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Abstract: Two important phenomena of the solar wind–magnetosphere–ionosphere coupling are
auroral particle precipitation and the formation of ions flowing upward from the ionosphere. They
have opposite transport directions of energy and substance. Based on the observations of particle
precipitation and ion drift from the DMSP F13 satellite in January and July 2005, the ionospheric
ion upflows in dayside auroral oval (0600–1800 MLT) can be divided into five types according to
the velocity of ion upflows and the spectrum characteristics of auroral particle precipitation, and
the distribution for different types of ion upflows is studied. The results show that the ion upflows
mainly occur in the geomagnetic latitude (MLAT) range of 70–80◦.The main magnetospheric source
region of ion upflows (type A and D) caused by the accelerated electron (mainly the soft electron)
corresponds to Low Latitude Boundary Layer (LLBL) and Cusp, and ion upflows of type B and
C (related to the process of ambipolar diffusion caused by electron acceleration) mainly occur in
LLBL and Boundary Plasma Sheet (BPS), while ion upflows of type E without electron acceleration
mainly occur in the central plasma sheet (CPS).The dawn–dusk asymmetry is obvious in the winter
season, with the ion upflows mainly occurring on the dawn/dusk side ionosphere. However, the
ion upflows in summer mainly occur at the magnetic noon, with a symmetric distribution centered
at the magnetic noon. The occurrence of ion upflow in winter is significantly higher than that in
summer, and it is significantly enhanced during the period of moderate geomagnetic activity. The
upward region expands to the lower latitude when the geomagnetic activity is enhanced. The effect
of interplanetary magnetic field (IMF) components has also been studied in this paper. When IMF
Bx is negative, the upflow occurrence increases in the region of 1500–1800 MLT and 0600–0900 MLT,
with the MLAT range below 70◦. The direction of IMF By may lead to the high-incidence area reverse
at the prenoon or postnoon region. The occurrence of ion upflows with the MLAT range below 75◦

increases significantly when IMF is southward. Type A ion upflow has the highest velocity of ion
upflows, followed by type E, and type D has the lowest. The average velocity of ion upflows in
winter is significantly higher than that in summer.

Keywords: particle precipitation; ion upflow; geomagnetic activity; interplanetary magnetic field

1. Introduction

Through the interaction of solar wind, interplanetary magnetic field and Earth’s
magnetosphere, part of the energy, mass and momentum carried by solar wind enters
the magnetosphere through various dynamic processes. These dynamic processes mainly
occur in various boundary layers and magnetotails and are mapped to the polar ionosphere
via magnetic field lines. As the most intuitive ionospheric trace characterizing various
magnetospheric dynamical processes, aurora is extremely important for the study of space
weather and the coupling between solar wind and the magnetosphere. Since the ionospheric
projection of each magnetospheric boundary layer on the dayside is located on the auroral
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oval [1,2], the morphology, spectrum, intensity, motion and other characteristics of dayside
aurora are closely related to the various dynamic processes of magnetospheric boundary
layer on dayside. However, how each dynamic process accelerates the formation of dayside
aurora is unclear. Newell et al. [3] divided the discrete auroral electron precipitation into
two types, namely, a monoenergetic acceleration event and a broadband acceleration event,
according to the electron spectrum characteristics of precipitating particles. In addition,
these two types of precipitation correspond to the process of quasi-static acceleration and
dispersion Alfvén acceleration, respectively.

The ion upflows in the polar ionosphere are another important phenomenon in the
solar–earth energy coupling system. The O+ and NO+ in lower atmosphere/ionosphere
are transported to the magnetosphere through the upflow of ions along the magnetic
field lines, affecting the characteristics of magnetosphere plasma and related dynamic
processes. Ion accelerated to escape velocity, namely ion outflows, is an important path of
material exchange between earth and interplanetary space. It has been proved that there
are a variety of ion outflows and ion energy acquisition processes in the polar ionosphere.
The components of ion outflow include low-energy ions (H+, He+) and high-energy ions
(O+, NO+, O2+), which play an important role in the coupling of the ionosphere and
the magnetosphere [4,5]. Since single-charged oxygen ions do not exist in solar wind,
O+ in magnetospheric plasma mainly come from the ionization of oxygen atoms in the
ionospheric F region [6–8].

