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Abstract: The standard ΛCDM model, despite its agreement with observational data, still has some
issues unaddressed, such as the problem of initial singularity. Solving that problem usually requires
modifications of general relativity. However, there appeared the Hořava–Lifshitz (HL) theory of
gravity, in which equations governing cosmological evolution include a new term scaling similarly
as the dark radiation term in the Friedmann equations, enabling a bounce of the universe instead
of initial singularity. This review describes past works on the stability of such a bounce in different
formulations of HL theory, an initial detailed balance scenario, and further projectable versions
containing higher than quadratic terms to the original action.
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1. Introduction

Classical general relativity (GR), apart from its simple beauty and symmetry, has
also been strongly confirmed in several experimental tests. However, it does not explain
many issues such as dark matter or space-time singularities, including the initial one in
cosmology and those inside black holes. In order to answer these issues, there have been
many attempts to modify GR both at the classical and quantum level. Specifically, the
quantisation of GR cosmology was supposed to resolve the initial singularity problem.

Attempts to quantise gravity could be divided into two categories. One category in-
volved assuming the classical theory of gravity and quantising it in various manners, with
the first attempts performed via the covariant quantum gravity. In that classical approach,
one repeats the method that was successful in quantising electrodynamics, namely consid-
ering the path integral of the Hilbert–Einstein action and then calculating the perturbation
of the metric around a background one. The obtained equations, unlike in electrodynamics,
are non-renormalizable in higher energies. Canonical quantum gravity considers the ADM
(3 + 1)-decomposition of space-time and the quantisation of the constraints obtained from
the Hamiltonian. Other attempts have included sophisticated theories such as string theory
and loop quantum gravity. These theories manage to solve some problems (such as the
cosmological singularity [1]), but they are difficult to phenomenologically test [2,3]. The
author of the present paper and colleagues used a combination of coherent states and Weyl
quantisation in order to resolve an initial singularity problem; however, at this moment,
the obtained models are difficult to validate by observational data [4].

Although there is still no full theory of quantum gravity that has been developed,
it is supposed to manifest beyond a characteristic energy scale for quantum gravity
EPl =

√
h̄c5/G built in terms of the speed of light c, the gravitational constant G, and

Planck’s constant h̄. Therefore, there is the second research direction, which aims to con-
struct a modified version of GR with an improved UV behaviour. General relativity, after
many tests performed, seems to be consistent with all current observations. This makes it a
very good IR limit of a potential quantum gravity model. Some proposals have been made
for UV completions of general relativity in the past [5,6]. They have one thing in common,
namely the existence of some cutoff energy scale beyond which quantum effects could be
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detected, specially for a cutoff energy in the range of TeV. The widely discussed recent
proposal is Hořava gravity, which is a proposal of a UV complete theory of gravity. It seems
to be renormalizable at high energies, which makes it a candidate for a quantum gravity
model [7,8]. The action of this theory contains additional higher order spatial derivatives,
and therefore, the theory loses the full diffeomorphism invariance, keeping the (1 + 3)
foliation preserving diffeomorphism. Moreover, there is a UV fixed point in this gravity
model where there is an anisotropic Lifshitz scaling between time and space. Therefore, the
resulting theory is called Hořava–Lifshitz (HL) gravity.

Significant work has been carried out on this theory examining different aspects
and properties [9–22]. Many studies were devoted to cosmological solutions [12,19,23],
including quantum cosmological ones [1,24–29], braneworlds, and dark radiation [12,21].
Hořava–Lifshitz cosmology obtained a novel feature enabling the existence of bounce
instead of the initial singularity predicted by classical GR. There has also been other
research focused on finding specific solutions, including black holes and their properties,
and many works devoted to phenomenological aspects both astrophysical and concerning
dark matter.

A derivation of Hořava–Lifshitz cosmology [12,19,23] made via varying-action written
Friedmann–Robertson–Walker space-time metrics resulted in equations analogous to the
standard Friedmann ones. These equations contain a new term that scales similarly as
dark radiation [12,19,21], i.e., ∼1/a4 (where a is a scale factor) and provides a negative
contribution to energy density. This feature enables obtaining non-singular cosmological
evolution, resolving the initial singularity problem [14,21,30]. Such a possibility not only
results in avoiding the initial singularity but may have other consequences for potential
histories of the universe, such as the scenario of contraction from an infinite size connected
by a bounce to expansion to infinite size again or eternal cycles of a similar scenario.

Despite many promises made by this modified theory of gravity, it seems that it
contains instabilities and pathologies in different formulations (see, e.g., [22,31–33]). The
original Hořava formulation suffers from many problems: the existence of ghost instabilities
and strong coupling at IR [10,34], the appearance of a term that violates parity [22], very
large values and negative signs of the cosmological constant [35,36], and issues with power-
counting renormalisation of the propagation of the scalar mode [13,37]. Some of these
problems might be solved by performing an analytic continuation of the parameters of
the theory [20].

In the original Hořava formulation, it is assumed via the so-called detailed balance con-
dition that a potential part of the action is derived from the so-called superpotential, which
limits the big number of its terms and corresponding independent couplings. Another
imposed condition is the demand of projectability, used in a standard cosmology. It requires
that lapse function N depends only on time N = N(t). It might seem that this condition is
too strict, but on the other hand, it seems that the non-projectable version of Hořava gravity
results in a serious strong coupling problem ([34]) and does not possess a valid GR limit at
IR. However, some authors [35,38] claim the opposite, proposing adding additional terms
to the superpotential (not to the action, thus still keeping detailed balance or eventually
softly breaking it) and relaxing projectability. Nonetheless, subsequent works demonstrated
that it caused problems with the scalar mode power-counting renormalizability.

