# Decoupled Anisotropic Solutions Using Karmarkar Condition in f(G, T) Gravity

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Fundamental Features of $\mathit{f}(\mathit{G},\mathit{T})$ Theory

## 3. Minimal Gravitational Decoupling Strategy

## 4. Anisotropic Interior Solutions

#### 4.1. The First Solution

#### 4.2. The Second Solution

## 5. Physical Features

## 6. Concluding Remarks

## Author Contributions

## Funding

## Institutional Review Board Statement

## Data Availability Statement

## Conflicts of Interest

## Appendix A

## References

- Van Albada, T.S.; Sancisi, R. Dark matter in spiral galaxies. Philos. Trans. Royal Soc. A
**1986**, 320, 447. [Google Scholar] - Swaters, R.A.; Madore, B.F.; Trewhella, M. High-resolution rotation curves of low surface brightness galaxies. Astrophys. J.
**2000**, 531, L107. [Google Scholar] [CrossRef][Green Version] - Barrow, J.D.; Maartens, R.; Tsagas, C.G. Cosmology with inhomogeneous magnetic fields. Phys. Rep.
**2007**, 449, 131. [Google Scholar] [CrossRef][Green Version] - Neveu, J.; Ruhlmann-Kleider, V.; Astier, P.; Besançon, M.; Guy, J.; Möller, A.; Babichev, E. Constraining the ΛCDM and Galileon models with recent cosmological data. Astron. Astrophys.
**2017**, 600, A40. [Google Scholar] [CrossRef] - Deruella, N. On the approach to the cosmological singularity in quadratic theories of gravity: The Kasner regimes. Nuclear. Phys. B
**1989**, 327, 253. [Google Scholar] [CrossRef][Green Version] - Deruella, N.; Farina-Busto, L. Lovelock gravitational field equations in cosmology. Phys. Rev. D
**1990**, 41, 3696. [Google Scholar] [CrossRef][Green Version] - Bhawal, B.; Kar, S. Lorentzian wormholes in Einstein-Gauss-Bonnet theory. Phys. Rev. D
**1992**, 46, 2464. [Google Scholar] [CrossRef] [PubMed] - Deruella, N.; Doležel, T. Brane versus shell cosmologies in Einstein and Einstein-Gauss-Bonnet theories. Phys. Rev. D
**2000**, 10, 103502. [Google Scholar] [CrossRef][Green Version] - Nojiri, S.; Odintsov, S.D. Modified Gauss Bonnet theory as gravitational alternative for dark energy. Phys. Lett. B
**2005**, 631, 1. [Google Scholar] [CrossRef][Green Version] - Sharif, M.; Ramzan, A. Anisotropic compact stellar objects in modified Gauss-Bonnet gravity. Phys. Dark Universe
**2020**, 30, 100737. [Google Scholar] [CrossRef] - Sharif, M.; Ikram, A. Energy conditions in f(G,T) gravity. Eur. Phys. J. C
**2016**, 76, 640. [Google Scholar] [CrossRef][Green Version] - Sharif, M.; Ikram, A. Stability analysis of some reconstructed cosmological models in f(G,T) gravity. Phys. Dark Universe
**2017**, 17, 1. [Google Scholar] [CrossRef] - Sharif, M.; Hassan, K. Complexity factor for static cylindrical objects in f(G,T) gravity. Pramana
**2022**, 96, 50. [Google Scholar] [CrossRef] - Sharif, M.; Hassan, K. Complexity of dynamical cylindrical system in f(G,T) gravity. Mod. Phys. Lett. A
**2022**, 37, 2250027. [Google Scholar] [CrossRef] - Sharif, M.; Hassan, K. Complexity for dynamical anisotropic sphere in f(G,T) gravity. Chin. J. Phys.
**2022**, 77, 1479. [Google Scholar] [CrossRef] - Ruderman, M. Pulsars: Structure and dynamics. Annu. Rev. Astron. Astrophys.
**1972**, 10, 427. [Google Scholar] [CrossRef] - Sokolov, A.I. Phase transformations in a superfluid neutron liquid. J. Exp. Theor. Phys.
**1980**, 49, 1137. [Google Scholar] - Kippenhahn, R.; Weigert, A.; Weiss, A. Stellar Structure and Evolution; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Herrera, L.; Santos, N.O. Local anisotropy in self-gravitating systems. Phys. Rep.
**1997**, 286, 53. [Google Scholar] [CrossRef] - Harko, T.; Mak, M.K. Anisotropic relativistic stellar models. Ann. Phys.
**2002**, 11, 3. [Google Scholar] [CrossRef] - Dev, K.; Gleiser, M. Anisotropic stars: Exact solutions. Gen. Relativ. Gravit.
**2002**, 34, 1793. [Google Scholar] [CrossRef] - Paul, B.C.; Deb, R. Relativistic solutions of anisotropic compact objects. Astrophys. Space Sci.
**2014**, 354, 421. [Google Scholar] [CrossRef] - Arbañil, J.D.V.; Malheiro, M. Radial stability of anisotropic strange quark stars. J. Cosmol. Astropart. Phys.
