the metric functions eν(r) and e−λ(r) = 1−
2M(r)/r are functions of r, and M(r) is the mass function. The Tolman [42] and Klein [43]
thermodynamic equilibrium conditions, as well as the cutoff [44] condition obtained from
energy conservation along a geodesic, can be written as

eν/2T = constant, (7a)

eν/2(µ + mc2) = constant, (7b)

eν/2(ε + mc2) = constant. (7c)

We set the constants on the right-hand side of Equations (7a)–(7c) by evaluating the equa-
tions at the boundary radius, say rb. For instance, the escape energy condition (7c) becomes

(1 + Wβ) = e(νb−ν)/2, (8)
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being νb ≡ ν(rb), W(rb) = εc(rb) = 0 [44]. This condition approaches the Newtonian
escape velocity condition, v2

e = −2Φ, in the weak-field, non-relativistic limit, c→ ∞ and
eν/2 ≈ 1 + Φ/c2, where Φ is the Newtonian gravitational potential, and setting Φ(rb) = 0.

Therefore, the Einstein equations together with the equilibrium conditions (7a)–(8)
form the following system of coupled non-linear ordinary integrodifferential equations:

dM̂
dr̂

= 4πr̂2ρ̂, (9a)

dθ

dr̂
= −1− β0(θ − θ0)

β0

M̂ + 4πP̂r̂3

r̂2(1− 2M̂/r̂)
, (9b)

dν

dr̂
=

2(M̂ + 4πP̂r̂3)

r̂2(1− 2M̂/r̂)
, (9c)

β(r̂) = β0e
ν0−ν(r̂)

2 , (9d)

W(r̂) = W0 + θ(r̂)− θ0 , (9e)

where the subscript ‘0’ stands for a variable evaluated at r = 0. We have introduced di-
mensionless quantities: r̂ = r/χ, M̂ = GM/(c2χ), ρ̂ = Gχ2ρ/c2, P̂ = Gχ2P/c4, with
χ = 2π3/2(mPl/m)h̄/(mc), being mPl =

√
h̄c/G the Planck mass. Equations (9a) and (9b)

are the relevant Einstein equations, Equation (9c) is a convenient combination of the Klein and
Tolman relations for the gradient of θ = µ/(kBT), and Equation (9e) is a direct combination
of the Klein and cutoff energy conditions. Note that in the limit W → ∞ (no particle escape:
εc → ∞), the above equation system reduces to the equations obtained in the original RAR
model [38].

Argüelles et al. [32] have shown that including the cutoff parameter, besides its
theoretical relevance, allows the handling of more stringent outer halo constraints and
leads to central cores with higher compactness compared to the ones produced by the
unbounded solutions of the original RAR model [38].

3. Constraints on Fermionic DM from the Milky Way

Therefore, in the RAR model, the distribution of DM in the galaxy is calculated self-
consistently by solving the Einstein equations, subjected to thermodynamic equilibrium
conditions. The system of equations must be subjected to boundary conditions to satisfy
galactic observables. In this section, we summarize the most relevant example, the case of
the Milky Way (MW).

3.1. The Milky Way Rotation Curves

Thanks to the vast amount of rotation curve data (from the inner bulge to outer
halo) [45], our galaxy is the ideal scenario to test the RAR model. The observational data
used in [45] vary from a few pc to a few 100 kpc, covering various orders of magnitude of
the radial extent with different baryonic and dark mass structures, and can reach down
to the ∼10−4 pc scale when including the S-cluster stars [46]. To fit the observed rotation
curve, and according to [45], the following matter components of the MW must be assumed:

(i) A central region (r ∼ 10−4–2 pc) of young stars and molecular gas whose dynamics
are dictated by a dark and compact object centered at Sgr A*.

(ii) An intermediate spheroidal bulge structure (r ∼ 2–103 pc) composed mostly of
older stars, with inner and main mass distributions explained by the exponential
spheroid model.

(iii) An extended flat disk (r ∼ 103–104 pc) including star-forming regions, dust, and gas,
whose surface mass density is described by an exponential law.

(iv) A spherical halo (r ∼ 104–105 pc) dominated by DM, followed by a decreasing density
tail with a slope steeper than r−2.



Universe 2023, 9, 197 6 of 35

Considering the previous mass distributions for the galaxy, the extended RAR model
was successfully applied to explain the MW rotation curve as shown in Figures 1 and 2,
implying a more general dense core–diluted halo behavior for the DM distribution:

• A DM core with radius rc (defined at the first maximum of the twice-peaked rotation
curve), whose value is shown to be inversely proportional to the particle mass m, in
which the density is nearly uniform. This central core is supported against gravity by
the fermion degeneracy pressure, and general relativistic effects are appreciable.

• Then, there is an intermediate region characterized by a sharply decreasing density
where quantum corrections are still important, followed by an extended and diluted
plateau. This region extends until the halo scale length rh is achieved (defined at the
second maximum of the rotation curve).

• Finally, the DM density reaches a Boltzmann regime supported by thermal pressure
with negligible general relativistic effects. It shows a behavior ρ ∝ r−n with n > 2 that
is due to the phase–space distribution cutoff.2 This leads to a DM halo bounded in
radius (i.e., ρ ≈ 0 occurs when the particle escape energy approaches zero).

The different regimes in the density profiles are also revealed in the DM rotation curve
showing the following (see right panel of Figure 1):

• A linearly increasing circular velocity v ∝ r reaching a first maximum at the quantum
core radius rc.

• A Keplerian power law, v ∝ r−1/2, with decreasing behavior representing the transi-
tion from quantum degeneracy to the dilute regime. After a minimum, highlighting
the plateau, the circular velocity follows a linear trend until reaching the second
maximum, which is adopted as the one-halo scale length in the fermionic DM model.

• A decreasing behavior consistent with the power-law density tail ρ ∝ r−n due to the
cutoff constraint.

Figure 1. DM density profiles (left) and rotation curves (right), from 10−7 pc to 105 pc, for three
representative fermion masses mc2 = 0.6, 48, and 345 keV. The vertical dashed blue lines in the
left plot indicate the position of the S-cluster stars [47], and the dashed black curve represents the
NFW density profile obtained in Sofue [45]. Reprinted from [32], Copyright (2018), with permission
from Elsevier.

The galaxy data analysis allowed us to rule out the fermion mass range mc2 < 10 keV
because the corresponding rotation curve starts to exceed the total velocity observed in
the baryon-dominated region. On the other hand, by focusing only on the quantum
core, it was possible to derive constraints that further limit the allowed fermion mass
to mc2 ≈ 48–345 keV. The dynamics of the S-cluster give the mass a lower bound. The
S-stars analysis obtained through a simplified circular velocity analysis in general relativity
showed that the fermion mass should be mc2 ≥ 48 keV. Namely, the quantum core radius
of the solutions for mc2 < 48 keV is always greater than the radius of the S2 star pericenter,
i.e., rc > rp(S2) = 6× 10−4 pc, which rules out fermions lighter than 48 keV. The mass upper
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bound of mc2 = 345 keV corresponds to the last stable configuration before reaching the
critical mass for gravitational collapse, Mcr

c ∝ m3
Pl/m2 [32,48,49].

As was explicitly shown in [32,33,50], this new type of dense core–diluted halo density
profile suggests that the DM might explain the mass of the dark compact object in Sgr A*,
as well as the halo mass. It applies not only to the MW but also to other galactic structures,
from dwarfs and ellipticals to galaxy clusters [33]. Specifically, an MW analysis [32] has
shown that this DM profile can indeed explain the dynamics of the closest S-cluster stars
(including S2) around Sgr A* and to the halo rotation curve without changing the baryonic
bulge disk components (see Figures 1 and 2). Therefore, for a fermion mass of 48–345 keV,
the RAR solutions explain the Galactic DM halo and, at the same time, provide a natural
alternative to the central BH scenario.

5 10 15 20 25 30 35

r [kpc]

50

100

150

200

250

v r
ot

[k
m

s−
1
]

Baryonic+DM (RAR m=48 keV)
Baryonic+DM (RAR m=345 keV)
Baryonic+NFW
RAR m=48 keV
RAR m=345 keV
NFW
data Sofue (2013)

Figure 2. Magnification of the most relevant curves in the 1–35 kpc region and in the linear scale
of the plot in the right panel of Figure 1. The graphic allows us to better appreciate the differences
between the diverse DM models in the radial window where the rotation curve is most relevant.
Reprinted from [32], Copyright (2018), with permission from Elsevier.

3.2. The Orbits of S2 and G2

The extensive and continuous monitoring of the closest stars to the Galactic center
has produced, over decades, a large amount of high-quality data on their positions and
velocities. The explanation of these data, especially the S2 star motion, reveals a compact
source, Sagittarius A* (Sgr A*), whose mass must be around 4× 106 M�. This result led to
the Nobel Prize in Physics 2020 being awarded to Reinhard Genzel and Andrea Ghez for the
discovery of a supermassive compact object at the center of our galaxy. Traditionally, the nature of
Sgr A* has been attributed to a supermassive black hole (SMBH), even though direct proof of
its existence is absent. Further, recent data on the motion of the G2 cloud show that its post-
peripassage velocity is lower than expected from a Keplerian orbit around the hypothesized
SMBH. An attempt to overcome this difficulty has used a friction force, produced (arguably)
by an accretion flow whose presence is also observationally unconfirmed.

