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Abstract: This paper recovers a broad spectrum of optical solitons for the perturbed nonlinear
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1. Introduction

Optical solitons are a research trove in the field of Quantum Optics. One of its
everlasting areas is the study of soliton dynamics through optical fibers and metamaterials,
as well as other forms of waveguide [1–10]. The standard governing model is the familiar
nonlinear Schrödinger’s equation (NLSE) that comes with various forms of self-phase
modulation (SPM) structures. In addition, several forms of perturbation terms are typically
taken into account that are of Hamiltonian as well as non-Hamiltonian type, thus making
the model integrable or non-integrable, accordingly. The model that will be addressed in
the paper today is the NLSE with the parabolic law of nonlinearity that carries a couple of
Hamiltonian perturbations, and thus, the model is rendered integrable. The perturbation
terms stem from intermodal dispersion and self-frequency shift. The integration tool is
the improved extended tanh function approach. This would lead to the retrieval of a full
spectrum of 1-soliton solutions, namely, the bright, dark, and singular solitons. The results
are exhibited after a quick intro to the model and a succinct re-visitation to the integration
algorithm. Also described are the restrictions for the occurrence of such soliton solutions.
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Governing Model

The governing model is NLSE with the parabolic law of SPM, with intermodal disper-
sion and self-frequency shift,

iψt = βψxx + σ|ψ|2ψ + ε|ψ|4ψ + i
[
λψx + µ|ψ|2ψx

]
. (1)

In Equation (1), β is the chromatic dispersion (CD), while SPM comes from σ and ε.
Moreover, x and t, which represent spatial and temporal coordinates, respectively, are the
independent variables, whereas ψ is the dependent variable. The perturbation terms stem
from λ and µ that emerge from intermodal dispersion and self-frequency shift, respectively.
Finally, i =

√
−1.

In recent times, significant works have been published, in which the NLSE is also
examined with cubic-quintic nonlinearities, with some even applying fractional calculus.
See [11–15] and references therein.

2. Improved Extended Tanh-Function Approach (Succinct Recapitulation)

Suppose that we have the following nonlinear evolution equation:

F(u, ut, ux, uxx, uxt, . . .) = 0, (2)

Here, u = u(x, t) is an unknowable function, F is a polynomial in the variable u and
its partial derivatives ut, ux with respect to t, x, in which the highest order derivatives and
nonlinear terms are included.
Step 1 : Use the traveling wave transformation

u(x, t) = U(ξ), ξ = k(x− vt), (3)

where k, v are constants that will be determined later. Then, Equation (2) is now a nonlinear
ordinary differential equation of the type

P
(

U,−kvU′, kU′, k2U′′, ...
)
= 0, (4)

where P is a polynomial in U(ξ) and its total derivatives, while ′ = d
dξ .

Step 2 : We assume that the solution of Equation (2) can be expressed in the form

U(ξ) =
N

∑
i=0

αiΦi +
N

∑
i=1

βiΦ−i, (5)

where Φ satisfies
Φ′ = ε

√
a0 + a1Φ + a2Φ2 + a3Φ3 + a4Φ4, (6)

where ε = ±1. This equation gives various kinds of fundamental solutions [16].
Step 3 : Calculate the positive integer N in Equation (5) by balancing the order of the
highest derivative and the largest power of the nonlinear component in Equation (2).
Step 4 : Substitute (5) into (4), along with (6). As a result of this substitution, we obtain
a polynomial of Φ. By collecting all terms of the same power in this polynomial and
equating them to zero, we have an overdetermined system of algebraic equations that may
be solved by Maple or Mathematica to obtain the unknown parameters k, v, α0, αi, and
βi(i = 1, 2, . . . ). Consequently, we obtain the exact solutions of (2).