One of the simplest models with the detailed balance condition relaxed is the Sotiriou–
Visser–Weinfurtner (SVW) generalisation [22]. This version of HL gravity assumes a
gravitational action containing terms not only quadratic in curvature but also cubic, as
was suggested already in [12,19]. This model still maintains the projectability condition.
Generalised Friedmann equations obtained from varying such an action contain not only a
dark radiation term ∼1/a4 but also terms scaling with the ∼1/a6 term. These new terms,
although negligible at large values of a, become dominating at small ones and might modify
or cancel bounce solutions. Specifically, as it has the opposite sign as the 1/a4 term, it may
compensate for the dark radiation term at small scales and result in singular solutions. A
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similar scenario arrives in the HL gravity with the softly broken detailed balance condition
and negative spatial curvature [39].

Nonetheless, the issue of the initial singularity still remains one of the key questions of
early universe cosmology. The possibility that it might be avoided in a modified gravity and
replaced by a bounce is a very promising feature. In this review, we are going to present the
result of the research [14,15] performed via phase portrait techniques on the occurrence and
stability of the bounce in the two simplest formulations of HL cosmology: the original one
with the imposed detailed balance (DB) condition and the beyond detailed balance (BDB)
formulation relaxing this condition. As additional terms in analogs of Friedman equations
are proportional to the curvature parameter K = {−1, 0, 1}, only non-flat cosmologies with
K = ±1 allow the existence of a bounce and the existence of non-singular solutions.

The paper [14] was our first attempt at analysing the possibilities of a cosmological
bounce in the original formulation of the theory. The matter sector was described there
in terms of a scalar field with a potential given by a quadratic power of that field. How-
ever, that work included only a simplified version of the theory with either a vanishing
cosmological constant Λ or an HL universe with a non-zero Λ in the region of a small scale
factor a.

A more general approach that is easier to fit with observational data is the hydrody-
namical approach used in [15], where the matter sector is described in terms of the density
ρ and pressure p. In the latter work, it was assumed that w, providing the relation between
density and pressure in the equation of state, is constant, which is at some level an ideali-
sation and simplification. At the moment, we do not have the history of the HL universe
constructed in a similar way as in the standard ΛCDM model, where we have phases and
epochs containing different matter or radiation sectors. Therefore, as we still have a limited
understanding on the physical aspects of the theory and its parameters, current research
rather describes different analytical possibilities, not some exact physical solutions.

It is important to mention that currently, HL theory and its extensions are not ruled out
observationally (although there are tight bounds on some parameters [40]); thus, further
observational constraints could shed new light on different specific scenarios or on the
whole model, providing a better justification for deeper theoretical research. Several papers
have placed bounds on different regions of the Hořava–Lifshitz framework, for example,
using cosmological data [16], binary pulsars [41,42], and in the context of dark energy [43].
This has also occurred [18] in the effective field theory formalism of the the extended
version of Hořava theory [31].

In [44,45], we investigated the same two basic Hořava–Lifshitz scenarios described
earlier in the Introduction as a background theory for further numerical calculations.
These calculations were devoted to fit observational data to two analogs of the Friedmann
equations that arise in the mentioned HL scenarios. We did not limit our considerations to
a flat model but left the curvature density parameter as a free parameter. In those papers,
we provided improved observational constraints based on the recent cosmological data set
from the cosmic microwave background (Planck CMB) [46], expansion rates of elliptical
and lenticular galaxies [47], JLA compilation (joint light-curve analysis) data for Type Ia
supernovae (SneIa) [48], Baryon acoustic pscillations (BAO) [49–51], and priors on the
Hubble parameter [52].

Consequently, this review, on the one hand, presents our analytical studies of an HL
universe aimed towards the possible existence of Big Bounce. On the other hand, we
discuss the analytically obtained conditions on HL cosmology parameters that lead to
the bounce and its corresponding observational constraints arrived at in our mentioned
papers [44,45].

This paper is organised as follows: we first give a brief overview of HL cosmology
in both scenarios under consideration in Section 2. In Section 3, the possibility of bounce
in both formulations is discussed. Section 4 contains a derivation and description of the
phase portraits of the HL cosmology with the imposed condition of detailed balance, while
in Section 5, this condition is released. Section 6 contains a summary of results on the
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possibility of a bounce in HL cosmology. In Section 7, we discuss the possibility of a
bounce, taking into account observational constraints, and present the limitation of the
underlying theory.

2. Hořava–Lifshitz Cosmology

The main obstacle in quantising gravity is that general relativity in its classical formu-
lation is non-renormalisable. This might be visualised by expanding some quantity F with
respect to the gravitational constant [33] as follows:

F =
∞

∑
n=0

an

(
GN E2

)n
. (1)

Here, E is the energy of the system, an denotes a numerical coefficient, and GN is the
gravitational coupling constant. Therefore, E2 ≥ G−1 and the expansion above diverges.
Consequently, as demonstrated, general relativity is not perturbatively renormalisable in
the high energy regimes.