We have advanced in Argüelles et al. [32] and in Becerra-Vergara et al. [34,35],
Argüelles et al. [36] an alternative scenario that identifies the nature of the supermas-
sive compact object in the MW center, with a highly concentrated core of DM made of
fermions (referred to from now on as darkinos). The existence of a high-density core of
DM at the center of galaxies had been demonstrated in Ruffini et al. [38], where it was
shown that the core–halo profiles are obtained from the RAR fermionic DM model. The DM
galactic structure is calculated in the RAR model, treating the darkinos as a self-gravitating
system at finite temperatures, in thermodynamic equilibrium, and in general relativity. It
has already been shown that this model, for darkinos of 48–345 keV, successfully explains
the observed halo rotation curves of the MW [32] and other galaxy types [33].

Therefore, since 2020, we have moved forward by performing first
in Becerra-Vergara et al. [34] and then in Becerra-Vergara et al. [35], Argüelles et al. [36]
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observational tests of the theoretically predicted dense quantum core at the galactic center
within the DM-RAR model. Namely, we aimed to test whether the quantum core of darkinos
could work as an alternative to the SMBH scenario for SgrA*. For this task, the explana-
tion of the multiyear accurate astrometric data of the S2 star around Sgr A*, including
the relativistic redshift that has recently been verified, is particularly important. Another
relevant object is G2, whose most recent observational data, as we have recalled, challenge
the scenario of an SMBH.

We show in Becerra-Vergara et al. [34] that the solely gravitational potential of such a
DM profile for a fermion mass of 56 keV explains the following (see Figures 3 and 4):

(i) all the available time-dependent data of the position (orbit) and line-of-sight radial
velocity (redshift function z) of S2,

(ii) the combination of the special and general relativistic redshift measured for S2,
(iii) the currently available data on the orbit and z of G2,
(iv) its post-pericenter passage deceleration without introducing a drag force.
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Figure 3. Theoretical (central BH and RAR models) and observed orbit of S2 around Sgr A*. The left
panel shows the orbit, i.e., the right ascension (X) vs. declination (Y), while the right panel shows
X and Y vs. observation time, with the residuals of the best fit for the BH (blue) and the RAR (red)
models. The theoretical models are calculated by solving the equations of motion (see Appendix A)
of a test particle in the gravitational field of (1) a Schwarzschild BH of 4.075× 106 M�, and (2) the
DM-RAR model for 56 keV fermions (leading to a quantum core mass 3.5× 106 M�). Reproduced
from [34] with permission from Astronomy & Astrophysics, Copyright ESO.
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For both objects, it was found that the RAR model fits the data better than the
BH scenario. The reduced chi-squares of the time-dependent orbit and z data are
〈χ̄2〉S2,RAR ≈ 3.1 and 〈χ̄2〉S2,BH ≈ 3.3 for S2 and 〈χ̄2〉G2,RAR ≈ 20 and 〈χ̄2〉G2,BH ≈ 41 for
G2. The fit of the z data shows that while, for S2, the fits are comparable, i.e., χ̄2

z,RAR ≈ 1.28
and χ̄2

z,BH ≈ 1.04, for G2, only the RAR model fits the data: χ̄2
z,RAR ≈ 1.0 and χ̄2

z,BH ≈ 26.
Therefore, the sole DM core, for 56 keV fermions, explains the orbits of S2 and G2. No drag
force or other external agents are needed, i.e., their motion is purely geodesic.
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Figure 4. Theoretical and observed line-of-sight radial velocity for S2 (left) and G2 (right), calculated
for the same models as in Figure 3. Both models can fit the data with similar precision S2, and, for G2,
the RAR model fits the data with noticeably better precision than the BH. Reproduced from [34] with
permission from Astronomy & Astrophysics, Copyright ESO.

The above robust analysis (and detailed in [34]) has tested the extended RAR model [32]
with the precise astrometric data of the S2 star (and also of G2), showing excellent agree-
ment for a particle mass of mc2 = 56 keV. Thus, it is confirmed that the elliptic orbits of
these two objects moving in the surroundings of the DM core composed of 56 keV fermions
are compact enough so that the core radius rc is always smaller than the pericenter of the
stars and they have their foci coinciding with the galactic center as obtained by observations
(see, e.g., [51]). The above results invalidate recently claimed drawbacks of the RAR model
raised in [52] since none of the working hypotheses therein apply to the RAR model.

3.3. The Orbits of All S-Cluster Stars

More recently, in Becerra-Vergara et al. [35], we have extended the above results to all
the best observationally resolved S-cluster stars, namely to the up-to-date astrometry data
of the 17 S-stars orbiting Sgr A*, allowing us to explain the dynamics of the S-stars with
similar (and some cases better) accuracy compared to a central BH model (see Figure 5).

Table 1 in Becerra-Vergara et al. [35] summarizes the best-fit model parameters and
reduced χ2 for the position and the line-of-sight radial velocity of the 17 S-cluster stars for
the central BH and the RAR model. The average reduced χ2 of the RAR model was 1.5741
and the corresponding value of the central BH model was 1.6273.

Therefore, a core of fermionic DM at the galactic center explains the orbits of the S-stars
with similar accuracy compared to a central BH model. The same core–halo distribution
of 56 keV fermions also explains the MW rotation curves [32,34]. Data of the motion of
objects near Sgr A*, if accurate enough, could place additional constraints on the fermion
mass. The recently detected hot-spots apparently in a circular motion at 7–23 GMBH/c2

radius [53,54], however, fail in this task because of the high model dependence of the
object’s real orbit inference, including the lack of information on the object’s nature. In
addition, the quality of their astrometry data is low relative to the S-stars data. We hope that
the data quality of these spots or similar objects will increase so that they can place relevant
constraints on Sgr A* models. We continue to await the data of newly observed S-stars
(S62, S4711–S4714). Their motion models based on a central BH predict have pericenter
distances ∼400 GMBH/c2 [55,56]. If confirmed, these new S-stars might constrain the DM
core size, and thus the fermion mass.
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Figure 5. Best-fit orbits for the 17 best-resolved S-stars orbiting Sgr A*. It shows the projected orbit
in the sky (see Appendix B), X vs. Y, where X is right ascension and Y is declination. The black
dashed curves correspond to the BH model and the colored curves to the RAR model for mc2 ≈ 56 keV
fermions. Reproduced from [35] with the authors’ permission.

3.4. The Precession of the S2 Orbit

Furthermore, ref. [36] focused on the periapsis precession of the S2 orbit. We have
there quantified, for the first time within the RAR-DM model, the effects on the S2-star
periapsis (precession) shift due to an extended DM mass filling the S2 orbit, in contrast with
the vacuum solution of the traditional Schwarzschild BH. The main result is as follows.
While the central BH scenario predicts a unique prograde precession, in the DM scenario,
it can be either retrograde or prograde, depending on the amount of DM mass enclosed
within the S2 orbit, which in turn is a function of the fermion mass (see Figure 6 and
Table 1).

Therefore, for larger and larger particle masses, the behavior of the RAR model tends
to be that of the BH. As Figure 6 shows, the precession tends nearly asymptotically to
12 arcmin (≈0.2 deg), the predicted precession of a central Schwarzschild BH (see, e.g., [57]).
The RAR model produces the same prograde precession of a central BH for 345 keV
fermions, corresponding to the unstable DM core for gravitational collapse into a BH. For
56.4 keV fermions, the prograde and retrograde contributions balance each other, leading
to a zero net precession. For lower masses, the net precession is retrograde. It has been
shown in [36] that currently available data constrain the amount of retrograde precession,
imposing a lower limit to the fermion mass of ≈57 keV, and hence an upper limit to the
amount of mass enclosed in the orbit of ≈0.1% of the core’s mass (see Table 1). Indeed,
the latter limit agrees with the one obtained by [57]. For fermion masses above 57 keV,
the prograde precession of the RAR model and that of a central BH agree within the
experimental uncertainties. The reason has been explained in [36]: the most accurate S2
data correspond to its pericenter passage [57,58], while the best place to analyze orbital
precession is around the apocenter.
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Figure 6. Relativistic periapsis precession ∆φ per orbit as a function of the darkino mass as predicted
by the RAR DM models for the S2 star. The precession is retrograde for mc2 < 56.4 keV while
it becomes prograde for mc2 > 56.4 keV (see also Table below). Reproduced from [36] with the
authors’ permission.

Table 1. Comparison of the BH and RAR DM models that best fit all the publicly available data of
the S2 orbit. The 2nd column shows the central object mass, MCO. For the Schwarzschild BH model,
MCO = MBH, while for the RAR model, MCO = Mc, with Mc the DM core mass. The 3rd column
shows the radius of the central object, rc. For the Schwarzschild BH model, rc is given by the event
horizon radius, RSch = 2GMBH/c2. The 4th column shows the DM mass enclosed within the S2 orbit,
∆MDM/MCO. The best-fitting pericenter and apocenter radii of the S2 orbit are given in the 5th and
6th columns. The values of the average reduced χ2 of the best fits, defined as in [34], are given in the
7th column. The last two columns show the model predictions of the periapsis precession of the real
orbit, ∆φ, and of the sky-projected orbit, ∆φsky. Reproduced from [36] with the authors’ permission.