In terms of energy transport, the aurora particle precipitation is opposite to the
energy transport of ion upflows. However, there is a close relationship between particle
precipitation and ion upflow, especially dayside auroral particle precipitation. One of
the main driving factors of dayside ion upflows is the precipitation of soft electrons in
the polar gap region. Soft electrons (<500 eV) enter the polar gap region, ionize neutral
particles and generate heated electrons, which move upward with ions through the
bipolar electric field [9]. Statistical studies show that the maximum ion flux occurs in
the ~78◦ ILAT and 0900–1500 MLT sectors of the auroral oval on dayside [10], and the
incidence of the ion upflows peaks at 0800 MLT and 1300 MLT [11]. The 0900–1500 MLT
sector is the soft electron precipitation region, with strong emission at 630.0 nm of
dayside red coronal aurora [12,13], while 0800 MLT and 1300 MLT correspond to the
prenoon “warm spot” and postnoon “hot spot” regions on dayside auroral oval, respec-
tively. The auroral morphology of these two areas is dominated by green auroral arcs
and complex hot spot aurora [2,12–14]. Ground-based optical observations show that
there is a one-to-one relationship between poleward moving auroral forms (PMAFs)
and ion upflows in the cusp region, suggesting that individual events of soft electron
precipitation trigger corresponding ion upflows [15].

The type difference of aurora corresponds to the energy spectrum characteristics
of different particle precipitation; that is, the average energy, energy flux and energy
level range of the particles are different. The difference in these parameters may lead to
different parameter characteristics in ion upflows. The relationship between the particle
precipitation of so many different types and the ion upflows is not clear. Therefore, the
systematic study of the relationship has important theoretical significance and practical
value for understanding the coupling of magnetosphere and ionosphere.

In this paper, data from the DMSP F13 satellite are used to study the ion upflow and
particle precipitation of the northern hemisphere, mainly to investigate the temporal–
spatial distribution of ion upflows corresponding to different precipitation electron
spectrum characteristics, and preliminarily discuss the physical mechanism of such
distribution differences.

2. Data and Analysis

The satellites of the Defense Meteorological Satellite Program (DMSP) are a series of
polar-orbiting satellites created for use by the U.S. Air Force to monitor the state of the
environment in the near-Earth space on a “near real-time” basis. The first DMSP satellite
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was flown in the early 1960s, taking 101 min to orbit the earth. The orbit altitude is about
835–850 km, and the inclination Angle is about 96◦. Special Sensor for Particle Flux (SSJ/4)
has 19 energy channels (34, 49, 71, 101, 150, 218, 320, 460, 670, 960 eV and 1.4, 2.1, 3.0, 4.4,
6.5, 9.5, 14.0, 20.5, 29.5 keV, respectively) and can measure the energy fluxes of precipitating
electrons and ions in the energy range of 30 eV–30 keV, with data recorded every one
second [16–19]. SSIES (Special Sensors for Ions, Electrons, and Scintillations) measure
three components of the plasma flow velocity, plasma density and temperature of ion and
electron [20]. The orbit of DMSP F13 satellite mainly covers the dawn and dusk side of the
northern hemisphere, so the distribution of ion upflows on both sides can be studied.

Newell [21–23] summarized the energy spectrum characteristics of particle precipi-
tating in different source regions. According to the energy spectrum data of DMSP SSJ/4
particle precipitating, the source region of the magnetosphere corresponding to the particle
precipitation can be judged as the follows: (1) Cusp region: the average ion energy is
300–3000 eV, the average electron energy is less than 220 eV, and the total energy flux of
ion and electron (eV/cm2·s·str) is less than 1010 and 6 × 1010, respectively [21]; (2) Low
Latitude Boundary Layer (LLBL): the average ion energy is 3000–6000 eV, the average
electron energy is 220–600 eV, and the total energy flux (eV/cm2·s·str) of ions and electrons
is less than 1010 and 6 × 1010, respectively [21]; (3) Plasma mantle: the ion energy is less
than 100 eV, and the density is 10−2–10−1/cm3. The average energy and total flux of
particles decrease with the increase in the geomagnetic latitude [22]; (4) Boundary Plasma
Sheet (BPS): the electron energy is less than 1 keV, and the total energy flux of ions and
electrons (eV/cm2·s·str) is more than 1010 [23]; (5) Central Plasma Sheet (CPS): the electron
energy is greater than 1 keV, and the total energy flux of ions and electrons (eV/cm2·s·str)
is greater than 1010 [23].

Ion velocity or flux can be used as the criterion for ion upflows. When the velocity or
flux is much higher than the normal value, it can be judged as ion upflow [24]. Without
additional acceleration, the upward drift velocity of ions at 800 km is generally lower than
200 m/s [25]. When the upward drift velocity is greater than 200 m/s, an upward event is
considered, with the possible offset in the baseline of the measured data of SSIES. In order
to reduce the interference of noisy signals (a single data point has a high velocity, while
nearby data points have no upflow characteristics), and considering that the resolution of
velocity and ion density in the measured data is 1 s and 4 s, respectively, the ion upflows
studied in this paper contain at least four consecutive data points with a velocity no less
than 200 m/s.