There have been many studies pointing out that the ultraviolet behaviour of gen-
eral relativity might be improved by including higher-order derivatives in the standard
gravitational metric. The latter is the Einstein–Hilbert action:

S =
∫

d4x
√

gR, (2)

where d4x denotes the volume element of space-time, g is its metric matrix’s determinant,
and R is a scalar curvature. Including-higher order terms of the derivatives of the metric
provides the following action:

S =
∫

d4x
√

g(R + f (RµνRµν)). (3)

The additional terms, containing different derivatives of R, Rµν, etc., change the
graviton propagator from 1/k2 into 1/(k2 − GNk4) [7,8]. The propagator part proportional
to k−4 cancels the ultraviolet divergence. However, the resulting theory has time derivatives
ofO > 2 and is therefore non-unitary. Moreover, it possesses a spin-2 ghost with a non-zero
mass [33] and derived form for which action field equations are of the fourth order.

The novel idea of Hořava [7] was to construct a higher-order theory of gravity breaking
the Lorentz invariance in the ultraviolet range. In his theory, only the spatial derivatives
are of O > 2, which evaded the ghost. However, it is necessary that any theory of gravity
should be consistent with all current experiments that have not detected any significant
violation of Lorentz invariance. Thus, it is necessary to restore the Lorentz invariance in
the infrared limit. In order to overcome this problem, Hořava proposed an anisotropic
scaling of space and time at high-UV energies, which is known as Lifshitz scaling. In a
4-dimensional space-time, this scaling takes the form:

t→ b−zt, xi → b−1xi, (4)

where i = 1, 2, 3, and z is a critical exponent. Lorentz invariance is restored when z = 1,
but the power-counting renormalizability demands z ≥ 3 [33], so usually z = 3 is assumed.
Therefore, the resulting theory is called Hořava–Lifshitz (HL) gravity. Lorentz symmetry
is here broken down to transformations t → ξ0(t), xi → ξ i(t, xk), preserving the spatial
diffeomorphisms unlike the full space-time diffeomorphism invariance of GR. Thus, such
a theory acquires a symmetry, preserving a space-time foliation [7,33], where on each
constant time hypersurface, there are allowed arbitrary changes of the spatial coordinates.

Preservation of a space-time foliation and anisotropic scaling between time and space
and time introduces the ADM (1 + 3)decomposition of the space-time. The standard ADM
metrics in a preferred foliation and with a (−+++) signature are as follows:
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ds2 = −N2dt2 + gij(dxi + Nidt)(dxj + N jdt). (5)

The dynamics are now described in terms of the lapse function N, the shift vector Ni,
and the spatial metric gij (i, j = 1, 2, 3). The most general action for such theory can be
written as:

S =
∫

d3xdt N
√

g
[
KijKij − λK2 − V(gij)

]
. (6)

Here, g denotes the determinant of the spatial metric gij, λ is a dimensionless running
coupling constant, V is a potential term, and K is a trace of the extrinsic curvature of the
spatial 3-dimensional hypersurface Kij:

Kij =
1

2N
(

ġij −∇i Nj −∇jNi
)
. (7)

An overdot denotes a derivative with respect to the time coordinate t. The trace of
Kij is K. The potential V is invariant only under three-dimensional diffeomorphisms [31]
and depends only on the spatial metric and its (spatial) derivatives. Thus, it contains only
operators constructed from the spatial metric gij and of dimension 4 and 6.

2.1. Detailed Balance

As the action (6) is very complicated, Hořava [7,32,35] proposed to impose an addi-
tional condition, the so-called detailed balance. It assumes that V could be derived from a
superpotential W [7,32,35]:

V = EijGijklEkl , Eij =
1
√

g
δW
δgij

, (8)

and
G ijkl =

1
2

(
gikgjl + gil gjk

)
− λgijgkl . (9)

By carrying out an analytic continuation (e.g., [20]) of the two constant parameters
ω and µ, we obtain the action for Hořava–Lifshitz gravity in the detailed balance condi-
tion [32], which reads as

Sdb =
∫

dt d3x
√

gN

[
2
κ2

(
KijKij − λK2

)
+

κ2

2ω4 CijCij − κ2µ

2ω2
εijk
√

g
Ril∇jRl

k

+
κ2µ2

8
RijRij +

κ2µ2

8(1− 3λ)

(
1− 4λ

4
R2 + ΛR− 3Λ2

)]
,

(10)

where Cij is the Cotton tensor:

Cij = εikl∇k

(
Rj

l −
1
4

Rδ
j
l

)
, (11)

εikl denotes the totally antisymmetric tensor. The parameters κ, ω, and µ arriving in the
theory have mass dimensions of, respectively, −1, 0, and 1. The analytic continuation
mentioned above reads as µ 7→ iµ and ω2 7→ −iω2, and it enables obtaining the positive
values of the cosmological constant Λ as predicted by current observational results in the
low-energy regime.

It is expected that action (10) reduces to the Einstein–Hilbert one in the IR limit of the
theory. This is possible if the speed of light c and gravitational constant G correspond to
HL parameters as follows:

G =
κ2

32πc
, c =

κ4µ2Λ
8(3λ− 1)2 . (12)
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The coupling constant λ present in the action (10) is dimensionless. It runs with energy
and flows to the three infrared (IR) fixed points ([7]): λ = 1/3, λ = 1, or λ = ∞. However,
some of those values seem unphysical. In the region 1 > λ > 1/3, ghost instabilities
appear in the IR limit of the theory [53]. The attempt to solve this problem [20] resulted in
instabilities re-emerging at the other energy region, in the UV. Thus, the most physically
interesting case is the regime λ ≥ 1 that allows for a possible flow towards GR, where
λ = 1. Region λ ≤ 1/3, on the other hand, is disconnected from λ = 1 and therefore cannot
be included in realistic physical considerations.