Model
MCO[

106 M�
] rc

[mpc] ∆MDM/MCO
rp
[as]

ra
[as] 〈χ̄2〉 ∆φ

[arcmin]
∆φsky

[arcmin]

I RAR (mc2 = 55 keV) 3.55 0.446 1.39× 10−2 0.01417 0.23723 2.9719 −26.3845 −32.1116
II RAR (mc2 = 56 keV) 3.50 0.427 5.99× 10−3 0.01418 0.23618 3.0725 −4.9064 −5.9421
III RAR (mc2 = 57 keV) 3.50 0.407 2.21× 10−3 0.01417 0.23617 3.2766 4.8063 5.8236
IV RAR (mc2 = 58 keV) 3.50 0.389 7.13× 10−4 0.01424 0.23609 3.2814 7.7800 9.4243
V RAR (mc2 = 59 keV) 3.50 0.371 2.93× 10−4 0.01418 0.23613 3.3356 9.0456 10.9613
VI RAR (mc2 = 60 keV) 3.50 0.355 1.08× 10−4 0.01423 0.23610 3.3343 9.8052 11.8764

BH 4.07 3.89× 10−4 0 0.01427 0.23623 3.3586 11.9501 14.4947

The above is shown in Figure 7, which plots the relativistic precession of the S2-
projected orbit in a right ascension–declination plane. It can be seen that while the positions
in the plane of the sky nearly coincide about the last pericenter passage in the three models,
they can be differentiated close to the next apocenter. Specifically, the upper right panel
evidences the difference at the apocenter between the prograde case (as for the BH and RAR
model with mc2 = 58 keV) and the retrograde case (i.e., RAR model with mc2 = 56 keV).

The bad news is that, as evidenced by Figure 7, all the current and publicly available
data of S2 cannot discriminate between the two models. The good news is that the up-
coming S2 astrometry data close to the next apocenter passage could potentially establish
whether a classical BH or a quantum DM system governs Sgr A*.

A further interesting consequence of this scenario is that a core composed of darkinos
becomes unstable against gravitational collapse into a BH for a threshold mass of ∼108 M�.
Collapsing DM cores can provide the BH seeds for the formation of SMBHs in active galax-
ies (such as M87) without the need for prior star formation or other BH seed mechanisms
involving super-Eddington accretion rates, as demonstrated in [11] from thermodynamic
arguments. This topic is of major interest, and further consequences and ramifications are
currently being studied, including
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• to propose a new paradigm for SMBH formation and growth in a cosmological frame-
work, which is neither based on the baryonic matter nor early Universe physics;

• to study the problem of disk accretion around such DM cores starting with the gen-
eralization of the Shakura and Sunyaev disk equations in the presence of a high
concentration of regular matter (i.e., instead of a singularity);

• to use fully relativistic ray-tracing techniques to predict the corresponding shadow-
like images around these fermion cores and compare them with the shapes and sizes
of the ones obtained by the EHT.
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Figure 7. Relativistic precession of S2 in the projected orbit on the plane of the sky, predicted in
the BH and RAR DM models. While it is prograde for the BH and RAR (mc2 = 58 keV) (in dashed
black and green, respectively), it is retrograde for the RAR DM model (mc2 = 56 keV) (in dashed
red). The solid (theoretical) curves and grey (data) points correspond to the first period (≈1994–2010),
while the dashed (theoretical) curves and cyan (data) points to the second period (≈2010–2026). Right
panels: zoom of the region around apocenter (top panel) and pericenter (bottom panel). Reproduced
from [36] with the authors’ permission.

4. Fermionic DM in Other Galaxy Types
4.1. The RAR Model in Dwarf, Spiral, and Elliptical Galaxies, and Galaxy Clusters

In the preceding section, we have shown that the RAR model can perfectly explain the
MW rotation curve while providing an excellent alternative to the BH scenario in SgrA*
when constrained through the dynamics of the S-cluster stars, including its relativistic
effects. In this section, we summarize the main results of the RAR model when applied to
different galaxy types, such as dwarfs, spirals, ellipticals, and galaxy clusters, as detailed
in [33]. Thus, for the relevant case of a fermion mass of mc2 ≈ 50 keV (motivated by the
MW phenomenology as shown in Section 3), we implement full coverage of the remaining
free RAR model parameters (β0,θ0,W0) and present the complete family of density profiles
that satisfy realistic halo boundary conditions as inferred from observations (see Figure 8).

For galaxy types located far away from us, the observational inferences of their DM
distributions are limited to a narrow window of galaxy radii, typically from a few up to
several half−light radii. Generally, we have no access to observations for the possible
detection of a central dark compact object (as for SgrA* in our galaxy), nor to constrain
the system’s total (or virial) mass. Thus, we adopt here (see [33] for further details) a
similar methodology as applied to the MW (as shown in Section 3 and detailed in [32]),
but only limited to halo scales where observational data are available (i.e., we do not set
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any boundary mass conditions in the central core). In particular, we select as the boundary
conditions a characteristic halo radius rh with the corresponding halo Mh ≡ M(rh). The
halo radius is defined as the location of the maximum in the halo rotation curve, which
is defined as the one-halo-scale length in the RAR model. We list below the parameters
(rh, Mh) adopted for the different DM halos as constrained from observations in typical
dwarf spheroidal (dSph), spiral, elliptical galaxies, and bright galaxy clusters (BCG). We
only exemplify the first three cases; see [33] for the BCGs.
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Figure 8. Astrophysical RAR solutions, for the relevant case of mc2 = 48 keV, observationally
fulfill given DM halo restrictions (rh, Mh) for typical dwarf (left), spiral (middle), and elliptical
galaxies (right). Shown are density profiles (bottom), rotation curves (middle), and DM mass
distributions (top). The full window for each galaxy type is illustrated by a blue shaded region
and enveloped approx. by 5 benchmark solutions inside. Each solution is labeled with the central
density in units of M� pc−3. The continuous magenta curves, occurring only for spiral and elliptical
galaxies, indicate the critical solutions that develop compact, critical cores (before collapsing to a
BH) of Mcrit

c = 2.2× 108 M�. The dashed magenta curves for dwarfs are limited (instead) by the
astrophysical necessity of a maximum in the halo rotation curve. The bounding black solutions
correspond to the ones having the minimum core mass (or minimum ρ0), which in turn imply larger
cutoff parameters (implying ρ ∝ r−2 when W0 → ∞. Reprinted from [33], Copyright (2019), with
permission from Elsevier.
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4.2. Typical dSph Galaxies

The halo parameters in Table 2 are an average of the eight best-resolved dSphs of the
MW studied in [59] by solving the Jeans equations and adopting a cored Hernquist DM
profile, which is similar to the mid-outer region of the RAR profiles [33].

4.3. Typical Spiral Galaxies

The halo parameters shown in Table 2 are obtained from a group of nearby disk
galaxies taken from the THINGS data sample [60], where it was possible to obtain DM
model-independent evidence for a maximum in the rotation curves. This was obtained
by accounting for baryonic (stars and gas) components in addition to the (full) observed
rotation curve from HI tracers (see [33] and refs. therein for details).

4.4. Typical Elliptical Galaxies

The halo parameters in Table 2 are obtained from (i) a sample of elliptical galaxies
from [61], studied via weak lensing, from which, in [62], it was provided the corresponding
halo mass models for the tangential shear of the distorted images; and (ii) the largest and
closest elliptical M87 as studied in [63], accounting for combined halo mass tracers such as
stars, globular clusters, and X-ray sources (see [33] and refs. therein for further details).

Table 2. Typical halo radius and mass for dsPh, spirals, elliptical galaxies, and galaxy clusters,
adopted in [32] for testing of the RAR model.

Typical dSph Typical Spiral Typical Elliptical Typical Galaxy Cluster

rh(d) (kpc) 0.4 50 90 600
Mh(d) (M�) 3× 107 1× 1012 5× 1012 3× 1014

4.5. Typical Galaxy Clusters

The halo parameters in Table 2 are obtained from a sample of 7 BCGs from [64]. There,
the luminous and dark components were disentangled to obtain DM distributions that
were reproduced by a generalized NFW (gNFW) model [65], developing a maximal velocity
at the one-halo-length scale rmax(bcg). In [64], the data among all these 7 cases (i.e., weak
lensing and stellar kinematics) support such a maximum within a radial extent from 10 kpc
up to 3 Mpc, whose corresponding averages in rh and Mh are given in Table 2.

The main conclusions of having applied the RAR model for mc2 ≈ 50 keV to different
galaxy types are summarized as follows (see [33] for a more detailed explanation):

(i) Typical dwarf galaxies can harbor dense and compact DM cores with masses from
Mc ∼ 103M� up to Mc ∼ 106M� (see Figure 8), offering a natural explanation for the
so-called intermediate-mass BHs (IMBH). Since the total mass of the typical dSphs
here analyzed is below the critical mass of core collapse (i.e., Mtot(d) ∼ 107M� <

Mcr
c ≈ 2× 108M�), the core can never become critical and thus will never collapse to

a BH. Therefore, the RAR model predicts (for a particle mass of mc2 ≈ 50 keV) that
dSph galaxies can never develop a BH at their center, a result that may explain why
these galaxies never become active.

(ii) Typical spiral and elliptical galaxies can harbor denser and more compact DM cores (with
respect to dSphs) with masses from Mc ∼ 105M� up to Mcr

c ≈ 2× 108M� (see Figure 8).
Thus, they offer a natural alternative to the supermassive BH hypothesis (see Section 3
for the MW). Since the total mass in spirals and ellipticals is much larger than Mcr

c , the
core mass can become critical and eventually collapse towards an SMBH of ∼108M�,
which may then grow even larger by accretion.