At high latitudes, the vertical velocity Vz approximates the ion velocity Vb along the
magnetic field [26]. However, since most typical ion upflows occur in the lower latitudes
(60◦–70◦ MLAT), the approximate replacement of Vb with Vz will introduce some error.
Using the International Geomagnetic Reference Field (IGRF-11) model, we can calculate
the components of the Earth’s magnetic field: Bx1 (northward component of the magnetic
field), By1 (eastward component of the magnetic field), Bz1 (downward component of
the magnetic field). The velocity Vb along the magnetic field can then be calculated by
projecting the vertical velocity Vz onto the magnetic field.

The electron precipitation with accelerating characteristics is defined as follows: in
19 energy channels at a point in time, as long as the flux of any energy level is greater
than 108 eV·cm−2·s−1·str−1·eV−1, the electron spectrum is considered to have accelerating
characteristics [3]. When the flux of each energy level in the electron accelerating structure
is similar and the structure is geometrically connected in the energy spectrum, the electron
accelerating characteristic structure is determined to be continuous. In DMSP data, there
are different corresponding characteristics between the velocity of ion upflows and the
structure of electron precipitation. According to the different corresponding relations,
the ion upflows can be further classified as follows: (1) Type A: The upflow velocity has
an obvious peak interval, and the whole peak interval should have obvious single and
continuous electron acceleration structure; (2) Type B: The upflow velocity has an obvious
peak interval, corresponding to multiple and scattered electron acceleration structures;
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(3) Type C: The upflow velocity has an obvious peak interval, but only the ascending or
descending segment corresponds to the structure of electron acceleration; (4) Type D: the
upflow velocity corresponds to the structure of electron acceleration, but the velocity has
no obvious change trend or complete peak interval; (5) Type E: the upflow velocity does
not correspond to the structure of electron acceleration.

Figure 1 shows different types of ion upflows. The upper is the upflow velocity, the
lower is the electron energy spectrum, the horizontal blue dashed line is the threshold
value of 200 m/s and the red box corresponds to the occurrence area of ion upflows. The
upflow velocities in ‘a’ during 08:20:41–08:20:49 UT are greater than 200 m/s, and the
corresponding electron spectrum show continuous electron acceleration feature. According
to the determination criteria, this event was judged as a Type A ion upflows. Similarly,
the red box in ‘b’ corresponds to the time during 16:44:33–16:44:38 UT, which is Type A
ion upflow, while ‘c’ and ‘d’ are Type B ion upflows. The electron spectra show multiple
scattered electron-accelerating characteristics. ‘e’ and ‘f’ are Type C ion upflows, and the
electron spectra in the red boxes show a continuous electron acceleration feature, but only
corresponding to the regions where the upward velocity decreases or increases. ‘g’ and ‘h’
are Type D ion upflows. The upflow velocity in the red box of ‘g’ shows no obvious variation
trend, and the electron spectrum shows continuous electron accelerating characteristics.
The velocity in ‘h’ around 11:36:32 UT is lower than 200 m/s, leading to an increasing trend
without a complete peak interval. ‘i’ is Type E ion upflow, and the electron spectrum in the
red box does not have acceleration characteristics.
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Figure 1. Corresponding relationship between the vertical ion drift velocity (top panel) and electron
acceleration (bottom panel) for different types of ion upflows. The horizontal blue dashed line is
the threshold value of 200 m/s. The red box indicates the interval of typical ion upflows, and the
black arrow and the letters (A–E) next to it indicate the type of ion upflows. (a,b) Type A ion upflows,
(c,d) type B ion upflows, (e,f) type C ion upflows, (g,h) type D ion upflows, (i) type E ion upflows.

3. Statistical Results
3.1. Characteristics of Magnetosphere Source Region

Based on the data from the DMSP F13 satellite, a total of 15,198 ion upflows occurring
in the range of 60~90◦ MLAT in the Northern Hemisphere during January and July 2005
are statistically studied. Among them, 5824 are type A, 637 are type B, 523 are type C,
1865 are type D and 6349 are type E. The specific values are shown in Table 1. Figure 2
shows the number distribution of different types of ion upflows corresponding to different
magnetospheric source regions.

Table 1. Statistics of ion upflows in the geomagnetic latitude range of 70–80◦ on the dayside region
of northern hemisphere in January and July 2005. From left to right, the source region of the
magnetosphere is, successively, polar rain (prn), plasma mantle (mantle), polar gap (Cusp), low-
latitude boundary layer (LLBL), plasma sheet boundary layer (BPS) and central plasma sheet (CPS),
the same below, while the others are the events with no clear magnetospheric source region, and sum
is the total number.