In order to obtain a cosmological model, it is necessary to populate the universe
with matter (and radiation). The simplest method would be to model the matter sector
by assuming it is described by a scalar field ϕ with a quadratic potential V(ϕ) = 1

2 m2 ϕ2.
However, a more realistic approach is to apply a hydrodynamic approximation where
matter is described by two quantities p and ρ, which are, respectively, pressure and energy
density and fulfil the continuity equation ρ̇ + 3H(ρ + p) = 0.

To derive equations of HL cosmology, one uses the projectability condition N = N(t) [7],
with the spatial part of the metrics being the standard FLRW line element: gij = a2(t)γij,
Ni = 0, where γij denotes a maximally symmetric metric with constant curvature:

γijdxidxj =
dr2

1− Kr2 + r2(dθ2 + sin2 θdϕ2), (13)

where values K = {−1, 0, 1} correspond, respectively, to closed, flat, and open universes.
This background metric implies that

Cij = 0 , Rij =
2K
a2 gij , Kij =

H
N

gij , (14)

where H ≡ ȧ/a denotes the Hubble parameter.
On this background, the gravitational action (10) takes the following form :

SFRW =
∫

dt d3x Na3
{

3(1− 3λ)

2κ2
H2

N2 +
3κ2µ2Λ

4(1− 3λ)

(
K
a2 −

Λ
3

)
− κ2µ2

8(1− 3λ)

K2

a4

}
. (15)

In order to obtain equations of motion on a cosmological background, one needs to
vary the action (15) with respect to N and a. Only after that can the lapse be set to one,
N = 1, and terms with density ρ and pressure p are added. This procedure provides the
analogs to the Friedmann equations for the projectable Hořava–Lifshitz cosmology with
the imposed detailed-balance condition:

H2 =
κ2ρ

6(3λ− 1)
± κ4µ2

8(3λ− 1)2

(
KΛ
a2 −

Λ2

2
− K2

2a4

)
, (16)

Ḣ = − κ2(ρ + p)
4(3λ− 1)

∓ κ4µ2

8(3λ− 1)2

(
KΛ
a2 +

K2

4a4

)
, (17)

together with the continuity equation:

ρ̇ + 3H(ρ + p) = 0. (18)

In the equations above, there are two signs before the terms with Λ; namely, the upper
one corresponds to the Λ < 0 case, while the lower one describes the analytic continuation
µ 7→ iµ providing a positive Λ.

Some terms in the above equations which scale as a−4 are similar to the dark energy
expressions; therefore, the parameters of energy density ρde and pressure density pde are
interpreted as dark energy parameters:
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ρde|db :=
3κ2µ2K2

8(3λ− 1)a4 +
3κ2µ2Λ2

8(3λ− 1)
, (19)

pde|db :=
κ2µ2K2

8(3λ− 1)a4 −
3κ2µ2Λ2

8(3λ− 1)
. (20)

We require that Equations (16) and (17) coincide with the standard Friedmann equa-
tions. Thus, we can identify the following:

c =
κ2µ

4

√
Λ

1− 3λ
, G =

κ2c
32π

, ΛE = − 3κ4µ2

3λ− 1
Λ2

32
=

3c2

2
Λ, (21)

respectively, as well as µ2Λ = 1/32π2G2 and λ = 1 (which is an IR fixed point). We
demand a real value of the speed of light, c; therefore, the cosmological constant Λ has to be
negative for λ > 1/3 and positive for λ < 1/3. In order to obtain a positive cosmological
constant Λ, as suggested by observations, it is necessary to perform in (10) an analytic
complex continuation of constant parameters µ and ω as follows µ 7→ iµ and ω2 7→ −iω2.
On the level of equations for Hořava–Lifshitz cosmology, varying λ-parameter in the range
[1, ∞) results in the running of the speed of light but does not change the structure of
Equations (16) and (17).

When we substitute the equation of state p = wρ and the above expressions linking
physical constants and HL parameters to (16) and (17), we obtain the following equations:

H2 =
2

3λ− 1

[
ρ

3
±
(

ΛE
3
− K

a2 +
3

4ΛE

K2

a4

)]
(22)

Ḣ =
2

3λ− 1

[
− (1 + w)

2
ρ±

(
K
a2 −

3
2ΛE

K2

a4

)]
. (23)

2.2. Beyond Detailed Balance

The gravitational action (10) contains terms up to quadratic in the curvature. However,
a more general renormalizable theory could also contain cubic terms, and there is not
an a priori reason to keep only quadratic terms ([12,19,33]). Thus, Sotiriou, Visser, and
Weinfurtner ([32]) built a projectable theory as the original Hořava theory but without
imposing the detailed balance condition in the action.