(iii) Typical bright clusters of galaxies (BCGs) can harbor dense and compact DM cores
with masses from Mc ∼ 106M� up to Mcr

c ≈ 2× 108M� (see Figure 8). The impli-
cations of this prediction for BCGs are still unclear, mainly given the limited spatial
resolution achieved by actual observational capabilities below the central kpc. More
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work is needed (for example, using strong lensing observations) to evaluate whether
galaxy clusters show an enhancement in DM density similar to the one predicted by
the RAR model.

(iv) By combining the range of DM core masses, inner halo densities, and total halo masses
as predicted by the RAR model across all of these systems, it is possible to test whether
or not this model can answer different universal scaling relations. This point is studied
in the next section (and further detailed in [33,37]).

5. Universal Galaxy Scaling Relations

Galaxies follow different scaling relations (or universal scaling relations), such as
the DM surface density relation (SDR) [62], the radial acceleration relation [66], the mass
discrepancy acceleration relation (MDAR) [67], and the Ferrarese relation [68,69], between
the total halo mass and its supermassive central object mass. Thus, this section’s main goal
is to illustrate/summarize the ability of the RAR model to agree with all these relations,
covering a broad window of radial scales across very different galaxy types. The analyses
are exemplified for a fermion of rest mass energy of ≈50 keV.

For given halo parameters (rh, Mh) as inferred from observations in the smallest up to
the largest galaxy types (see Table 2), the RAR model predicts a window of halo values on
other radial scales: (a) the plateau density (or inner-halo constant density) ρpl; (b) the total
halo mass Mtot; and (c) the fermion-core mass Mc. We will then use this predictive power
of the RAR model (shown Figure 8) to test whether it can account for the above universal
scaling relations as reported in the literature. We will focus first on the Ferrarese relation
between the total halo mass and its supermassive central object mass in the SDR.

5.1. The Ferrarese Relation

This relation establishes that, for large enough galaxies3, the more massive the halo,
the larger (in mass) is the supermassive compact object lying at its center. This relation is
shown in dashed lines in the left panel Figure 9, as taken from [68], together with other
more updated versions of such relations, such as the one found in [69] (shown in dotted
lines in the same figure). Interestingly enough, the whole family of RAR solutions, with
its corresponding window of predicted core and total DM masses Mc, Mtot (see left panel
of Figure 9), from typical dwarf to elliptical galaxies (see green area), do overlap with the
Ferrarese relation. That is, the RAR model contains the observational strip (in light blue),
while, at the same time, it extends out such a Ferrarese strip, indicating a yet unseen or
otherwise unphysical case (see [33] for further details).

Even if no observational data exist yet at the lower-left corner of Figure 9 (left panel),
special attention has to be given to the RAR model predictions for dwarf galaxies: recent
observations towards the center of some ultra-compact dwarf galaxies with a total mass
of a few ∼107M� (e.g., [71–73]) indicate the existence of putative massive BHs of a few
∼106M�. Interestingly, the RAR model naturally allows for a slight difference (less than
an order of magnitude) between Mc and Mtot. However, more work is needed on this
particular dwarf galaxy to make a more definite statement.

5.2. The DM Surface Density Relation (DSR)

The DSR relation establishes that the central surface DM density in galaxies is roughly
constant, spanning more than 14 orders in absolute magnitude (MB): ρ0Dr0 ≈ 140M� pc−2

(with ρ0D the inner-halo—or sometimes called the central—DM halo density measured at
the Burkert halo radius r0) [62].

Since the Burkert central density corresponds to the plateau density of the RAR density
profiles (see right panel of Figure 10), i.e., ρ0D ≡ ρpl, and r0 ≈ 2/3 rh (as shown in [33]
connecting the Burkert and RAR one-halo-scale lengths), it is possible to check the DSR by
calculating the product 2/3 ρplrh along the entire family of astrophysical RAR solutions of
Section 4 (including the Milky Way). This is shown in the right panel of Figure 9.
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It can be seen that the RAR model predictions agree with the observed relation, the
latter displayed in Figure 9 (right panel) in the dark grey region delimited (or enveloped)
within the 3− σ error bars along all the data points considered in Donato et al. [62]. This
figure shows that each typical galaxy type’s predicted RAR surface density (vertical solid
lines) is within the expected 3− σ data region. We further notice that typical bright clusters
are beyond the observed window, as reported by Donato et al. [62], who considered only
up to elliptical structures.
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Figure 9. (Left): Theoretical Mc−Mtot relation within three−parametric RAR model (for
mc2 = 48 keV). The colored lines read for each galaxy type in correspondence with the astro-
physical RAR solutions in Figure 8. The green area covers the RAR predictions for a given halo
mass in the range Mh ≈ 107–1012 M� and fulfilling Σ0D ∝ ρpl rh = 140 M� pc−2, as inferred from the
Donato relation (see right panel). The white lines show a set of families with given halo mass Mh
(and labeled by the Mtot value in the horizontal regime). The results show that the RAR model agrees
with the different MBH−Mtot relations, as considered in the literature and shown in the blueish stripe.
The filled black dots correspond to the critical core mass Mcrit

c , and the empty black dot indicates the
limiting maximum core mass Mmax

c for dwarfs. (Right): Surface DM density (or Donato) relation as
predicted by the RAR model (see vertical colored lines) for each galactic structure in correspondence
with the astrophysical solutions (i.e., blue−shaded regions in Figure 8). The dashed horizontal
line represents the universal relation from the best fit of the data as found by [62]. The dark grey
region indicates the delimited area by the 3− σ error bars of all the data points. Reprinted from [33],
Copyright (2019), with permission from Elsevier.

5.3. The Radial Acceleration and Mass Discrepancy Acceleration Relations

We now confront the RAR model predictions with two closely related universal
relations, though this time not based on typical galaxies with given (averaged) parameters
(rh, Mh) inferred from observables (as done before), but from a sample of 120 rotationally
supported galaxies taken from the SPARC data set [74].

The radial acceleration relation is a non-linear correlation between the radial acceler-
ation exerted on the total matter distribution and the one caused by the baryonic matter
component only (see Equation (10) below). Thus, it offers an important restriction to any
model that explains the DM halo in galaxies.

The different mass components in a galaxy, such as a bulge, disk, gas, etc., trace their
own contributions to the centripetal or radial acceleration a = v2/r. As originally shown
in [66], there exists a relatively tight relation between the radial acceleration owing to the
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total mass, say atot, and that produced by the baryonic mass component, say abar, which
the empirical formula can well describe:

atot =
abar

1− e−
√

abar/a0
, (10)

with a0 the only adjustable parameter. Notice that for abar � a0, the DM dominates, and
the relation deviates from linear, while, for abar � a0, the baryonic component dominates
and the linear relation is recovered (see Figure 11). The relation has been shown to apply to
different galaxy types, e.g., disk, elliptical, lenticular, dwarf spheroidal, and low-surface-
brightness galaxies, so it resembles a real universal law [66,75,76].
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Figure 10. (Left): Density profile (top) and rotation curve (bottom) for selected DM models for
the typical configuration parameters presented in [37]. The core−halo solution of the RAR model
is illustrated by the configuration parameters β0 = 10−7, θ0 = 30 and W0 = 60, in combination
with a corresponding halo−only solution. Other DM models (NEW, DC14, Burkert, Einasto) are
added for comparison. All profiles are normalized to the halo radius rh, defined at the halo velocity
maximum, with ρh = r(rh) and vh = v(rh). (Right): Best−fit DM density RAR profiles (outer region)
to the full SPARC sample considered in [37] (in solid) for different values of the cutoff parameter
W(rpl) ≡ Wp: the outer halo of the RAR model can range from polytropic−like (polytropic index
n = 5/2 in dot−dashed) to power law−like (e.g., ρ ∝ r−3), resembling the Burkert profile (in dashed
lines). Reproduced from [37].

We also include in the analysis a close relation: the mass discrepancy accelera-
tion relation (MDAR) between baryonic and total mass components. It is defined by
D = Mtot/Mbar with Mbar the total baryonic mass and Mtot the total mass content of the
galaxy including the DM component. If we define the radial acceleration through its defini-
tion in terms of the gravitational potential of a spherically symmetric mass distribution,
then the MDAR can be written as D = atot/abar.

In Figure 11, we show the results of the best fits for the radial acceleration relation and
MDAR for both the RAR model (central panels) and the DC14 DM model (right panels)
accounting for baryonic feedback [77] (see also the full Figure 2 in [37] for best fits to both
relations by other DM typical halo models used in the literature). Since both models achieve
very close fitted values of a0 ≈ 1.2× 10−10 m s−2 to the one obtained from the SPARC data
only (i.e., done in DM model-independent fashion, see left panels), then it is concluded
that this universal relation does not help us to select one model over the other statistically
(see [37] for details). Instead, as demonstrated in [37], the individual fitting of each rotation
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curve (covering the full SPARC sample studied) allows us to favor the cored profiles over
the cuspy Navarro–Frenk–White profile (not shown here).