**2016**, 11, 012. [Google Scholar] [CrossRef][Green Version] - Ovalle, J. Decoupling gravitational sources in general relativity: From perfect to anisotropic fluids. Phys. Rev. D
**2017**, 95, 104019. [Google Scholar] [CrossRef][Green Version] - Ovalle, J.; Casadio, R.; Rocha, R.; Sotomayor, A.; Stuchlík, Z. Black holes by gravitational decoupling. Eur. Phys. J. C
**2018**, 78, 960. [Google Scholar] [CrossRef][Green Version] - Gabbanelli, L.; Rincón, Á.; Rubio, C. Gravitational decoupled anisotropies in compact stars. Eur. Phys. J. C
**2018**, 78, 370. [Google Scholar] [CrossRef] - Sharif, M.; Sadiq, S. Gravitational decoupled charged anisotropic spherical solutions. Eur. Phys. J. C
**2018**, 78, 410. [Google Scholar] [CrossRef][Green Version] - Estrada, M.; Tello-Ortiz, F. A new family of analytical anisotropic solutions by gravitational decoupling. Eur. Phys. J. Plus
**2018**, 133, 453. [Google Scholar] [CrossRef][Green Version] - Singh, K.; Maurya, S.K.; Jasim, M.K.; Rahaman, F. Minimally deformed anisotropic model of class one space-time by gravitational decoupling. Eur. Phys. J. C
**2019**, 79, 851. [Google Scholar] [CrossRef] - Hensh, S.; Stuchlík, Z. Anisotropic Tolman VII solution by gravitational decoupling. Eur. Phys. J. C
**2019**, 79, 834. [Google Scholar] [CrossRef][Green Version] - Zubair, M.; Azmat, H. Anisotropic Tolman V solution by minimal gravitational decoupling approach. Ann. Phys.
**2020**, 420, 168248. [Google Scholar] [CrossRef] - Sharif, M.; Saba, S. Gravitational decoupled charged anisotropic solutions in modified Gauss-Bonnet gravity. Chin. J. Phys.
**2019**, 59, 481. [Google Scholar] [CrossRef] - Sharif, M.; Saba, S. Gravitational decoupled Durgapal Fuloria anisotropic solutions in modified Gauss Bonnet gravity. Chin. J. Phys.
**2020**, 63, 348. [Google Scholar] [CrossRef] - Sharif, M.; Waseem, A. Effects of charge on gravitational decoupled anisotropic solutions in f(R) gravity. Chin. J. Phys.
**2019**, 60, 426. [Google Scholar] [CrossRef][Green Version] - Sharif, M.; Waseem, A. Anisotropic spherical solutions by gravitational decoupling in f(R) gravity. Ann. Phys.
**2019**, 405, 14. [Google Scholar] [CrossRef] - Sharif, M.; Majid, A. Decoupled anisotropic spheres in self-interacting Brans-Dicke gravity. Chin. J. Phys.
**2020**, 68, 406. [Google Scholar] [CrossRef] - Sharif, M.; Majid, A. Extended gravitational decoupled solutions in self-interacting Brans Dicke theory. Phys. Dark Universe
**2020**, 30, 100610. [Google Scholar] [CrossRef] - Maurya, S.K.; Errehymy, A.; Singh, K.N.; Tello-Ortiz, F.; Daoud, M. Gravitational decoupling minimal geometric deformation model in modified f(R,T) gravity theory. Phys. Dark Universe
**2020**, 30, 100640. [Google Scholar] [CrossRef] - Maurya, S.K.; Tello-Ortiz, F.; Ray, S. Decoupling gravitational sources in f(R,T) gravity under class I spacetime. Phys. Dark Universe
**2021**, 31, 100753. [Google Scholar] [CrossRef] - Sharif, M.; Naseer, T. Effects of f(R,T,R
_{γυ}T^{γυ}) gravity on anisotropic charged compact structures. Chin. J. Phys.**2021**, 73, 179. [Google Scholar] [CrossRef] - Naseer, T.; Sharif, M. Study of Decoupled Anisotropic Solutions in f(R,T,R
_{ρη}T^{ρη}) Theory. Universe**2022**, 8, 62. [Google Scholar] [CrossRef] - Sharif, M.; Naseer, T. Isotropization and complexity analysis of decoupled solutions in f(R,T) theory. Eur. Phys. J. Plus
**2022**, 137, 1304. [Google Scholar] [CrossRef] - Sharif, M.; Hassan, K. Influence of charge on decoupled anisotropic spheres in f(G,T) gravity. Eur. Phys. J. Plus
**2022**, 137, 997. [Google Scholar] [CrossRef] - Sharif, M.; Hassan, K. Anisotropic decoupled spheres in f(G,T) gravity. Int. J. Geom. Methods Mod. Phys.
**2022**, 19, 2250150. [Google Scholar] [CrossRef] - Sharif, M.; Hassan, K. Charged Anisotropic Solutions through Decoupling in f(G,T) Gravity. Int. J. Geom. Methods Mod. Phys.
**2022**. [Google Scholar] [CrossRef] - Shamir, M.F.; Ahmad, M. Emerging anisotropic compact stars in f(G,T) gravity. Eur. Phys. J. C
**2017**, 77, 74. [Google Scholar] - Sharif, M.; Naeem, A. Anisotropic solution for compact objects in f(
$\mathcal{G},\mathcal{T}$) gravity. Int. J. Mod. Phys. A
**2020**, 35, 2050121. [Google Scholar] [CrossRef] - Eiesland, J. The group of motions of an Einstein space. Trans. Am. Math. Soc.
**1925**, 27, 213. [Google Scholar] [CrossRef] - Maurya, S.K.; Gupta, Y.K.; Dayanandan, B.; Ray, S. A new model for spherically symmetric anisotropic compact star. Eur. Phys. J. C
**2016**, 76, 266. [Google Scholar] [CrossRef][Green Version] - Maurya, S.K.; Gupta, Y.K.; Ray, S.; Deb, D. Generalised model for anisotropic compact stars. Eur. Phys. J. C
**2016**, 76, 693. [Google Scholar] [CrossRef][Green Version] - Abreu, H.; Hernandez, H.; Nunez, L.A. Sound Speeds, Cracking and Stability of Self-Gravitating Anisotropic Compact Objects. Class. Quant. Gravit.
**2007**, 24, 4631. [Google Scholar] [CrossRef] - Herrera, L. Cracking of self-gravitating compact objects. Phys. Lett. A
**1992**, 165, 206. [Google Scholar] [CrossRef] - Buchdahl, H.A. General relativistic fluid spheres. Phys. Rev.
**1959**, 116, 1027. [Google Scholar] [CrossRef] - Ivanov, B.V. Maximum bounds on the surface redshift of anisotropic stars. Phys. Rev. D
**2002**, 65, 104011. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**Physical analysis of $\mathbb{U}$, ${\mathbb{P}}_{r}$, ${\mathbb{P}}_{\perp}$ and △ versus $\psi $ and r corresponding to two stellar candidates (Solution I).