This formulation led to Friedmann equations with an additional term∼1/a6, moreover
with additional and uncoupled coefficients:

H2 =
2

(3λ− 1)

(
ρ

3
+ σ1 + σ2

K
a2 + σ3

K2

a4 + σ4
K
a6

)
, (24)

Ḣ =
2

(3λ− 1)

(
− p

2
− ρ

2
− σ2

K
a2 − 2σ3

K2

a4 − 3σ4
K
a6

)
. (25)

In order to coincide with the Friedmann equations in the IR limit λ = 1 and for large
a, when terms proportional to 1/a4 and to 1/a6 become negligibly small, one has to set
σ1 = ΛE/3 and σ2 = −1. However, values of the constants σ3 and σ4 are, at this stage,
arbitrary. In this way, we obtain the following equations:

H2 =
2

(3λ− 1)

(
ρ

3
+

ΛE
3
− K

a2 + σ3
K2

a4 + σ4
K
a6

)
, (26)

Ḣ =
2

(3λ− 1)

(
−ρ(1 + w)

2
+

K
a2 − 2σ3

K2

a4 − 3σ4
K
a6

)
, (27)

We can observe new terms in the above analogs of Friedmann equations proportional
to 1/a6. They mimic stiff matter, such that ρ = p (w = 1), which scales similarly to
ρstiff ∼ 1/a6. These terms are negligibly small at large scales but may play a significant role
at small values of a scale parameter, thus changing the dynamics of the universe around
initial singularity or a bounce.
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3. Existence of Bounce

Hořava–Lifshitz cosmological equations contain additional terms proportional to a−4

(DB) and to a−6 (BDB) that introduce the possibility of a cosmological bounce, namely, a
scenario in which contraction of the universe stops and reverses to expansion (or in the
opposite direction). In a DB scenario, from the form of Equation (16), it follows that it is
possible that H = 0. When this condition is fulfilled at some moment of time, the realisation
of the bounce is possible (but not necessary; for that, we also need Ḣ 6= 0. In the case
λ = 1 [12], the bounce may happen in a non-empty Universe equipped with matter at the
critical time t∗, a = a∗, when the critical energy density reaches the following value:

ρ = ρ∗ =
12
κ2

(
K
a2∗

+
ΛE
3

+
κ4µ2

64
K2

a4∗

)
, (28)

This value is determined by the values of couplings κ and µ.
Additionally, a continuity equation implies that at the bounce, Ḣ > 0. Therefore, when

the condition H = 0 is fulfilled, we also have a sufficient condition for the existence of a
bounce Ḣ 6= 0. Ḣ > 0 is only possible as a transition from a contracting to an expanding
phase, but not the reverse. Moreover, there is another condition for a realisation bounce [30]
that requires that ( ρ

12 − p) > 0 and the energy density of regular matter scales less quickly
than dark matter terms.

Near the bounce—for small values of the parameter a—the dominating terms in the
Friedmann Equations (22) and (23) are the terms scaling as a−4, while other terms become
insignificant. Particularly, H2, Ḣ, and ρ scale as a−3(1+w), where w is a constant parameter
in the equation of state p = wρ. Subsequently, if w > − 1

3 , the density term dominates over
the curvature term ∼1/a2.

In the BDB scenario, bounce might happen at the critical density:

ρ∗ = −ΛE + 3
K
a2∗
− 3

σ3K2

a4∗
− 3σ4K

a6∗
. (29)

For a flat universe and positive cosmological constant, bounce is not positive, as the
resulting critical density becomes negative.

4. Bounce Stability in the Detailed Balance Formulation

We are mainly interested in the possibility of the appearance of a bounce that could be
given by dynamics of variables a and H. From Equation (22), we might determine ρ and
then insert its formula into (23). This way, we obtain two systems, with one containing the
formula for density and its derivative via the continuity Equation (22) but still dependent
on a and H. The second system is independent and consists of two equations describing
the evolution of a and H.

Specifically, Equation (22) provides the following expression for ρ:

ρ =
3(3λ− 1)

2
H2 ∓

(
ΛE − 3

K
a2 +

9
4ΛE

K2

a4

)
. (30)

This expression substituted in (23) results in

Ḣ =
±1

3λ− 1

[
(1 + w)ΛE − (3w + 1)

K
a2 +

3(3w− 1)
4ΛE

K2

a4

]
− 3

2
(1 + w)H2. (31)

Adding the the definition of the Hubble parameter:

ȧ = aH, (32)

we have a two dimensional dynamical system.
The set of Equations (31) and (32) is difficult to solve analytically. However, we are

interested not in detailed solutions but in the qualitative analysis. For this purpose, we
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use the method of the phase portraits, where we search for critical points and analyse their
character. These points are locations where the derivatives of all the dynamic variables,
in our case when the r.h.s. of (31) and (32), vanish. What we obtain are the only points
where phase trajectories could start, end, or intersect. Moreover, they can also appear in
infinity. In this case, a suitable coordinate transformation, the so-called Poincaré projection,
is used to project the complete phase space onto a compact region. The nature of these
points, both finite and infinite, is given by the properties of the Jacobian matrix of the
linearised equations at those points. All that information provides a qualitative analysis of
the dynamical system.

The method of finding critical points consists of setting all right-hand sides of dynam-
ical equations to zero, thus finding points where the derivatives of dynamical variables
vanish. In the case of two equations, (31) and (32), the corresponding solutions are the two
following P1 and P2 in the phase-space (a, H):

P1 : a2 =
3K

2ΛE
, H = 0, (33)

P2 : a2 =
(3w− 1)K
(1 + w)2ΛE

, H = 0. (34)

These two points exist when the values of a obtained via the square root of the
expression on the right-hand side of the above equations are real and nonnegative. Thus
the point P1 exists if K/ΛE > 0 if we assume a positive cosmological constant, therefore,
only for K > 0. Point P2 exists when w > 1/3 and K/ΛE > 0 or w < 1/3 and K/ΛE < 0.
Thus, we have two critical points existing if the equation of state parameter w > 1/3.
Moreover, they are both finite, unless w = −1, when P2 blows to infinity. As mentioned
above, due to Ḣ > 0, both points represent a bouncing solution.