Finally, we have also compared the DM halo models by their density profiles and
rotation curves for typical SPARC galaxies in the left panel of Figure 10. Most models
show similarities in the halo tails, but the RAR model is the only one showing a dense
fermion core at the galaxy’s center, which acts as an alternative to the SMBH scenario.
It is also relevant to mention that while many of the models (such as Einasto or DC14)
need the baryonic feedback to produce the statistically favored cored density profiles, the
RAR model naturally achieves a cored behavior (i.e., the inner-halo plateau) due to the
quasi-thermodynamic equilibrium of the particles at formation (see [37] and references
therein for further discussions).
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Figure 11. Radial acceleration relation (top) and mass discrepancy acceleration relation (bottom)
for SPARC data and competing DM halo models. Each plot is divided into 50× 50 equal bins. The
baryonic centripetal acceleration abar is inferred from luminosity observables, while the total acceler-
ation atot is inferred independently from velocity fields. For DM halo models, the total acceleration
is composed of the predicted dark and inferred baryonic components, i.e., atot = aDM + abar. The
corresponding solid curves are the best fits characterized by a specific a0. The histogram plots
(upper row) show a Gaussian distribution of log10(a0/a0). The greyscale legend shows the number
of points per bin (2396 for the 120 SPARC galaxies used). Reproduced from [37].

Although we do not expect significant qualitative or quantitative differences in the
galaxy structure parameters for fermion masses around the above-explored value of 50 keV,
studying the implications of different fermion masses for the universal relations will be
interesting. We plan to have new results on this topic soon.

6. Fermionic DM and Particle Physics
Are the Sterile Neutrinos the Fermions of the RAR Model?

In this section, we will discuss a possible connection to particle physics (i.e., beyond
the standard model of particles), analyzing the possibility that the DM particles are self-
interacting DM. Namely, DM particles interact among themselves via some unknown
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fundamental interaction besides gravity. It is a very active field of research within the DM
community since self-interacting DM (SIDM) has been proposed as a possible solution to
several challenges facing the standard cosmological model on galactic scales (see [41,78]
for different reviews on the subject).

In 2016, our group presented an extension of the RAR model to include fermion
self-interactions, referred to as the Argüelles, Mavromatos, Rueda, and Ruffini (AMRR)
model [40]. In the AMRR model, it has been advanced that the darkinos might be the
right-handed sterile neutrinos introduced in the minimum standard model extension
(νMSM) paradigm [79]. The AMRR model adopts right-handed neutrinos self-interacting
via dark-sector massive (axial) vector mediators.

In 2020, refs. [80] explored the radiative decay channel of such sterile neutrinos into
X-rays due to the Higgs portal interactions of the νMSM. This work shows that such
generalized RAR profiles, including fermion self-interactions, agree with the overall MW
rotation curve. In addition, the window of self-interacting DM cross-sections that satisfy
the known bullet cluster constraints has been identified.

To further constrain the AMRR-νMSM model, an indirect detection analysis has been
performed using X-ray observations from the galactic center by the Nustar mission [80].
Figure 12 summarizes all the observational constraints.

It has also advanced a new generation mechanism based on vector meson decay, able
to produce these sterile neutrinos in the early Universe.

Summarizing, by considering a DM profile that self-consistently accounts for the
particle physics model, the analysis of NuSTAR X-ray data shows how sterile neutrino
self-interactions affect the νMSM parameter–space constraints. The decay of the massive
vector field that mediates the self-interactions affects standard production mechanisms in
the early Universe. This mechanism might broaden the allowed parameter space compared
to the standard νMSM scenario.
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Figure 12. Sterile neutrino parameter space limits obtained for galactic center observations using
the AMRR profiles (continuous red line) when assuming DM production due to self-interactions
through a massive vector field mediator. The light-red-shaded region above the continuous red
line corresponds to the AMRR limits given by X-ray bounds (i.e., indirect detection analysis), while
the vertical shaded region below 48 keV indicates the smallest DM mass compatible with S-cluster
stars’ rotation curve data. The upper shaded region corresponds to production mechanism bounds:
non-resonant production under no lepton asymmetry. Other dotted lines refer to several X-ray
bounds for different DM halo profiles, including 0-bounce photon analysis. Reprinted from [80],
Copyright (2020), with permission from Elsevier.
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7. Fermionic DM and Cosmology
7.1. Formation and Stability of Fermionic DM Halos in a Cosmological Framework

The formation and stability of collisionless self-gravitating systems are long-standing
problems that date back to the work of D. Lynden-Bell in 1967 on violent relaxation
and extend to the virialization of DM halos. Such a relaxation process predicts that a
Fermi–Dirac phase–space distribution can describe spherical equilibrium states when the
extremization of a coarse-grained entropy is reached. In the case of DM fermions, the most
general solution develops a degenerate compact core surrounded by a diluted halo. As we
have recently shown [32–34], the core–halo profiles obtained within the fermionic DM-RAR
model explain the galaxy rotation curves, and the DM core can mimic the effects of a central
BH. A yet open problem is whether these astrophysical core–halo configurations can form in
nature and if they remain stable within cosmological timescales. These issues have been
recently assessed in [11].

Specifically, we performed a thermodynamic stability analysis in the microcanonical
ensemble for solutions with given particle numbers at halo virialization in a cosmological
framework. For the first time, we demonstrate that the above core–halo DM profiles are
stable (i.e., maxima of entropy) and extremely long-lived. We find a critical point at the
onset of instability of the core–halo solutions, where the fermion core collapses towards a
supermassive black hole. For particle masses in the keV range, the core collapse can only
occur for Mvir & 109M� starting at zvir ≈ 10 in the given cosmological framework. This
is a key result since the fermionic DM system can provide a novel mechanism for SMBH
formation in the early Universe, offering a possible solution to the yet open problem of how
SMBHs grow so rapidly and to such a large size. We recall the result of Figure 13, which
evidences the existence of a last stable configuration before the core collapse into an SMBH.
We refer the reader to [11] for details on this relevant result.

This thermodynamic approach allows a detailed description of the relaxed halos
from the very center to the periphery, which N-body simulations do not allow due to the
finite inner-halo resolution. In addition, it includes richer physical ingredients such as (i)
general relativity, necessary for a proper gravitational DM core collapse to an SMBH; (ii) the
quantum nature of the particles, allowing for an explicit fermion mass dependence in the
profiles; (iii) the Pauli principle self-consistently included in the phase–space distribution
function (see [81]), giving rise to novel core–halo profiles at (violent) relaxation.

Such treatment allows us to link the behavior and evolution of the DM particles from
the early Universe to the late stages of non-linear structure formation. We obtain the virial
halo mass, Mvir, with associated redshift zvir. The fermionic halos are assumed to be formed
by fulfilling a maximum entropy production principle at virialization. It allows us to obtain
the most likely distribution function of Fermi–Dirac type, as first shown in Chavanis [29]
(generalizing Lynden-Bell’s results), here applied to explain DM halos. Finally, the stability
and typical lifetimes of such equilibrium states and their possible astrophysical applications
are studied with a thermodynamic approach.

For the first time, we calculated the caloric curves for self-gravitating, tidally truncated
matter distributions of O(10) keV fermions at finite temperatures within general relativity.
We applied this framework to realistic DM halos (i.e., sizes and masses). With the precise
shape of the caloric curve, we establish the families of stable as well as astrophysical DM
profiles (see Figures 13 and 14). They are either King-like or develop a core–halo morphology
that fits the rotation curve in galaxies [32,33]. In the first case, the fermions are in the dilute
regime and correspond to a global entropy maximum. In the second case, the degeneracy
pressure (i.e., Pauli principle) holds the quantum core against gravity and corresponds to a
local entropy maximum. These metastable states are extremely long-lived, and, as such,
they are the more likely to arise in nature. Thus, these results prove that DM halos with a
core–halo morphology are a very plausible outcome within non-linear stages of structure
formation.
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Figure 13. (Left): Equilibrium solutions along the caloric curve for tidally truncated configurations
of mc2 = 48 keV fermions with fixed N. The states within the continuous blue branches are ther-
modynamically (and dynamically) stable (i.e., either local or global entropy maxima), while the
dotted violet branches−between (a) and (b) and after (c)−are unstable (i.e., either minimum or saddle
point of entropy). Solution (3) is stable and fulfills the virialization conditions. The second spiral of
relativistic origin for high T∞ is characteristic of caloric curves at fixed N within general relativity. It
implies the existence of a turning point in a mass−central density curve (see right panel). (Right):
Equilibrium states with N > NOV along the M vs. ρ0 curve, in correspondence with the caloric curve
of the left panel. The last stable configuration at the onset of the core collapse occurs at the minimum
of this curve and prior to the turning point instability (corresponding with point (c) in the left panel).
Such a critical solution has a core mass Mcr

c ≈ 2× 108 M�, thus forming an SMBH from DM core
collapse. Reproduced from [11] with the authors’ permission.

Figure 14. Density profiles for mc2 = 48 keV corresponding to the equilibrium states of the caloric
curve in Figure 13 with corresponding fixed total halo mass. Only profile (1) (resembling a King
distribution) and the core−halo one (3) are stable, while profile (2) is thermodynamically unstable.
Interestingly, solutions such as (3) were successfully applied to explain the DM halo in the MW in [32].
They are stable, extremely long−lived, and fulfill the observed surface DM density relation and the
expected value of the DM dispersion velocity. Reproduced from [11] with the authors’ permission.

7.2. Interactions in Warm DM: A View from Cosmological Perturbation Theory

The traditional ΛCDM paradigm of cosmology is in remarkable agreement with large-
scale cosmological observations and galaxy properties. However, there are increasing
tensions of the ΛCDM with observations on smaller scales, such as the so-called missing
DM sub-halo problem and the core–cusp discrepancy.
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High-resolution cosmological simulations of average-sized halos in ΛCDM predict an
overproduction of small-scale structures significantly larger than the observed number of
small satellite galaxies in the local group. Moreover, N-body simulations of CDM predict a
cuspy density profile for virialized halos, while observations show dSphs having flattened
smooth density profiles in their central regions.