**Figure 2.**Plots of energy constraints versus $\psi $ and r corresponding to two stellar candidates (Solution I).

**Figure 3.**Plots of causality condition and Herrera cracking approach versus $\psi $ and r corresponding to two stellar candidates (Solution I).

**Figure 4.**Physical analysis of $\mathbb{U}$, ${\mathbb{P}}_{r}$, ${\mathbb{P}}_{\perp}$ and △ versus $\psi $ and r corresponding to two stellar candidates (Solution II).

**Figure 5.**Plots of energy constraints versus $\psi $ and r corresponding to two stellar candidates (Solution II).

**Figure 6.**Plots of causality condition and Herrera cracking approach versus $\psi $ and r corresponding to two stellar candidates (Solution II).

**Figure 7.**Plots of mass, compactness and redshift versus r corresponding to $\psi =0.1$ (Orange), $\psi =0.9$ (Red) (Her X-1) and $\psi =0.1$ (Blue) and $\psi =0.9$ (Purple) (4U 1820-30) for solution I.

**Figure 8.**Behavior of mass, compactness and redshift versus r corresponding to $\psi =0.1$ (Orange), $\psi =0.9$ (Red) (Her X-1) and $\psi =0.1$ (Blue) and $\psi =0.9$ (Purple) (4U 1820-30) for solution II.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hassan, K.; Sharif, M. Decoupled Anisotropic Solutions Using Karmarkar Condition in *f*(*G*, *T*) Gravity. *Universe* **2023**, *9*, 165.
https://doi.org/10.3390/universe9040165

**AMA Style**

Hassan K, Sharif M. Decoupled Anisotropic Solutions Using Karmarkar Condition in *f*(*G*, *T*) Gravity. *Universe*. 2023; 9(4):165.
https://doi.org/10.3390/universe9040165

**Chicago/Turabian Style**

Hassan, Komal, and Muhammad Sharif. 2023. "Decoupled Anisotropic Solutions Using Karmarkar Condition in *f*(*G*, *T*) Gravity" *Universe* 9, no. 4: 165.
https://doi.org/10.3390/universe9040165