In order to complete the analysis, the stability properties of the critical points are
needed (rather informally, a stable critical point x0 is one where, given any small distance
ε to x0 and any initial condition within a radius ρ < ε around x0, the trajectory of the
system shall not go further away from x0 than ε. An unstable critical point is the point
which is not stable). They are determined by the eigenvalues of the Jacobian A of the
system (31) and (32). Eigenvalues of A with non-zero real parts indicate hyperbolic points.
They include sources (unstable) with positive real parts, saddles for real parts of opposite
signs, and sinks (stable) corresponding to negative real parts. Critical points at which all
the eigenvalues have real parts different from zero are called hyperbolic. Among them,
one can distinguish sources (unstable) with positive real parts, saddles with real parts of
different signs, and sinks (stable) for negative real parts. If at least one eigenvalue has a
real part equal to zero it is then called a non-hyperbolic critical point. For such points, it is
not possible to obtain conclusive information about the stability from the Jacobian matrix
and other tools; e.g., numerical simulation [54] should be then used.

In the case of (31) and (32), the eigenvalues of A at P1 are both imaginary, and it is
a center for all the values of the parameters. The character of P2 is more complicated
and depends on the values of ΛE, K and w. Thus, P2 is a center when K/ΛE < 0 and
−1 ≤ w < 1/3, with a special subcase for w = −1 that being so it becomes a linear center,
therefore becoming a center with only one eigenvector. Otherwise, it becomes a saddle and
is thus without a bouncing possibility.

To obtain a full picture of the dynamics of the universe, the information about critical
points that occur at infinity is also necessary. For this purpose, the so-called Poincaré
projection [55,56] is used. It projects the whole infinite phase space (a, H) onto a compact
region. Specifically, we introduce the new coordinates (ã, H̃), which are written in polar
coordinates r, φ: ã = r cos φ and H̃ = r sin φ. Moreover:

a =
r

1− r
cos φ, (35)

H =
r

1− r
sin φ, (36)
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It is also necessary to rescale the time parameter t, which takes infinite values, by
introducing the new time parameter T in a similar way, i.e. dT = dt/(1− r). In such
coordinates, the phase space is now compactified to a sphere of radius one and its interior.
Here, infinity corresponds to r = 1. We have to keep in mind that a scale factor a may take
only nonnegative values, thus actually being a semi-sphere (there is some small difference
in interpreting phase trajectories in the original infinite phase space and in the Poincaré
projected phase space. In the latter, there could be regions in which the parameter ã
increases, although the parameter H̃ is negative, whereas this behaviour is absent in the
former. This is due to the fact that parameters (ã, H̃) are geometric objects without the
same physical meaning as the scale factor a and the Hubble parameter H).

This procedure provides the dynamical equations in terms of r, φ, and their derivatives
with respect to the new time T. At the surface of the sphere, if we limit r = 1, there are
3 solutions P3 = (1, 0), P4 = (1, π/2), P6 = (1,−π/2), written in polar coordinates (r, φ).
These critical points are now hyperbolic unless w = −1, resulting in P4 and P6 being,
respectively, a repelling and an attracting node. For w = −1 points, P4 and P6 are non-
hyperbolic, and numerical simulations provide that they are saddles and also ends of
a separatrice.

The numerical phase portraits are presented in Figure 1, which contains the deformed
phase space scaled to fit on the compactified sphere. We observe that bounce scenarios are
only possible when one of the critical points P1 and P2 exist and is a center. Then, we have
closed orbits around them, and the Universe might go through eternal cycles of expansion
and collapse, connected by a bounce of a finite size, expansion, etc. However, the point P1
describes a less physical bouncing solution with a density ρ = 0. A more interesting case is
when P2 is a center, as the density ρ is non-zero at that point. The special case of w = −1
provides a third bounce scenario around the linear center P2 located now at ∞. In this case,
the universe begins in a static infinite state as H = 0 a = ∞, then contracts to a finite size
and rebounces to a static infinite universe.

P1P2 P3

P4

P6

0.0 0.2 0.4 0.6 0.8 1.0

- 1.0

- 0.5

0.0

0.5

1.0

a~

H~

(a) Two bouncing
solutions

P2 P3

P4

P6

0.0 0.2 0.4 0.6 0.8 1.0

- 1.0

- 0.5

0.0

0.5

1.0

a~

H~

(b) One bouncing
solution

Figure 1. Projected phase space of HL universe [15] in DB condition. Figure (a) is the case of
K/ΛE > 0 and w > 1/3. Figure (b), K/ΛE < 0, and −1 < w < 1/3.

5. Bounce Stability in the beyond Detailed Balance Formulation

In the Sotiriou, Visser, and Weinfurtner formulation, the generalised Friedmann
Equations (26) and (27) contain additional terms ∼1/a6 and uncoupled coefficients.

Solving Equation (26) for ρ provides:

ρ = 3
(3λ− 1)

2
H2 −ΛE − 3

K
a2 − 3

σ3K2

a4 −
3σ4K

a6 . (37)
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Substituting this expression on ρ into (27) and using the equation of state p = wρ
results in

Ḣ =
2

3λ− 1

(
ΛE(1 + w)

2
− K(1 + 3w)

2a2 +
σ3(−1 + 3w)K2

2a4 +
3σ4(1 + w)K

2a6

)
− 3(1 + w)

2
H2. (38)

As in the DB case, supplementing the above equation with the definition of the Hubble
parameter provides the two-dimensional dynamical system.