A possible alternative to alleviate or try to resolve such tensions is to consider warm
dark matter (WDM) particles, meaning that they are semi-relativistic during the earliest
stages of structure formation with non-negligible free-streaming particle lengths.

WDM models feature an intermediate velocity dispersion between HDM and CDM
that results in the suppression of structures at small scales due to free streaming. If this free
streaming scale today is smaller than the size of galaxy clusters, it can solve the missing
satellite problem. However, thermally produced WDM suffers from the so-called catch-22
problem when studied within N-body simulations [82]. Such WDM-only simulations either
show unrealistic core sizes for particle masses above the keV range or acquire the right halo
sizes for sub-keV masses in direct conflict with phase–space and Lyman-α constraints.

Another compelling alternative to collisionless CDM, apart from WDM, is to consider
interactions in CDM. This consideration relaxes the assumption that CDM interacts only
gravitationally after early decoupling and includes interactions between DM and SM
particles, additional hidden particles, or among DM particles. These later models are
denominated as self-interacting DM models (SIDM).

To shed light on this matter, we have recently provided a general framework for
self-interacting WDM in cosmological perturbations by deriving from first principles a
Boltzmann hierarchy that retains certain independence from an interaction that is La-
grangian [83]. Elastic interactions among the massive particles were considered to obtain
a more general hierarchy than those usually obtained for non-relativistic (cold DM) or
ultra-relativistic (neutrinos) approximations. The more general momentum-dependent
kernel integrals in the Boltzmann collision terms are explicitly calculated for different field
mediator models, including a scalar or massive vector field.

In particular, if the self-interactions maintain the DM fluid in kinetic equilibrium until
the fluid becomes non-relativistic, the background distribution function at that moment will
switch into a non-relativistic form. This constitutes the scenario known as non-relativistic
self-decoupling (also called late kinetic decoupling). The consequences of this scenario are
poorly explored in the literature, and only some preliminary results have been recently
obtained within simplified DM fluid approximations [84]. However, more recently [85],
this late kinetic decoupling physics was fully explored with self-interactions treated from
first principles using Lagrangian interaction (i.e., superseding the fluid approximation), fol-
lowing the formalism developed in [83]. There, it was found that if one imposes continuity
of the limiting expressions for the energy density, the non-relativistic distribution function
can be found in an analytic expression (see [85] for details).

Figure 15 illustrates the effects of self-interactions in the matter power spectrum for the
case of a massive scalar field mediator while including the late kinetic decoupling case. We
have used an extended version of the CLASS code, incorporating our results for SI-WDM
with particle masses in the ∼ keV range. There, we see some of the particular features
of the models. With the inclusion of self-interactions, for models with non-relativistic
self-decoupling (i.e., late kinetic decoupling), the resulting power spectra may differ signifi-
cantly from their relativistic counterparts. Indeed, we find that in this regime, the models
are “colder” (i.e., as if they correspond to a higher particle mass) and show, even at smaller
k values, a distinctive oscillatory pattern (see, e.g., dot-dashed curves in Figure 15). This
increases the small structures for these models, implying that the few-keV (traditional)
WDM models excluded from phase–space arguments now agree with observations in this
new SI-WDM scenario.
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Figure 15. Power spectrum (top panel) and transfer functions compared to standard WDM
(bottom panels) for a vector field SI-WDM model, using a modification to CLASS. We assume
the relaxation time approximation and consider two values of the DM particle mass: 1 and 10 keV.
Also plotted are the power spectra of the CDM and WDM models with a DM mass of 1 and 10 keV.
All WDM and SI-WDM models consider a nonresonant production scenario (Dodelson–Widrow
mechanism [86]) with T ∼ (4/11)1/3Tγ. Importantly, the effect of large enough self-interactions
increases the amount of small structure formed for these models (see dot-dashed curves), implying
that the few-keV (traditional) WDM models, which were excluded in the past, can now display
agreement with observations in this new SI-WDM scenario. Reproduced from [85], with permission
from SNCSC.

Most tensions inherent to νMSM WDM models arise from structure formation, i.e.,
the MW satellite counts and Lyman-α observations: the preferred parameter ranges may
underproduce small structures and almost rule out the available parameter space. Thus,
including self-interactions can significantly relax the existing bounds on this family of mod-
els. The prediction of these models for the number of MW satellites and the observations of
the Lyman-α forest was presented in [87] (see Figure 16).

While, in the above paragraphs, we have discussed the effects of self-interacting
O(1− 10) keV light fermionic candidates on the linear structure formation (i.e., its sup-
pression effects on the linear matter power spectrum and its consequences for Lyman-α
forest and satellite counts [87]), we will discuss next its effects on DM halo profiles. For
this, we will follow the specific self-interacting model where the darkinos are right-handed
neutrinos self-interacting via massive (axial) vector boson mediators (also considered as a
possible case in [87]). The main consequences of this model for DM halo structures were
studied in [80], for a particle mass mc2 ≈ 50 keV. In particular, it mainly investigated the
consequences of the Milky Way DM halo and the bullet cluster. The massive boson mediator
adds a pressure term in the equilibrium equations (see, e.g., [40,80]) which, for normalized
interaction constants up to C̄V ∼ 1012 (in Fermi constant units), causes no appreciable
effects in the Milky Way rotation curve. However, values larger than C̄V ∼ 1013 are ruled
out since the additional pressure term is enough to push forward the halo, spoiling the fit
to the data; see Figure 17. Interestingly, values of interaction strengths between our light
fermionic candidates of C̄V ∼ 108 agree with the bullet cluster measurements. Indeed, on
cluster scales, it was demonstrated in [80] (see Section 3.2 therein) that such interaction
constants resolve the tensions between the predictions of ΛCDM-based numerical simula-
tions and observations since the corresponding self-interacting DM (SIDM) cross-section4

(σSIDM) lies in the expected range [88]:

0.1 cm2 g−1 ≤ σSIDM

m
≤ 0.47 cm2 g−1. (11)



Universe 2023, 9, 197 24 of 35

104 5 6 7 8 9 20

Particle Mass (keV)

10 13

10 12

10 11

10 10

10 9

10 8

sin
2 2

X-Ray 
ConstraintsBBN Constraints

> DM

Ly-  (This work)
Halo Counts (This work)
MSM Ly-  (Viel13)

Figure 16. Parameter space constraints for νMSM, where MW satellite halo counts and Lyman-α
forest bounds are analyzed under a self-interacting model as outlined above. For each point (θ, m)

in the parameter space, we consider a self-interacting model under a vector field mediator, with its
interaction constant given by σ/m ∼ 0.144C2

v/m3 = 0.1 cm2 g−1, the upper limit given by bullet
cluster constraints (see [87] for details). For comparison, we plot the Lyman-alpha bounds for the
non-interacting case for a comparable analysis, plus other bounds to the νMSM parameter space
for informative purposes, namely X-ray indirect detection bounds (in blue) and sterile neutrino
production bounds (in grey). We also plot the sterile neutrino model compatible with a tentative
3.5 keV DM signal, a subject of debate in recent years, as a purple triangle. The complete list of
references for all such bounds can be found in [87]. Reprinted from [87], Copyright IOP Publishing,
with permission.
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Figure 17. Density profiles (left panel) and rotation curves (right panel) of the extended RAR model
with both self-interactions and escape of particle effects. Solutions are shown with four different
self-interaction constant values C̄V , including the case of C̄V = 0 in black dashed lines, corresponding
to the original Milky Way fit presented in [32]. The model fits the observed total rotation curve data
from [45] (with error bars). The predicted rotation curve (in solid red) shows the excellent fit to the
data for C̄V = 7× 108 (in solid blue) and baryonic components (in green dashed lines). Notice that
the DM halo becomes more extended and less dominant, implying an underfit to the data for large
enough C̄V > 1013, due to the additional pressure term contribution of the boson mediator field.
Reprinted from [80], Copyright (2020), with permission from Elsevier.
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8. Additional Fermionic DM Probes
8.1. Gravitational Lensing

Over the last decade, gravitational lensing has become a very effective tool to probe the
DM distribution of systems from galaxy to cluster scales. The availability of high-quality
HST imaging and integral field spectroscopy with the VLT has allowed high-precision
strong lensing models to be developed in recent years, with tight constraints on the inner
mass distribution of galaxy clusters (e.g., [89]). By comparing the high-resolution mass
maps of galaxy cluster cores obtained by such lens models with cosmological hydrody-
namical simulations in the LCDM framework, a tension has emerged in the mass profile
of the sub-halo population associated with cluster galaxies [90]. Namely, the observed
sub-halos appear more compact than those in simulations, with circular velocities inferred
from the lens models, which are higher, for a given sub-halo mass, than those derived
from simulations. It is still unclear whether this tension is due to some limitations of the
numerical simulations in the modeling of baryonic physics (back-reaction effects on DM)
or rather a more fundamental issue related to the CDM paradigm.

In [91], the lensing effects of the core–halo DM distribution were computed. The NFW
and nonsingular isothermal sphere (NSIS) DM models and the central Schwarzschild BH
model were compared at distances near the galaxy center. The DM density profiles lead to
small deviations of light (of 0.1 arcsec) in the halo part (∼8 kpc). However, the RAR profile
produces strong lensing effects when the dense core becomes highly compact. For instance,
the density distribution of the RAR model for a fermion mass of ∼100 keV generates strong
lensing features at distances ∼0.1 mpc (see [91] for additional details). The DM quantum
core has no photon sphere inside or outside but generates multiple images and Einstein
rings. Thus, it will be interesting to compare and contrast lensing images produced by the
RAR model with the ones produced by phenomenological profiles.