3. Application to the Model

The application of the improved extended tanh-function approach to perturbed NLSE
with the parabolic law of nonlinearity structure is hypothesized with the solution structure:

ψ(x, t) = U(ξ)ei(−κx+ωt+φ(ξ)), (7)
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where the wave variable ξ is given by

ξ = k(x− vt). (8)

The soliton speed is given by v, while ω and κ represent the frequency shift and
propagation constant, respectively; they are real parameters.

Plugging (1) into Equation (1) and separating the imaginary and real components

βk2U′′ − βk2Uφ′
2 − k(−2βω + λ + v)Uφ′ +

(
−kµφ′ + µω + σ

)
U3

+(κ + λω− βω2)U + εU5 = 0, (9)

and
2βk2φ′U′ + βk2Uφ′′ + kU′(−2βω + λ + v) + 3kµU2U′ = 0. (10)

Equation (9) may be integrated after being multiplied by U to arrive at

φ′ = − G
βk2U2 +

2βω− λ− v
2βk

− 3µU2

4βk
(11)

where G is an integration constant. Now, substituting Equation (11) in Equation (10) results in

−16G2 + 4kU4
(

k
(

4βκ + λ2 + v2 − 4βvω + 2λv
)
− 2Gµ

)
+ 16β2k4U3U′′ +

8k2U6(2βσ + λµ + µv) + k2U8
(

16βε + 3µ2
)
= 0. (12)

Using the transformation U2 = V, Equation (12) can be written as

g1V4 + g2V3 + g3V2 + g4V + g5 + V′2 = 0, (13)

where 

g1 = 16βε+3µ2

12β2k2 ,

g2 = 2βσ+µ(λ+v)
β2k2 ,

g3 =
k(4β(κ−vω)+(λ+v)2)−2Gµ

β2k3 ,

g4 = 4F, g5 = 4G2

β2k4 ,

(14)

where F is the constant of integration. These newly introduced parameters gj for 1 ≤ j ≤ 5
reduce the ODE to a compact form, as visible in (13). The only purpose of the paper is to
address the integrability of the model to locate its soliton solutions using the algorithm that
is adopted.

Balancing V′2 with V4 in Equation (13) gives N = 1 . Consequently, we reach

V(ξ) = α0 + α1Φ(ξ) +
β1

Φ(ξ)
. (15)

Substituting Equation (15) with the set of Equation (7), collecting all the terms of the
form Φ together, and equating each coefficient to zero yields a set of algebraic equations
which can be solved using some software such as Maple or Mathematica to obtain:
Result (1): If we set a0 = a1 = a3 = 0, we obtain

α0 = −∆1 + g3

2g2
, β1 = 0, g1 =

g2(g3 − ∆1)

4g4
,

g5 =
−2∆1g2

3 + 5∆1g2g4 − 2g3
3 + 7g2g4g3

16g2
2

,

a4 =
α2

1g2(∆1 − g3)

4g4
, a2 =

1
4
(3∆1 − g3), ∆1 =

√
g2

3 − 2g2g4. (16)
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Then, the solution corresponding to (1) are bright soliton solutions with 3∆1 − g3 > 0.

ψ(x, t) =

{
−∆1 + g3

2g2
+

√
g4(g3 − 3∆1)

g2(∆1 − g3)
sech

[
1
2

√
3∆1 − g3(x− vt)

]} 1
2

×ei(κx−ωt+φ(k(x−vt))). (17)

Result (2):
Case (1): If we set a1 = a3 = 0 and a0 =

a2
2

4a4
, we obtain

(i)

α0 = −∆1 + g3

2g2
, β1 = 0, g1 =

g2(g3 − ∆1)

4g4
, g5 =

g4(g3 − ∆1)

4g2
,

a4 =
α2

1g2(∆1 − g3)

4g4
, a2 =

1
4
(3∆1 − g3). (18)

Then, the solution corresponding to (1) are bright soliton solutions with 3∆1 − g3 < 0.