Again, we search for critical points where ȧ and Ḣ. These points fulfil H = 0 and
obtain the following condition:

ΛE(1 + w)a6 − K(1 + 3w)a4 + σ3(−1 + 3w)K2a2 + 3σ4(−1 + w)K = 0 (39)

This is a bicubic equation, which, in general, possesses quite complicated solutions but
might be simplified in two special cases: namely when w = −1, describing the equation
of state of the cosmological constant, and in the case of radiation described by w = 1/3.
Outside of these two cases, critical points of the system (32) and (38) have the following
coordinates: (ax, 0). Here, a2

x is a root of the cubic equation:

ΛE(1 + w)x3 − K(1 + 3w)x2 + σ3(−1 + 3w)K2x + 3σ4(−1 + w)K = 0. (40)

Such an equation might have zero, one, two, or three real solutions depending on the
sign of its discriminant. Moreover, if they exist, they are either always stable or always
unstable depending on the sign of K/(3λ− 1). Their character depends on the values of ax,
ΛE, σ3, and σ4. The most significant feature of oscillating (and bouncing) solutions in the
SVW formulation is the existence of two centres with a saddle between them (three finite
critical points) for some values of parameters. In a more realistic situation, that includes
a dynamical change of state parameter, so it would be possible to go from one oscillating
bouncing solution to another.

In order to study the stability properties of infinite critical points, one again has to
perform the Poincarè transformation. This leads to similar results as in the detailed balance
scenario. Points at infinity are transformed to the sphere r = 1. Two points at φ = π/2
and at −π/2 are, respectively, the repelling and attracting node, respectively. The point at
φ = 0 is non-hyperbolic.

Figure 2 shows the example of the phase space of a system with three finite critical
points. Here, points S1 and S3 are centres, and a point S2 is a saddle.

S3 S1S2 P3

P4

P6

0.0 0.2 0.4 0.6 0.8 1.0

- 1.0

- 0.5

0.0

0.5

1.0

a~

H~

Figure 2. Projected phase space of the HL universe in beyond detailed balance formulation with
3 critical points existing [15].
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6. Discussion

This paper reviews the research performed on the occurrence and the properties of the
cosmological bounce in different formulations of projectable versions of Hořava–Lifshitz
gravity, with and without a detailed balance condition. The analogs of the Friedmann
equations in both these models contain a term scaling as 1/a4 and similar to dark radiation.
That additional term enables that the Hubble parameter might be H = 0 at some moment
of time. This is a necessary condition for the realisation of the bounce, while an additional
condition Ḣ 6= 0 makes it sufficient. In the Sotiriou, Visser, and Weinfurtner model, there is
an additional term 1/a6 in the analogs of Friedmann equations. This term is of arbitrary
sign, so it can enhance the possibility of a bounce or cancel it.

The biggest difference between the detailed balance theory and its breaking arrives
for small values of a scale parameter a as the SVW gravity term 1/a6 plays role only for
small values of a and becomes insignificant for bigger values. This difference is visible
in the phase portraits of both theories and the number of potential bouncing solutions.
In the original Hořava formulation, there exists one bouncing solution for all values of
parameters, but it corresponds to a density of ρ = 0. For a non-zero ρ = 0, there might
be a bouncing solution if K/ΛE < 0 and −1 ≤ w < 1/3, but for other values of these
parameters, a bounce is not possible.

The SVW HL cosmology is a bit more complicated as there are additional terms in
the analogs of Friedmann equations. There exist bouncing solutions for some values of
parameters of the theory; however, the range of parameters that lead only to singular
solutions is wider than in the detailed balance scenario. One very interesting special case
includes two centres with a saddle between them (corresponding to three finite critical
points). If one takes into account the dynamical change of state parameter, which is a much
more realistic scenario, it might be possible to go from one oscillating solution to another
bouncing solution. The problem is that the existence of such solutions depends on the
values of coupling constants σ3 and σ4, and their physical interpretation still remains an
open question.

Moreover, in both these formulations, bouncing non-singular solutions exist only in the
case of a non-flat universe K 6= 0. In a DB scenario, from the form of Equations (33) and (34),
it follows that for flat cosmologies with K = 0, the bounce happens at a = 0 unless w = −1
(stiff matter) or ΛE = 0. In a zero-size universe, the metric becomes singular, and we cannot
avoid an initial singularity. A similar situation happens in NDB. When we substitute K = 0
into Equation (39), we then obtain Equation ΛE(1 + w)a6 = 0, providing the values of a for
which the bounce happens. Again, unless w = −1 or ΛE = 0, the only solution is a = 0.
Therefore, for most realistic values of w and ΛE, the only non-singular bouncing solutions
arrive in non-flat cosmologies.

A specific subcase of described solutions is presented in [14] where, for the purpose of
illustration, it was assumed that matter in the pre-bounce epoch is described by a scalar
field ϕ with a quadratic potential. That paper describes the dynamics of a Hořava–Lifshitz
universe in two simplified models: one with a vanishing cosmological constant ΛE and
the other as an HL universe with a non-zero ΛE but in the region of a small scale factor
a. These two limitations result from performing some simplifications in the equation of
motion, which are valid only in the regime of a small a or in the case of Λ = 0.