Prn Mantle Cusp LLBL BPS CPS Others Sum

A 16 190 370 1343 2208 138 1159 5824
B 3 10 4 173 239 17 191 637
C 1 4 2 131 208 17 160 523
D 6 79 112 457 696 48 467 1865
E 19 131 3 666 1072 1246 3212 6349

sum 45 414 491 2770 4423 1466 5589 15,198

It can be seen from Table 1 and Figure 2 that all kinds of ion upflows with electron
acceleration characteristics mainly appeared in regions of BPS, LLBL, Cusp and plasma
mantle on dayside, while type E without electron acceleration mainly appeared in CPS,
BPS and LLBL on dayside. Cusp is the main region for type A and D. Type B and C mainly
appear in LLBL and BPS, and CPS is the main region for type E. In addition, there were
clear seasonal differences in the number of different types of ion upflows. For type C and
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E, the number in January (winter) (486, 5884, respectively) is much higher than that in
July (summer) (37, 465, respectively), which is about 10 times greater than that in each
magnetosphere source region. For type B, the number in January (532) was five times
higher than that in July (105). For type A and D, the number in January (3654 and 1086,
respectively) was slightly higher than that in July (2170 and 779, respectively): less than
two times.
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Figure 2. The distribution of ion upflow events corresponding to different magnetospheric source re-
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for July.

3.2. Characteristics of Incidence

The Altitude Adjusted Corrected Geomagnetic (AACGM) coordinate plane is meshed
to study the distribution characteristics of ion upflows. MLAT is divided into 12 groups,
ranging from 60◦ to 90◦, with an interval of 2.5◦, and MLT is divided into 24 groups, ranging
from 6 to 18 h, with an interval of 0.5 h. When the orbit of DMSP satellite passes through a
grid, the number of traverses of the grid is increased by one. For the events that span two
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or more grids, the number of traverses is added by 1 for each grid through which the event
passes. We define the average orbital incidence F as:

F = Nup/Ndmsp, (1)

Nup is the number of ion upflows observed by DMSP in the selected grid, and Ndmsp
is the number of orbital passes of DMSP satellite in the grid. To ensure the validity of
statistical results, when Ndmsp in a grid is less than 20 times, Nup in the grid does not
participate in statistics.

3.2.1. The Distribution and Occurrence for Different Types of Ion Upflows

Figure 3 shows the temporal–spatial distribution of the number of events and the
average orbital incidences of all kinds of ion upflows in January/July. The gray area is the
coverage of satellite orbit, and there are no data in the blank, the same as below. In the
range of 70–80◦ MLAT, the incidences of type A (January/July) are 44.22 and 25.79, that
of type B are 7.62 and 1.51, that of type C are 6.55 and 0.53, that of type D are 13.43 and
9.58 and that of type E are 59.39 and 6.17, respectively. In the sum of the occurrence rates
of other latitudes (January/July), type A are 10.70 and 6.43, type B are 1.35 and 0.43, type
C are 1.16 and 0.12, type D are 3.18 and 2.75 and type E are 51.69 and 1.97. This indicates
that the occurrence rate of type A–D is the highest in the range of 70–80◦ MLAT, which is
3–6 times the total occurrence rate of other latitude ranges, while type E has high incidence
in the region above 65◦ MLAT.
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In January, all kinds of ion upflows are mainly distributed at dawn and dusk, and the
incidence of dawn is significantly higher than that of dusk, showing obvious “dawn–dusk
asymmetry”. The incidence peak of type A, B and C is near 0900 MLT, and that of type
D is near 1400 MLT. The incidence of type E peaks near 0600–0900 MLT and 1800 MLT.
The ion upflows in July are mainly distributed around magnetic noon, with a symmetric
distribution centered at the magnetic noon.

3.2.2. Temporal–Spatial Distribution of Different Types of Ion Upflows under Different
Geomagnetic Activities

Figure 4 shows the distribution of the average orbital incidences of various ion
upflows in AACGM coordinate plane under different geomagnetic activity conditions.
Kp < 2 refers to quiet magnetic activities, 2 ≤ Kp ≤ 4 refers to moderate magnetic activities,
and Kp > 4 refers to disturbed magnetic activities.
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Figure 4. Temporal–spatial distribution of different types of ion upflows under different geomagnetic
activities. From top to bottom are ion upflows of type A to E, respectively. The three columns on the
left are statistics for January, and the right are statistics for July. (a,d,g,j,m) Quiet magnetic activities,
(b,e,h,k,n) moderate magnetic activities, (c,f,i,l,o) disturbed magnetic activities.