ψ(x, t) =

{
−∆1 + g3

2g2
±

√
− g4(3∆1 − g3)

2g2(∆1 − g3)
tanh

[
1
2

√
−1

2
(3∆1 − g3)(x− vt)

]} 1
2

×ei(κx−ωt+φ(k(x−vt))). (19)

(ii)

α0 = −∆1 + g3

2g2
, α1 = 0, g1 =

g2(g3 − ∆1)

4g4
, g5 =

g4(g3 − ∆1)

4g2
,

a4 =
−2∆1g2

3 + 9∆1g2g4 − 2g3
3 + 3g2g4g3

16β2
1g2

2
, a2 =

1
4
(3∆1 − g3),

∆1 =
√

g2
3 − 2g2g4. (20)

Then, the solution corresponding to (1) are singular soliton solutions, with 3∆1 − g3 > 0.

ψ(x, t) =

{
− ∆1 + g3

2g2
± 1

g2

√
2∆1g2

3 − 9∆1g2g4 + 2g3
3 − 3g2g4g3

2(3∆1 − g3)

× coth

[
1
2

√
−1

2
(3∆1 − g3)(x− vt)

]} 1
2

ei(κx−ωt+φ(k(x−vt))). (21)

Case (2): If we set a1 = a3 = 0 and a0 =
a2

2m2(1−m2)
a4(2m2−1)2 , we obtain

α0 = −∆1 + g3
2g2

, α1 =

√
−2a4(∆1 + g3)

g2
2

, g1 =
g2(g3 − ∆1)

4g4
, a2 =

1
4
(3∆1 − g3),

∆1 =
√

g2
3 − 2g2g4, β1 = 0,

g5 =
1

16g2
2(1− 2m2)

2

×
(
− 2∆1g2

3

(
8m4 − 8m2 + 1

)
+ ∆1g2g4

(
56m4 − 56m2 + 5

)
−2g3

3

(
8m4 − 8m2 + 1

)
+ g2g4g3

(
40m4 − 40m2 + 7

))
. (22)
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Then, the corresponding solution of (1) is Jacobi’s elliptic cosine function.

ψ(x, t) =

{
− ∆1 + g3

2g2
+

1
g2

√
2a2m2(∆1 + g3)

(2m2 − 1)
cn

[
1
2

√
3∆1 − g3

(2m2 − 1)
(x− vt)

]} 1
2

×ei(κx−ωt+φ(k(x−vt))). (23)

We achieve a bright soliton solution with 3∆1 − g3 > 0 if we select m = 1.

ψ(x, t) =

{
− ∆1 + g3

2g2
+

√
2a2(∆1 + g3)

g2
sech

[√
3∆1 − g3

2
(x− vt)

]} 1
2

×ei(κx−ωt+φ(k(x−vt))). (24)

Case (3): If we set a1 = a3 = 0 and a0 =
a2

2(1−m2)
a4(2−m2)

2 , we obtain

α0 =
∆1−g3

2g2
, α1 =

√
2a4(∆1−g3)

g2
2

, β1 = 0, g1 =
g2(∆1+g3)

4g4
, a2 = 1

4 (−3∆1 − g3)

∆1 =
√

g2
3 − 2g2g4, g5 =

2∆1g2
3m4−2g3

3m4+∆1g2g4(−5m4−16m2+16)+g2g3g4(7m4−16m2+16)
16g2

2(m2−2)2 . (25)

Then, the solution corresponding to (1) is Jacobi’s elliptic function of the third kind.

ψ(x, t) =

{
∆1 − g3

2g2
+

1
g2

√
−2a2m2(∆1 − g3)

(2−m2)
dn

[
1
2

√
−3∆1 − g3

(2−m2)
(x− vt)

]} 1
2

×ei(κx−ωt+φ(k(x−vt))). (26)

We achieve a bright soliton solution with 3∆1 + g3 < 0 if we select m = 1.