It is also interesting to construct the shadow-like images produced by the fermion DM
cores of the RAR model and analyze them in light of the EHT data from Sgr A*. Indeed,
horizonless objects can be compact, lack a hard surface, and cast a shadow surrounded
by a ring-like feature of lensed photons [92]. This has been shown for boson stars for
Sgr A* in [93] and further studied by [94] within numerical relativity simulations. Using
full general relativistic ray tracing techniques [95], we have recently computed relativistic
images of the fermionic DM cores of the RAR model under the assumption that photons
are emitted from a surrounding accretion disk (self-consistently computed in the given
metric) and have shown that there exists a particle mass range in which the shadow feature
acquires the typical sizes as resolved for the EHT in Sgr A* (Pelle, Argüelles, et al., to
be submitted).

8.2. Dynamical Friction

The measured orbital period decay of relativistic compact-star binaries (e.g., the fa-
mous Hulse–Taylor binary pulsar) has been explained with very high precision by the
gravitational-wave emission predicted by general relativity of an inspiraling binary, assum-
ing that the binary is surrounded by empty space and within the point-like approximation
of the two bodies. However, the presence of DM around the binary might alter the or-
bital dynamics because of a traditionally neglected phenomenon: DM dynamical friction
(DMDF). The binary components interact with their own gravitational wakes produced
by the surrounded DM, leading to an orbital evolution that can be very different from the
orbital evolution solely driven by the emission of gravitational waves.

In [96,97], the effect of the DMDF on the motion of NS-NS, NS-WD, and WD-WD was
evaluated. Quantitatively, the crucial parameters are the orbital period and the value of the
DM density at the binary location in the galaxy. A comparison among the DMDF produced
by the NFW, the NSIS, and the RAR model was presented.

For NS-NS, NS-WD, and WD-WD with measured orbital decay rates, the energy loss
by gravitational waves dominates over the DMDF effect. However, there are astrophysically
viable conditions for which the two effects become comparable—for example, 1.3–0.2 M�
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NS-WD, 1.3–1.3 M� NS-NS, and 0.25–0.50 M� WD-WD, located at 0.1 kpc. The two effects
compete with each other for a critical orbital period in the range of 20–30 days for the NFW
model. For the RAR model, it occurs at an orbital period of ∼100 days (see [97] for details).
Closer to the galactic center, the DMDF effect keeps increasing, so the above values for the
critical orbital period become shorter. For certain system parameters, the DMDF can lead
to an orbital widening rather than shrinking.

The DMDF depends on the density profile, velocity distribution function, and velocity
dispersion profile. Therefore, measuring with high accuracy the orbital decay rate of
compact-star binaries at different galactic locations and as close as possible to the galactic
center might reveal a powerful tool to test DM models.

Indeed, during the peer-reviewing process of this review, Chan and Lee [98] pub-
lished an analysis of the DMDF contribution to the orbital decay rate of the X-ray binaries
formed by stellar-mass BHs and stellar companions. Specifically, they analyzed the case of
A0620–00 and XTE J1118+480, finding that the DMDF can explain their fast orbital decay.
The analysis in [98] uses a phenomenological DM profile, so it will be interesting to apply
the DMDF with the RAR model, as done in [97], to check whether or not X-ray binaries can
further constrain the fermion mass.

8.3. Gravitational Collapse of DM Cores and SMBH Formation

The explanations of the formation, growth, and nature of SMBHs observed at galaxy
centers are amongst the most relevant problems in astrophysics and cosmology. Relevant
questions yet awaiting an answer are the following: how can they increase their size in a
relatively short time to explain the farthest quasars [99,100]?; where do the BH seeds come
from and how large must they be to form SMBHs of ∼108–109M� at high cosmological
redshift [101]?; and what is the connection between the host galaxy and central SMBH
masses [102]?

Scenarios for the origin of SMBHs can be divided according to the formation channel
(see [102,103] for recent reviews):

(i) Channels that advocate for a baryonic matter role (gas and stars). (ia) Population
III stars and (ib) direct collapse to a BH (DCBH). Scenarios (ia) produce BH seeds
∼102M� [104,105], so very high accretion rates are needed to grow them to 109M� in
a few billion years. Simulations show that BHs of < 103M� cannot grow to 108M�
at cosmological redshift z ∼ 6 due to radiative feedback [101]. DCBH scenarios
(ib) produce BH seeds in the range 104–105M� [106–108]. Hydrodynamic N-body
simulations show some preference for DCBH scenarios [101,109], although numerical
and ad hoc assumptions limit the results’ generality [101].

(ii) Early Universe channels where BH seeds form before galaxy formation. They include
primordial BHs [110] and exotic candidates such as topological defects [111]. However,
these scenarios are difficult to prove or disprove since these processes are hypothesized
to occur in early cosmological epochs not accessed by observations.

Recently, we have proposed in Arguelles et al. (submitted) an SMBH formation
channel conceptually different from cases (i) and (ii). The new scenario is based on the
gravitational collapse and subsequent growth of dense fermionic DM cores. The cores
originate at the centers of the halos and start to grow as they form. As we have recalled in
this work, these dense core–diluted halo DM density distributions are predicted by maximum
entropy production principle models of halo formation [11,112]. We have recalled how
the core composed of fermions of ∼50 keV rest mass energy becomes unstable against
gravitational collapse into a BH for a threshold mass of ∼108 M�. Therefore, the new
scenario produces larger BH seeds that comfortably grow to SMBH mass values of 109M�
in a relatively short time, without super-Eddington accretion (Arguelles et al., submitted).

9. Conclusions

Possibly one of the most relevant steps has been to develop a framework that allows
us to obtain the DM density (and other related physical properties) profiles from first
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principles. The distribution of DM in the galaxy is given by the solution of the Einstein
equations subjected to appropriate boundary conditions to fulfill observational data. The
nature of the particle candidate sets the equation of state, and thus the energy–momentum
tensor. It has been found that neutral massive fermion DM particles distribute throughout
the galaxy following a dense core–dilute halo density profile. See Section 2 for details.

Thanks to the above, the nature of the DM particle, as with the rest mass, can be
constrained using stellar dynamics data, e.g., the MW rotational curve data and the most
accurate data of the S-cluster stellar orbits around Sgr A*. See Section 3 for details.

A remarkable and intriguing result is that the orbits of the S-stars are correctly de-
scribed by the presence of the dense core of fermions without the need for the presence
of a massive BH at the MW center. We have shown that even the most accurate available
data of the S2 star can not distinguish between the two models since both models describe
the data with comparable accuracy. However, we have shown that the data of the peri-
apsis precession of the S2 star in the forthcoming three years (i.e., by 2026) could help to
discriminate the two scenarios. See Section 3 for details.

In addition to the MW, the RAR model describes the DM component observed in
other galaxy types, namely dSphs, ellipticals, and galaxy clusters. This point includes the
explanation of existing observational universal relations and the comparison with other
DM models regarding the same observables. See Section 4 for details.

All the above constrain the DM particle nature, limiting the fermion mass to the
∼50–350 keV range, constituting a relevant starting point for complementary particle
physics analyses. Among the plethora of particle physics candidates, the beyond-standard
model sterile neutrinos (also including self-interactions) remain an interesting candidate as
the fermions of the RAR model. See Section 5 for details.

No DM discussion is complete without examining the cosmological implications. In
this order of ideas, it has been first shown that the core–halo configurations can indeed
form in the Universe in appropriate cosmological timescales thanks to the mechanism of
violent relaxation that predicts equilibrium states described by the Fermi–Dirac phase–
space distribution. Second, it has been shown that these equilibrium states are long-lasting,
with a lifetime of several cosmological timescales, thus well beyond the Universe’s lifetime.
Third, it has been shown that these small-scale DM core–halo substructures can form from
non-linear cosmological density perturbations during cosmological evolution. See Section 6
for details.

Last but not least, we have discussed some additional theoretical and observational
scenarios that can help to probe DM models. Specifically, if DM permeates galaxies, stellar
objects do not reside in a perfect vacuum. Thus, the distribution of DM can cause dynamical
friction, a purely gravitational effect that can alter a purely Keplerian motion of binaries,
and which, under certain conditions, can become as large as gravitational wave emission
losses. Strong gravitational lensing is potentially sensitive to the density profile of DM at
sufficiently small scales, where DM model profiles differ. We have also outlined how the
SMBHs observed at the centers of active galaxies can be formed from BH seeds from the
gravitational collapse of dense cores of fermionic DM. See Section 6 for details.