During days with quiet magnetic activities, types A and D mainly occur at 0900–1500 MLT
and 75–80◦ MLAT in prenoon and postnoon. Type B mainly occurs at 75–80◦ MLAT and
0600–1200 MLT in January, while 0900–1500 MLT in July. Type C mainly occurs at the range
of 75–80◦ MLAT at dawn and dusk. Type E mainly occurs at MLAT range above 70◦ in
dawn side of 0600–0900 MLT in January, while it mainly occurs at the range of 75–80◦ MLAT
and 0900–1500 MLT in July. During days with moderate magnetic activities, type A and D
are mainly distributed at 0900–1500 MLT and 70–80◦ MLAT. Type B is mainly distributed
at 0600–1200 MLT and 70–80◦ MLAT. Type C is mainly distributed at 0600–1500 MLT and
70–80◦ MLAT. Type E mainly occurs at 0600–1200 MLT and 1500–1800 MLT, with MLAT
range of 65–80◦ in January, while it mainly occurs at 0900–1500 MLT and 70–80◦ MLAT in
July. During days with disturbed magnetic activities, type A and D mainly occur at MLAT
range of 65–75◦ at dawn and dusk. Type B and C mainly occur at a MLAT range of 65–75◦

in the dawn side. Type E mainly occurs at the MLAT range of 65–80◦in dawn and dusk in
January, while it mainly occurs at the dawn side of 70–75◦ MLAT in July. This indicates
that with the enhancement of geomagnetic activity, the main region of ion upflow expand
to the lower latitude centered on the region in the quiet time. During days with moderate
magnetic activities, the incidence of ion upflows is significantly enhanced.
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3.2.3. The Effect of Interplanetary Magnetic Field (IMF) Components

Figures 5–7 shows the distribution of the average orbital incidences of various ion
upflows under different directions of the component of the interplanetary magnetic field
(IMF) (Bx, By, Bz).
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Figure 5 shows the temporal–spatial distribution of ion upflows in different directions
of the Bx component. The results show that when the direction of Bx changes, all kinds of
ion upflows show different distribution characteristics at different latitudes and local time
regions. The incidences of various ion upflows increase at MLT range of 60–70◦ as Bx < 0.
During 70–80◦ MLAT, the incidences of type A and D increase in January and decrease in
July, while the incidences of type B, C and E decrease in January and July. The incidences of
various events decrease at a MLAT range above 80◦.When Bx > 0, in the region of 0600–0900
MLT, the incidences of type A decrease in January and increase in July. The incidences of
type B and E increase, and that of type C and D decrease. In the region of 0900–1200 MLT,
the incidences of all kinds of ion upflows decrease in January and increase in July. In the
region of 1200–1500 MLT, the incidences of type A decrease in January and increase in July,
that of type B and C increase in January and decrease in July, and that of type D and E
increase in January and July. In the region of 1500–1800 MLT, the incidences of all kinds of
ion upflows increase.



Universe 2023, 9, 164 10 of 19Universe 2023, 9, x FOR PEER REVIEW  12  of  21 
 

 

 

Figure 6. Temporal–spatial distribution of different types of ion upflows under different direction 

of IMF By. From top to bottom are ion upflows of type A to E, respectively. (a–j) statistics for Janu‐

ary, (k–t) statistics for July. 

Figure 7 shows the temporal–spatial distribution of  ion upflows in different direc‐

tions of Bz component. The results show that the direction of Bz affects both the region 

and intensity of ion upflows. When Bz < 0, the incidences of all kinds of ion upflows in‐

crease at an MLAT range of 60–75°, while they decrease at an MLAT range above 75°. 

Figure 6. Temporal–spatial distribution of different types of ion upflows under different direction of
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As shown in Figure 6, the direction of the By component mainly affects the prenoon/
postnoon incidences of type A and D, as well as type C in January and type E in July.
When By < 0 (>0), the prenoon/postnoon incidences of type A in January and July are
4.82 (7.82)/5.01 (5.24) and 6.77 (3.80)/4.63 (6.59), respectively. The incidences of type C in
January are 0.90 (0.93)/1.04 (0.69), respectively. The incidences of type D are 1.54 (2.10)/2.01
(1.24) in January and 2.65 (1.26)/2.18 (2.65) in July, respectively. The incidences of type E
in July are 1.67 (0.98)/1.21 (1.10). This indicates that the direction of By may lead to the
high-incidence area reversal in the prenoon or postnoon region.