ψ(x, t) =

{
∆1 − g3

2g2
+

1
g2

√
2a2(g3 − ∆1)sech

[√
−(3∆1 + g3)

2
(x− vt)

]} 1
2

×ei(κx−ωt+φ(k(x−vt))). (27)

Case (4): If we set a1 = a3 = 0 and a0 =
a2

2m2

a4(m2+1)2 , we obtain

(i)

α0 = −∆1+g3
2g2

, α1 =

√
− 2a4(∆1+g3)

g2
2

, β1 = 0, g1 = g2(g3−∆1)
4g4

,

a2 = 1
4 (3∆1 − g3), ∆1 =

√
g2

3 − 2g2g4,

g5 =
−2∆1g2

3(m2−1)
2−2g3

3(m2−1)
2
+∆1g2g4(5m4−26m2+5)+g2g4g3(7m4+2m2+7)

16g2
2(m

2+1)2 . (28)

Then, the solutions corresponding to (1) are Jacobi’s elliptic sine function.

ψ(x, t) =

{
− ∆1 + g3

2g2
± 1

g2

√
2a2m2(∆1 + g3)

(m2 + 1)
sn

[
1
2

√
g3 − 3∆1

(m2 + 1)
(x− vt)

]} 1
2

×ei(κx−ωt+φ(k(x−vt))). (29)
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We achieve a dark soliton solution with 3∆1 − g3 < 0 if we select m = 1.

ψ(x, t) =

{
− ∆1 + g3

2g2
± 1

g2

√
2a2(∆1 + g3)tanh

[
1
2

√
g3 − 3∆1

2
(x− vt)

]} 1
2

×ei(κx−ωt+φ(k(x−vt))). (30)

(ii)

α0 = ∆1−g3
2g2

, α1 = 0, β1 =

√
m2(2∆1g2

3−9∆1g2g4−2g3
3+3g2g4g3)

4a4g2
2(m

2+1)2 , g1 = g2(∆1+g3)
4g4

,

a2 = 1
4 (−3∆− g3), ∆1 =

√
g2

3 − 2g2g4,

g5 =
2∆1g2

3(m2−1)
2−2g3

3(m2−1)
2
+∆g2g4(−5m4+26m2−5)+g2g4g3(7m4+2m2+7)

16g2
2(m

2+1)2 . (31)

Then, the solution corresponding to (1) is

ψ(x, t) =

{
∆1 − g3

2g2
± 1

2g2

√
2∆1g2

3 − 9∆1g2g4 − 2g3
3 + 3g2g4g3

a2(m2 + 1)

×ns

[
1
2

√
3∆1 + g3

(m2 + 1)
(x− vt)

]} 1
2

ei(κx−ωt+φ(k(x−vt))). (32)

We achieve a singular soliton solution with 3∆1 + g3 > 0 if we select m = 1.

ψ(x, t) =

{
∆1 − g3

2g2
± 1

2g2

√
2∆1g2

3 − 9∆1g2g4 − 2g3
3 + 3g2g4g3

2a2

×coth

[
1
2

√
3∆1 + g3

2
(x− vt)

]} 1
2

ei(κx−ωt+φ(k(x−vt))). (33)

Jacobi elliptic functions are indicated by the symbols sn(ξ|m), cn(ξ|m), and dn(ξ|m), where
m is the elliptic modulus.
The elliptic Jacobian functions transform into hyperbolic ones when m→ 1:

cn(ξ|1)→ sech ξ sn(ξ|1)→ tanh ξ dn(ξ|1)→ sech ξ

The elliptic Jacobian functions transform into trigonometric ones when m→ 1:

cn(ξ|0)→ cos ξ sn(ξ|0)→ sin ξ dn(ξ|0)→ 1

Result (3): If we set a2 = a4 = 0, we obtain

α0 =
−3g2 ± ∆2

12g1
, α1 = 0, β1 =

3a1(−3g2 ± ∆2)