In summary, we show that only theoretical models that join microphysics and macro-
physics, such as the RAR model, can lead to a comprehensive set of predictions ranging
from particle physics to galactic stellar dynamics and to cosmology, which can be placed
under direct observational scrutiny. We hope that future observations and a further re-
fined analysis of DM models, including the quantum nature of the particles, will lead to a
breakthrough in revealing the DM’s nature.
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Appendix A. Equations of Motion and Effective Potential

In general relativity, the Lagrangian for a free particle in a gravitational field can be
expressed as

L
(

xα,
dxα

dλ

)
=

1
2

gµν(xα)
dxµ

dλ

dxν

dλ
≡ 1

2
gµν(xα)ẋµ ẋν, (A1)

where gµν are the covariant components of the metric tensor, xβ are the space–time coor-
dinates, and λ is an affine parameter. In the space of the curves described by {xµ(λ), λ ∈
[λi, λ f ]}, the action is defined as

S =
∫
L(xα, ẋα)dλ =

1
2

∫
gµν(xα)ẋµ ẋνdλ. (A2)

The Euler–Lagrange equations are obtained, as usual, by varying the action with
respect to the coordinates, and by setting the variation equal to zero. For massive particles,
we can change the parameter λ by the proper time τ, so by varying a curve

xµ(τ) −→ xµ(τ) + δxµ(τ) , (A3)

with
δxµ(τi) = δxµ(τf ) = 0 , (A4)

the action variation is

δS =
∫ [

∂L
∂xµ δxµ +

∂L
∂ẋµ δ(ẋµ)

]
dτ. (A5)

Since δ(ẋµ) = δ(dxµ/dτ) = dδxµ/dτ, the last term in Equation (A5) can be written as

∂L
∂ẋµ δ(ẋµ) =

∂L
∂ẋµ

dδxµ

dτ
=

d
dτ

(
∂L
∂ẋµ δxµ

)
− d

dτ

(
∂L
∂ẋµ

)
δxµ. (A6)

When integrated between τi and τf , the first term on the right-hand side in the above
equation vanishes because δẋµ(τi) = δẋµ(τf ) = 0; therefore, Equation (A5) becomes

δS =
∫ [

∂L
∂xµ δxµ − d

dτ

(
∂L
∂ẋµ

)
δxµ

]
dτ, (A7)

so the action variation vanishes for all δxµ if, and only if, it is satisfied that

∂L
∂xµ −

d
dτ

(
∂L
∂ẋµ

)
= 0. (A8)

For the spherically symmetric metric (6), the Lagrangian of a free particle is

L =
1
2

[
g00(r) ṫ2 − g11(r) ṙ2 − r2 θ̇2 − r2 sin2 θ φ̇2

]
, (A9)

where the dot indicates differentiation with respect to τ, i.e., ẋµ = dxµ/dτ. Replacing
the Lagrangian, Equation (A9), in the Euler–Lagrange expression, and Equation (A8), the
equations of motion for ṫ, ṙ, θ̇, and φ̇ are as follows:

for ṫ:

∂L
∂t
− d

dτ

(
∂L
∂ṫ

)
= 0 −→ d

dτ
(g00 ṫ) = 0 −→ g00 ṫ = const ≡ E,
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for ṙ:

∂L
∂r
− d

dτ

(
∂L
∂ṙ

)
= 0 → d

dτ
(−g11ṙ)− 1

2
(ġ00 ṫ2 − ġ11ṙ2 − 2rθ̇2 − 2r sin2 θφ̇2) = 0

→ g11 r̈ +
1
2

ġ00 ṫ2 +
1
2

ġ11 ṙ2 − r θ̇2 − r sin2 θ φ̇2 = 0,

for θ̇:

∂L
∂θ
− d

dτ

(
∂L
∂θ̇

)
= 0 → d

dτ

(
−r2θ̇

)
− (−r2 sin θ cos θφ̇2) = 0

→ r2 θ̈ + 2r θ̇ ṙ− r2 sin θ cos θ φ̇2 = 0,

for φ̇:

∂L
∂φ
− d

dτ

(
∂L
∂φ̇

)
= 0 → d

dτ

(
−r2 sin2 θφ̇

)
= 0 → r2 sin2 θ φ̇ = const ≡ L.

Due to the spherical symmetry, the metric is invariant under rotations of the polar
coordinate. Therefore, we can assume without loss of generality that θ = π/2. In this case,
our set of EOM is the following:

g00 ṫ = E, (A10)

g11 r̈ +
1
2

ġ00 ṫ2 +
1
2

ġ11 ṙ2 − rφ̇2 = 0, (A11)

r2φ̇ = L, (A12)

where E and L are the conserved energy and the angular momentum of particles per
unit mass.

From the condition for mass particle geodesics, gµν ẋµ ẋν = 1, and the equation of
motion for t(τ) and φ(τ), we can obtain the effective potential. For massive particles, it
must be fulfilled that

gµν ẋµ ẋν = g00(r) ṫ2 − g11(r) ṙ2 − r2 θ̇2 − r2 sin2 θ φ̇2 = 1, (A13)

so, for θ = π
2 , and replacing Equations (A10) and (A12) in Equation (A13), we obtain

g00(r) g11(r) ṙ2 = E2 − g00(r)

[
1 +

(
L
r

)2
]

(A14)

where the second term of the right-hand side of the previous equation is the well-known
effective potential

U2
e f f (r) ≡ g00(r)

(
1 +

L2

r2

)
. (A15)

Appendix B. Projection of Orbit onto the Plane of Sky

When a telescope measures the motion of a star, it does not measure the real dynamics
but rather an apparent one, i.e., it measures the orbit and velocity data projected on the
plane that lies perpendicular to the line of sight of the star. For this reason, to compare
the theoretical orbit with the observational data, we must project the real orbit on the
observation plane in the sky as shown in Figure A1. This plane of sky is described in
coordinates (X, Y) defined by the observed angular positions (the declination δ and the
right ascension α), where X = R�(δ − δSgrA∗) and Y = R�(α − αSgrA∗) being R� the
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distance to the galactic center [58,113,114]. According to the above description, the apparent
theoretical orbit can then be obtained from

X = x cos(X, x) + y cos(X, y), (A16)

Y = x cos(Y, x) + y cos(Y, y), (A17)

where the coordinates (x, y) are determined in the plane of the orbit from x = r cos φ and
y = r sin φ, while the direction cosines can be found by Eulerian rotation of axes; this isX

Y
Z

 =

cos Ω − sin Ω 0
sin Ω cos Ω 0

0 0 1

1 0 0
0 cos i − sin i
0 sin i cos i

cos ω − sin ω 0
sin ω cos ω 0

0 0 1

x
y
z

,

X
Y
Z

 =

 cos ω cos Ω− cos i sin ω sin Ω − sin ω cos Ω− cos i cos ω sin Ω sin i sin Ω
cos i sin ω cos Ω + cos ω sin Ω cos i cos ω cos Ω− sin ω sin Ω − sin i cos Ω

sin i sin ω sin i cos ω cos i

x
y
z

,

being

cos(X, x) = cos Ω cos ω− sin Ω sin ω cos i, (A18)

cos(X, y) = − cos Ω sin ω− sin Ω cos ω cos i, (A19)

cos(Y, x) = sin Ω cos ω + cos Ω sin ω cos i, (A20)

cos(Y, y) = − sin Ω sin ω + cos Ω cos ω cos i, (A21)

and, finally, we find that the orbit on the plane of sky is given by

X = r[cos(φ + ω) cos Ω− sin(φ + ω) sin Ω cos i], (A22)

Y = r[cos(φ + ω) sin Ω + sin(φ + ω) cos Ω cos i]. (A23)

Figure A1. Projection of the real orbit onto the plane of the sky. The axes originate at Sgr A* (the
focus of the ellipse). The picture illustrates the orbital parameters: φ is the azimuth angle of the
spherical system of coordinates associated with the x, y, z Cartesian coordinates, i.e., for an elliptic
motion in the x-y plane, it is the true anomaly; i is the angle of inclination between the real orbit and
the observation plane; Ω is the angle of the ascending node, and ω is the argument of the pericenter.
It is worth noting that the Z-axis of the coordinate system is defined by the vector pointing from
the Solar System to the galactic center. Reproduced from [34] with permission from Astronomy &
Astrophysics, Copyright ESO.
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Similarly to the orbit, the star’s radial velocity must also be projected onto the plane
of the sky. The radial velocity on the observation plane is defined as the velocity in the
observer’s direction along the line of sight. Therefore, if we adopt the X-Y plane as the
observation plane, then the line of sight is in the direction of the Z-axis given by

Z = x cos(Z, x) + y cos(Z, y), (A24)

where

cos(Z, x) = sin ω sin i, (A25)

cos(Z, y) = cos ω sin i, (A26)

in terms of φ, ω, and i; Z is given by

Z = r sin(φ + ω) sin i. (A27)

The radial velocity is defined as the velocity along the observer’s line of sight, and
since Z is the direction along the observer’s line of sight, the derivative of Z relative to time
gives us the apparent radial velocity of the star. This is

dZ
dt

= uZ = [rφ̇ cos(φ + ω) + ṙ sin(φ + ω)] sin(i). (A28)

It is worth noting that in the coordinate system (X, Y, Z), the direction of the Z-axis
is defined by the vector pointing from the Solar System to the galactic center and that the
axes originate at Sgr A*, which is considered the focus of the orbit [46,51,58].

Notes
1 Particle masses can be considerably larger up to ∼10−3 eV if self-interactions among the bosons are allowed [12,13].
2 It was recently shown the full possible range of density tail slopes within the RAR model when applied to typical rotation-

supported galaxies: they can range from polytropic-like (n = 5/2) to power law-like (n = 3); see right panel of Figure 10 and [37].
3 This type of correlation has been shown to break for the case of small and bulgeless galaxies in [70].
4 The connection between the self-interaction constant (C̄V ) and the cross-section is given by σSIDM ≈ C2

V29m2/(43π) as calculated
in [40] within an electroweak-like formalism for an elastic scattering process.
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