Figure 7 shows the temporal–spatial distribution of ion upflows in different directions
of Bz component. The results show that the direction of Bz affects both the region and
intensity of ion upflows. When Bz < 0, the incidences of all kinds of ion upflows increase at
an MLAT range of 60–75◦, while they decrease at an MLAT range above 75◦.
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3.3. The Distribution and Velocities for Different Types of Ion Upflows

Figure 8 shows the distribution of the average upflow velocity of all kinds of events
on the AACGM coordinate plane (a–j is the statistical distribution of events; k–t is the
temporal–spatial distribution of velocity), and the grid division remains unchanged. The
statistical standard of the velocity is the peak velocity in the ion upflow and the region
where it resides. Within a grid, the average upflow velocity is defined as the average of
the peak velocity of each event. Each grid area must contain at least five ion upflows in
order to ensure the validity of statistical results; otherwise, it will not participate in the
statistics (the statistical data of type C in July and type B in Figure 9 do not comply with
this standard, so there are no data in the velocity distribution diagram).
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As seen in Figure 8, type A has the highest upflow velocity, followed by type E, and
type D has the lowest. The velocity in January is significantly higher than that in July. The
upflow regions with higher velocities of all kinds of ion upflows are mainly concentrated
at an MLAT region below 75◦. The velocity is slightly higher in postnoon than in prenoon.
Higher velocities of type A are in the region of 0600–0900 MLT, below 65◦ MLAT, and that
of type E are in the region around 1700–1800 MLT and below 70◦ MLAT.

Figure 9 shows the velocity distribution of various ion upflows under different geo-
magnetic activity conditions. In the range of 70–80◦ MLAT, the upflow velocity of all kinds
of events decrease with the increase in geomagnetic activity in January, while they increase
with the increase in geomagnetic activity in July. The upflow velocity of type A is higher in
the dusk side than in the dawn side during days with quiet and moderate geomagnetic
activity, while it is lower in the dusk side than in the dawn side during days with disturbed
magnetic activity. Under different geomagnetic activity conditions, the velocity of type E in
dawn side is lower than that in the dusk side in January.
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Figure 9. Temporal–spatial distribution of the average velocities of different types of ion upflows
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velocities of type E in January/July.

4. Discussion

Previous observations, based on the data of DE-2 satellite (Dynamics Explorer), have
shown that the electron heating caused by soft electron precipitation at 800 km altitude
can lead to ion upflows [27]. The soft electron precipitation results in ionization of neutral
particles in the ionospheric F region and top ionosphere. The surrounding electrons are
heated by coulomb collisions with the primary and secondary electrons, resulting in an
upward bipolar electric field, through which the ions move upward [9,28]. The projection
regions of Cusp and LLBL are the main regions of soft electron precipitation on a dayside
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auroral oval. Observations of ESR (European Incoherent Scatter Svalbard radar) show that
the ion upflows located in Cusp are mainly caused by soft electron precipitation [9]. The
total energy of precipitating electrons near Cusp is about 1.6 × 10−10 J m−3, about 10 times
of the total kinetic energy of upward ions near 350 km, so it can effectively accelerate
the ionospheric upward flow [9]. For all kinds of ion upflows with electron acceleration
characteristics, the number of type A and D in the region of Cusp and LLBL is not the
largest relative to the total number of their respective types. However, for the Cusp region,
almost only type A and D occur. For LLBL region, type A and D are also the two categories
with the highest incidence. Therefore, type A and D in these two regions are mainly caused
by the precipitation of soft electrons.

Kozlovsky et al. [29] made conjugate observations with the ultraviolet aurora imager
of Polar satellite (UVI) and ESR radar. He found that in the postnoon aurora oval sector, at
an altitude of 300–550 km, there are downward field-oriented ion flows towards the polar
side of the aurora arc, and upward field-oriented ion flows on the equatorial side of the
aurora arc. This upward/downward change in ion flow is thought to be caused by the
difference in the vertical gradient of plasma density; that is, the convection associated with
the aurora arc, the electron precipitation of the aurora arc, and the photoionization effect of
sunlight together form the vertical gradient of plasma density near the aurora arc, which
determines the bipolar diffusion and the observed ion motion. The relationship between
the auroral arcs and ion upflows observed by Kozlovsky et al. [29] fits the definition of
a type C ion upflow, in which the electron-accelerating structure (the auroral arc) exists
only in part of the peak interval of the upflow velocity. In addition, type C occur mainly
in the regions of LLBL and BPS, which are high-incidence areas of auroral arcs [13,30].
Therefore, ion upflows of type C may be related to the bipolar diffusion process formed
by the vertical gradient of plasma density. Type B mainly occur in the regions of LLBL
and BPS, similar to type C. However, unlike the single-electron acceleration structure of
type C, type B has multiple electron acceleration structures. The LLBL and BPS regions are
also high-occurrence areas of multiple auroral arcs [13,30]. Therefore, the multiple electron
acceleration structures in type B correspond to multiple arcs, and the ion upflow is still
related to the bipolar diffusion process.