3g2(−3g2 ± ∆2) + 24g1g3
,

g5 =
1
6

(
−3α3

0g2 − 5α2
0g3 − 6α0g4

)
, a3 =

−3α2
0g2 − 4α0g3 − 3g4

3β1
,

a0 =
β2

1(3α0g2 + g3)

6α2
0

, ∆2 =
√

3
(
3g2

2 − 8g1g3
)
. (34)

Then, the solution corresponding to (1) is Weierstrass’s elliptic function.
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ψ(x, t) =

{
−3g2 ± ∆2

12g1
+

3a1(−3g2 ± ∆2)

3g2(−3g2 ± ∆2) + 24g1g3

 1

℘
[√

a3
2 (x− vt), l2, l3

]
} 1

2

×ei(κx−ωt+φ(k(x−vt))), (35)

where l2 = −4a1/a3, and l3 = −4a0/a3 are the Weierstrass’s function invariants.

℘

[√
a3

2
(x− vt), l2, l3

]
= σ3 +

σ1 − σ3

sn2
[√

1
2 a3(σ1 − σ3)(x− vt)

]

= σ2 + (σ1 − σ3)

dn2
[√

1
2 a3(σ1 − σ3)(x− vt)

]
sn2
[√

1
2 a3(σ1 − σ3)(x− vt)

]

= σ1 + (σ1 − σ3)

cn2
[√

1
2 a3(σ1 − σ3)(x− vt)

]
sn2
[√

1
2 a3(σ1 − σ3)(x− vt)

] , (36)

where σ1 = ℘
[

l2
2

]
, σ2 = ℘

[
l3
2

]
, σ3 = ℘

[
l2+l3

2

]
, and σ1 6= σ3. We achieve a soliton solution

with a3(σ1 − σ3) > 0 if we select a1 = a0 6= 0, which leads to σ1 = σ2. In this case, we have

℘

[√
a3

2
(x− vt), l2, l3

]
= σ1 coth2

[√
a3(σ1 − σ3)

2
(x− vt)

]
−

σ3 csch2

[√
a3(σ1 − σ3)

2
(x− vt)

]
. (37)

Result (4): If we set a1 = a2 = a0 = 0, we obtain

α0 = −∆3 + 2g3

3g2
, α1 =

9a3g4

2∆3g3 − 4g2
3 + 9g2g4

, β1 = 0, ∆3 =
√

4g2
3 − 9g2g4,

g1 =
4∆3g2

3 − 9∆3g2g4 − 8g3
3 + 27g2g4g3

54g2
4

, g5 =
−4∆3g2

3 + 9∆3g2g4 − 8g3
3 + 27g2g4g3

54g2
2

,

a4 =
α2

1
(
−4∆3g2

3 + 9∆3g2g4 + 8g3
3 − 27g2g4g3

)
54g2

4
. (38)

Then, the solution corresponding to (1) is

ψ(x, t) =

{
− ∆3 + 2g3

3g2
+

9a2
3g4

2a4
(
2∆3g3 − 4g2

3 + 9g2g4
)exp

[
± a3

2
√
−a4

(x− vt)
]} 1

2

×ei(κx−ωt+φ(k(x−vt))). (39)
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Result (5):
Case (1): If we set a3 = a4 = 0 and a0 =

a2
1

4a2
, we obtain

α0 =
∆1 +

√
2
(
−∆1g3 + g2

3 − 3g2g4
)
− g3

2g2
, α1 = 0, ∆1 =

√
g2

3 − 2g2g4,

β1 = −
√

2a1∆1g4√
−∆1g3 + g2

3 − 3g2g4
(
∆1g3 + g2

3 − 2g2g4
) a2 =

∆1g3 + 3g2
3 − 6g2g4

2∆1
,

g1 =
g2
(
∆1g3 + g2

3 − 2g2g4
)

4g4

√
g2

3 − 2g2g4

, g5 =
g4
(
∆1g3 + g2

3 − 2g2g4
)