However, even in those simplified settings, it was possible to answer the question of
possible scenarios realising a bounce and whether it is generic for the theory or not. We
have found stable solutions leading to a Big Crunch or starting at a Big Bounce, both staying
within the regime of a small a. Compared to results with the standard cosmology [56], we
observed that in the HL formulation, there were additional critical points allowing the
existence of a bounce and enabling new possible families of trajectories.
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7. Conclusions

The obtained cosmological results presented here are promising and suggest there
is a possibility to replace the initial cosmological singularity of GR by finite bouncing
solutions. However, one must also consider that there are many problems and contradicting
statements in the different formulations and extensions of HL-type theories. Aside from
that aspect, there are also observational bounds on the existence of the Hořava–Lifshitz
gravity and the values of its constants and parameters.

At present, HL-type theories, including the original one and its extensions, are not yet
ruled out by observational data. However, there now are tight bounds on some parameters
of the theory [40] from the binary neutron star merger GW170817 [57]. Therefore, it is
possible that further observational data might either rule out some specific scenarios or the
whole model. It is also possible that some agreement with observations could provide a
better justification for additional theoretical research, as it is still hoped that HL gravity
could offer a promising cosmological scenario without an initial singularity and solve
some shortcomings of classical GR, such as non-renormalizability and thus problems
with quantisation.

There are several observational bounds on different regions of the Hořava–Lifshitz
framework, e.g., using data from binary pulsars [41,42], using general cosmological
data [16], and also bounds in the context of dark energy [43]. In the context of dark
matter and dark energy, there are also bounds on general Lorentz violations [9,58]. There is
also quite recent research performed in the effective field theory formalism [18] of the ex-
tension HL gravity [31]. However, this analysis is reduced to a flat background space-time,
which limits the overall number of parameters.

As was presented above, bouncing non-singular solutions in two basic HL cosmo-
logical scenarios exist only in the case of a non-flat universe K 6= 0. Therefore, it is
interesting to compare that condition to observational constraints on the curvature parame-
ter. Particularly, in our papers [44,45], we have placed new bounds on the parameters of
Hořava–Lifshitz cosmology in its projectable version with and without imposing detailed
balance conditions. We found very interesting results on spatial curvature. Namely, in [44],
the original HL model was well fitted with a non-zero spatial curvature with accuracy to
more than 3σ, whereas when we relaxed the detailed balance condition, we again obtained
a positive non-zero spatial curvature at 1σ accuracy. In [45]. we used a larger and more
updated dataset with additional high-energy sources such as quasars and gamma-ray
bursts. We obtained that the HL universe both in the DB scenario and the NDB scenario is
fitted with a negative curvature parameter at 1σ. On the other hand, similar calculations
were made for ΛCDM model, such as in [59], where the negative curvature parameter was
obtained from Planck data, weak galaxy lensing, and SH0ES (supernovae and H0 for the
equation of state) local cosmic distance ladder measurements of the expansion rate.

As all those calculations included BAOs, therefore, there is a need for a further investi-
gation of the curvature parameter, which could possibly finally exclude some of the HL
models or zero-curvature ΛCDM models. Regardless, those results seem to be fascinating
in view of future observations and also somehow demonstrate why an analysis limited to
zero spatial curvature is somehow limited. Still, non-singular bouncing solutions in an HL
universe appear only for non-zero spatial curvatures, so these two topics are related.

We have to take into account that most obtained bounds on the parameters of the
HL cosmology are similar to those in the ΛCDM model. Of course, the ΛCDM model
still has fewer parameters, and from this point of view should be preferred; it also fits the
data well. However, one has to also bear in mind the theoretical aspects of Hořava gravity,
which make it a good candidate for an ultraviolet complete theory of gravity. There are also
several implications such as the possible resolution of the initial cosmological singularity,
so there are still many reasons to keep investigating this model and its extensions.
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Abbreviations
The following abbreviations are used in this manuscript:

GR General Relativity
SVW Sotiriou-Visser-Weinfurtner
HL Hořava-Lifshitz
ΛCDM Lambda cold dark matter
ADM Arnowitt, Deser and Misner
IR Infrared
UV Ultraviolet

References
1. Bojowald, M.; Date, G. Quantum Suppression of the Generic Chaotic Behavior Close to Cosmological Singularities. Phys. Rev.

Lett. 2004, 92, 071302. [CrossRef]
2. Quevedo, F. Is String Phenomenology an Oxymoron? 2016. Available online: http://xxx.lanl.gov/abs/1612.01569 (accessed on

23 March 2023).
3. Girelli, F.; Hinterleitner, F.; Major, S. Loop Quantum Gravity Phenomenology: Linking Loops to Observational Physics. SIGMA

Symmetry Integrability Geom. Methods Appl. 2012, 8, 098. [CrossRef]
4. Bergeron, H.; Czuchry, E.; Gazeau, J.P.; Małkiewicz, P.; Piechocki, W. Singularity avoidance in a quantum model of the Mixmaster

universe. Phys. Rev. D 2015, 92, 124018. [CrossRef]
5. Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R. The Hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 1998,

429, 263–272. [CrossRef]
6. Dvali, G. Black Holes and Large N Species Solution to the Hierarchy Problem. Fortsch. Phys. 2010, 58, 528–536. [CrossRef]
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cosmology to observational constraints. Phys. Dark Univ. 2016, 13, 7–24. [CrossRef]
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radiation. Int. J. Mod. Phys. D 2019, 28, 1950130. [CrossRef]
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