CPS consists of two parts, one of which moves towards higher latitudes as the MLT
increases on the dayside from dawn through noon, while the other connects to the for-
mer part and extends towards the nightside, where electrons enter the dayside from the
nightside of plasma sheet. Electron precipitation in CPS is mainly “trapped” by a loss
cone (forming mostly diffuse auroras), with hardly any precipitation caused by electron
acceleration [23]. Due to the higher energy of the precipitating electrons, the deposition
is caused to enter the ionosphere at a lower height, which mainly produces ionization to
the atmosphere of ionospheric E region, while the heating of the initial height is weak.
The statistical results show that the ion upflows related to soft electron precipitation and
bipolar diffusion (type A–D) have low incidence in CPS, while type E has high incidence in
CPS, indicating that type E ion upflows are caused by other formation mechanism, which
required further study.

The polar cap region is a highly dynamic region. Due to the large energy flux from the
magnetosphere, the ionosphere shows transient plasma flow and shear, and the electrons
with higher energy precipitate to the lower height [31,32]. The upward movement of ions is
attenuated by collisions with dense neutral particles. Thus, the acceleration of electrons in
this region has less effect on the ion upflows. However, the high temperature of ions caused
by friction heating in the polar cap region is closely related to the ion upflows, which can
effectively drive ions upward [33].

Observations of the ESR radar show similar seasonal differences to those in Table 1
and Figure 2: the incidence is higher in winter than in summer, and the maximum occurs
in the winter solstice and the minimum in the summer solstice [34–36]. Cohen et al. [37]
investigated the effect of ionospheric density on ion upflows through a model simulation of
ion upflow driven by auroral particle precipitation. The results indicate that as ionospheric
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density increases, the incidences and velocities of ion upflows decrease, caused by decreases
in electron heating and the bipolar electric field [23,37]. In summer, when the ionospheric
high latitude is in sunshine, the extreme ultraviolet flux (EUV) increases, which leads to an
increase in ionospheric density, resulting in less occurrence of ion upflows in summer than
in winter.

The statistical results show that the incidence of ion upflows in Cusp on the dayside
increases with Kp < 3, but decreases with Kp > 3 [38]. Figure 4 shows that with the enhance-
ment of geomagnetic activity, the main upflow region of various events expands to the
direction of low latitude with the region of quiet time as the center, and the peak incidence
appears during days with moderate geomagnetic activity. This is because the enhancement
of geomagnetic activity will lead to the enhancement of ionosphere–magnetosphere cou-
pling, and the enhanced precipitation of high-energy particles and field-aligned electric
potential difference can accelerate the upward movement of ions more effectively. The
region of ion upflows moves towards the equator at low latitudes with the enhancement
of geomagnetic activity [39], and the region of electron temperature enhancement also
moves towards the equator with the increase in AE index [40]. During days with quiet
geomagnetic activity, the auroral oval is located near 77◦ MLAT at midday on the day-
side. As geomagnetic activity increases, the auroral oval expands towards equatorial and
polar areas [41]. During days with moderate geomagnetic activity, the center of the up-
flow region is located near 75◦ MLAT, and the overlap of the auroral oval on the dayside
increases [38,42], resulting in an increase in the observed particle precipitation and ion
upflows. In addition, with the enhancement of geomagnetic activity, the intensity of iono-
spheric convection at low latitudes increases. The heating generated by the convection
can further accelerate the ion upflows [24,39,43]. Thus, the incidence of ion upflows at low
latitudes increased significantly.

The results in Figure 5 show that when the direction of Bx changes, the incidences in
January and July show different characteristics. In the winter of the northern Hemisphere,
the regions of 1300–1800 MLT and 0600–0900 MLT are the occurrence regions of hot spot
aurora and auroral arcs with the magnetosphere source regions of BPS. When Bx > 0,
the emission at 557.7 nm in this region is significantly enhanced [14,44], and the electron
acceleration process of hot spot aurora and auroral arcs are also significantly enhanced.
Similarly, the regions of 0900–1300 MLT are the occurrence regions of drapery dayside
corona and radial dayside corona with the magnetosphere source regions of LLBL. The
electron acceleration process of dayside corona is significantly enhanced when Bx < 0.
Therefore, the incidences in the regions of 1300–1800 MLT (1500–1800 MLT for type A in
January, and type B and C in July) and 0600–0900 MLT increase when Bx > 0, and that in
the region of 0900–1300 MLT increase when Bx < 0. The possible reason for the differences
between January and July is that the high-latitude ionosphere in summer is under sunshine
conditions, and the solar extreme ultraviolet flux (EUV) increases, leading to the increase in
ionospheric density, thus affecting the upward movement of ions. However, the relationship
between EUV flux and IMF Bx is unknown.