4g2

√
g2

3 − 2g2g4

. (40)

Then, the solution corresponding to (1) is

ψ(x, t) =

{
∆1 +

√
2
(
−∆1g3 + g2

3 − 3g2g4
)
− g3

2g2
−

√
2a1∆1g4(

∆1g3 + g2
3 − 2g2g4

)√
−∆1g3 + g2

3 − 3g2g4

×

 1

− a1
2a2

+ exp
[
±
√

∆1g3+3g2
3−6g2g4

2∆1
(x− vt)

]

} 1

2

ei(κx−ωt+φ(k(x−vt))). (41)

Case (2): If we set a1 = a3 = a4 = 0, we obtain

α0 =
∆1 − g3

2g2
, α1 = 0, β1 = ±

√
4a0g4

∆1g2 + g3g2
, ∆1 =

√
g2

3 − 2g2g4, g1 =
g2(∆1 + g3)

4g4
,

g5 =
2∆1g2

3 − 5∆1g2g4 − 2g3
3 + 7g2g4g3

16g2
2

, a2 =
1
4
(−3∆1 − g3). (42)

Then, the solution corresponding to (1) is

ψ(x, t) =

{√
g2

3 − 2g2g4 − g3

2g2
+

√
g4(3∆1 + g3)

∆1g2 + g3g2
csch

[√
1
4
(3∆1 + g3)(x− vt)

]} 1
2

×ei(κx−ωt+φ(k(x−vt))). (43)

Result (6):
Case (1): If we set a0 = a1 = 0, we obtain

α0 =
2a2 −

(
4g3 ±

√
(4g3 − 2a2)2 − 36g2g4

)
6g2

, α1 =
a3α2

0
2α2

0g2 + 2α0g3 + g4
, β1 = 0,

g5 =
1
4

(
α3

0(−g2)− 2α2
0g3 − 3α0g4

)
, a4 =

α2
1
(
3α2

0g2 + 2α0g3 + g4
)

4α3
0

. (44)

Then, the solution corresponding to (1) is a singular soliton with a2 > 0

ψ(x, t) =

{
2a2 −

(
4g3 ±

√
(4g3 − 2a2)2 − 36g2g4

)
6g2

∓
a3α0

(
3α2

0g2 + 4α0g3 + 3g4
)

2
(
2α2

0g2 + 2α0g3 + g4
)

× 1√
a2a4

csch[
√

a2(x− vt)]

} 1
2

ei(κx−ωt+φ(k(x−vt))). (45)
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Case (2): If we set a0 = a1 = 0 and a2 =
a2

3
4a4

, we obtain

α0 =
∆1 +

√
2
(
−∆1g3 + g2

3 − 3g2g4
)
− g3

2g2
, α1 = ±

√
− 4∆1a4g4

g2
(
∆g3 + g2

3 − 2g2g4
) , β1 = 0,

∆1 =
√

g2
3 − 2g2g4, g1 =

g2
(
∆1g3 + g2

3 − 2g2g4
)

4∆1g4
, g5 =

g4
(
∆1g3 + g2

3 − 2g2g4
)

4∆1g2
,

a3 = −
α1
(
∆1g3 + g2

3 − 2g2g4
)√
−∆1g3 + g2

3 − 3g2g4
√

2∆1g4
. (46)

Then, the solution corresponding to (1) are dark soliton solutions with a2 > 0.

ψ(x, t) =

{
∆1 +

√
2
(
−∆1g3 + g2

3 − 3g2g4
)
− g3

2g2
±
√
− a2∆1g4

g2
(
∆1g3 + g2

3 − 2g2g4
)

×
(

1 + tanh
[

1
2
√

a2(x− vt)
])} 1

2

ei(κx−ωt+φ(k(x−vt))). (47)

4. Conclusions

The paper recovers a full spectrum of perturbed 1-soliton solutions to the NLSE
with Hamiltonian perturbation terms and the parabolic law of SPM. The solitons appear
with parameter constraints that are also listed. Additional solutions that are in terms of
singular periodic functions and Jacobi’s elliptic functions have additionally emerged from
the integration scheme, namely, the extended tanh function scheme. These results are now
ready to be explored, further along. Additional integration schemes would lead to a soliton
solution when the perturbation term is considered with maximum intensity or with full
nonlinearity. This would be with the application of the semi-inverse variational principle.
Moreover, the soliton parameter dynamics can also be obtained with the application of the
variational principle, moment method, or the collective variables approach.

The integration approach implemented in this paper can be expanded to address
the fourth-order nonlinear Schrödinger’s equation as well. Recently, nonlocal integrable
nonlinear Schrödinger’s equations are presented via the group reductions of matrix spectral
problems [17]. The multidimensional version of the model that is studied in the paper
can be applied to DWDM topology or to the case of twisted fibers where matrix version
of the model appears. This would be another rich avenue to venture into with such an
integrability approach in multi-dimensions, and to recover novel results that would be
applicable to such optoelectronic devices.

Other avenues of expansion with this model would be to look at the variation of
parameters for the corresponding chirped solitons that can be recovered with the usage of
the variational principle, moment method, soliton perturbation theory, collective variables
approach, and several others. These would lead to the variation of the soliton parameters,
including the phase constant, which cannot be recovered using the commonly studied
approaches such as soliton perturbation theory. However, the soliton perturbation theory
would lead to the effect of optical soliton cooling, an important feature that is needed for
soliton transmission across intercontinental distances.

Apart from these, one is slated to have a look at the supercontinuum generation for
the model. One of the most important perturbation terms, namely the intrapulse Raman
scattering, was tacitly omitted in the current work since the main focus of the paper is
the integrability of the model. This being a non-Hamiltonian perturbation term, would
lead to the perturbed model being non-integrable. However, the inclusion of this effect
would give a broader perspective to the model, such as the computation of the soliton
frequency downshift.
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While the perturbed version of the model is considered in this paper, it must be
borne in mind that the perturbation terms are strong. If however, these would have been
weak perturbation terms, then the integrability would lead to quasi-stationary solitons,
rather than exact soliton solutions, in which case the Raman scattering effect could be
included. These quasi-stationary solitons are recoverable with the usage of a multiple-
scales perturbation procedure, in which case non-Hamiltonian perturbation terms can be
rendered to be integrable as well.

Apart from the deterministic perturbation terms, it is of paramount importance to
take into effect the perturbation terms that are of stochastic type. After all, the effect of
randomness is always present in soliton propagation dynamics. Therefore, it is absolutely
necessary to address these effects with the inclusion of a random perturbation term, in both
additive and multiplicative formats. For the multiplicative perturbation term, the white
noise effect can be addressed with the aid of Ito Calculus. On the other hand, the additive
stochastic perturbation term can be handled with the formulation of the Langevin equation,
which would lead to the mean free velocity of the soliton. This is therefore an open project
that is on the table to be taken up.

On another note, it is important to check out the numerical studies, in addition to
the plethora of analytical approaches that are enumerated. The model and its similar
counterparts are to be addressed numerically using several forms of computational ap-
proaches. A few such approaches are the improved Adomian decomposition scheme,
the Laplace-Adomian decomposition scheme, the variational iteration method, the finite
differences approach, the finite element method, the boundary element method, and many
other similar approaches. These would express the soliton dynamics numerically with a
visual perspective.

Finally, experimental approaches are on the table too. It is imperative to take a look at
the soliton perturbations from an oscilloscope. The eye diagrams would give a rounded
study to the model that would be the final touch at the lab before the rubber meets the
road! Thus, the current paper is just a drop in the ocean, and consequently, a lot of work
lies ahead of us. The results are currently awaited and will be disseminated sooner rather
than later.
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