Large-scale field-aligned currents are concentrated in two principal areas encircling
the geomagnetic pole: region 1 is located near the poleward part of the field-aligned
current region, and region 2 is located near the equatorward part. The shape of the
auroral oval on the dayside is close to the field-aligned current in region 1 [45]. The
current flows into the ionosphere on the dawn side and flows out on the dusk side. The
prenoon (dawn) and postnoon (dusk) regions correspond to downward currents in prenoon
and upward currents in postnoon, respectively. When IMF By is negative, an upward
electric field is generated [46], superimposing the upward field-aligned current in the
postnoon (downward field-aligned current in the prenoon) and enhancing (weakening)
the net upward current in the region. At this point, the upward field-aligned current
extends from the prenoon sector to the postnoon sector [47]. According to the ionospheric
convection diagram, the convective vortex tilts towards the dusk side. When IMF By
is positive, the convective vortex tilts towards the dawn side [48–51]. In Figure 6, the
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inversion of the high-incidence area at the prenoon or postnoon region may be related to
the ionospheric convection.

In the southward direction of IMF, the magnetic reconnection on the dayside is en-
hanced, and the latitude is lower than that in the northward direction. The enhanced
precipitation of the boundary layer on the dayside leads to the enhancement of ionospheric
ionization and accelerates the upward movement of ions in the ionosphere [52]. However,
it can be seen from Figure 7 that the incidence in the low-latitude region increases signif-
icantly when IMF is southward, but the incidence in MLAT region above 80◦ is greater
when IMF is northward. The possible reason is that the increase in the upflow velocity in
the high-latitude region does not exceed 200 m/s when IMF is southward.

5. Conclusions

Based on the observations of particle precipitation and ion drift from the DMSP
F13 in January and July 2005, the ionospheric ion upflows in dayside auroral oval can
be divided into five types according to the velocity of ion upflows and the spectrum
characteristics of auroral particle precipitation: (1) Type A: The upflow velocity has obvious
peak interval, and the whole peak interval should have obvious single and continuous
electron acceleration structure; (2) Type B: The upflow velocity has an obvious peak interval,
corresponding to multiple and scattered electron acceleration structure; (3) Type C: The
upflow velocity has an obvious peak interval, but only the ascending or descending
segment corresponds to the structure of electron acceleration; (4) Type D: the upflow
velocity corresponds to the structure of electron acceleration, but the velocity has no
obvious change trend or complete peak interval; (5) Type E: the upflow velocity does not
correspond to the structure of electron acceleration. The distribution characteristics of all
kinds of ion upflows are analyzed statistically at the same time. The results show that, with
the changes of geomagnetic activity, interplanetary magnetic field and seasons, there are
significant differences in the distribution characteristics for different types of ion upflows.
The results are summarized as follows:

(1) The incidence of ion upflows in winter is higher than that in summer. Type A–D
have the highest occurrence at MLAT range of 70–80◦, which is 3–6 times of the total
occurrence of other latitude ranges, and mainly appear in dayside regions of BPS,
LLBL, Cusp and mantle. Type E have high incidence at MLAT range above 65◦, and
mainly appear in dayside regions of CPS, BPS and LLBL. The region of Cusp mainly
contains type A and D. Type B and C mainly appear in LLBL and BPS. The region of
CPS mainly contains type E. In January, all kinds of ion upflows mainly occur on the
dawn and dusk side, and the incidence on the dawn side is higher than that on the
dusk side, showing obvious “dawn–dusk asymmetry”. While in July, all kinds of ion
upflows mainly occur around magnetic noon, with a symmetric distribution centered
at the magnetic noon.

(2) With the enhancement of geomagnetic activity, the main upflow region of all kinds of
events expand to the lower latitude centered on the region of the quiet geomagnetic
activity. During days with moderate geomagnetic activity, the incidence increases
significantly. When Bx < 0, the incidence increases significantly at MLAT region
below 70◦, as well as the regions of 0600–0900 MLT and 1500–1800 MLT. When the
direction of By changes, the occurrence of all kinds of ion upflows shows obvious
high-incidence area reverse at the prenoon or postnoon region. When Bz < 0, the
incidence increases significantly at MLAT region below 75◦.

(3) Type A ion upflow has the highest velocity of ion upflows, then is type E, and type D
is the lowest. The average velocity of ion upflows in winter is significantly higher than
that in summer. At MLAT range of 70–80◦, the velocity of all kinds of ion upflows
decrease with the increase of geomagnetic activity in January, while increase with the
increase of geomagnetic activity in July.
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