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Abstract: Gravitational lensing is a topic of great application value in the field of astronomy. The
properties and research methods of gravitational lensing are closely related to the geometric and
relativistic characteristics of the background universe. This review focuses on the theoretical re-
search and application of strong lenses and weak lenses. We first introduce the basic principles
of gravitational lensing, focusing on the geometric basis of geometric lensing, the representation
of deflection angles, and the curvature relationship in different geometric spaces. In addition, we
summarize the wide range of applications of gravitational lensing, including the application of strong
gravitational lensing in Schwarzschild black holes, time delay, the cosmic shearing based on weak
lensing, the applications in signal extraction, dark matter, and dark energy. In astronomy, through the
use of advanced astronomical instruments and computers, analyzing gravitational lensing effects to
understand the structure of galaxies in the universe is an important topic at present. It is foreseeable
that gravitational lensing will continue to play an important role in the study of cosmology and will
enrich our understanding of the universe.

Keywords: gravitational lensing; deflection angle; Einstein ring; Schwarzschild black hole; dark
matter and dark energy; time delay; cosmic shear

MSC: 85-06

1. Introduction

Light rays are deflected in a gravitational field. The light of the background galaxy
is focused by the gravitational field of the foreground galaxy. Such a light deflecting phe-
nomenon, which is similar to that observed in an optical lens, is called gravitational lensing.
Einstein’s general theory of relativity first predicted and explained the phenomenon of
gravitational lensing [1]. The first lens system, QSO 0957+561A, B, was discovered in
1979 [2]. Since then, increasing attention has been paid to the research of gravitational
lensing. Currently, gravitational lensing can be divided into three categories (i.e., strong
gravitational lensing, weak gravitational lensing, and microlensing) based on the geometric
configuration among the background galaxy, the foreground galaxy, and the observer,
as well as the mass–energy distribution of the foreground galaxy. Strong gravitational
lensing can produce multiple and severely distorted images [3]. However, it can greatly
brighten the lights from distant galaxies, which is quite spectacular. Thus, strong gravita-
tional lensing is often used to study distant galaxies [4]. Unlike strong gravitational lensing,
weak gravitational lensing is more common and produces slightly distorted images [5]. It
has more applications, for example, as the information from weak lensing is necessary to
reveal the whole mass distribution of the cluster.

Gravitational lensing has valuable applications, especially in the detection of dark
matter and dark energy, which do not emit electromagnetic radiation but constitute 95% con-
tents of the universe. However, dark matter is a major component of matters with gravita-
tional effects. In addition, considering the relationship between gravitational lensing, dark
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energy, and the large-scale structure evolution of the universe, gravitational lensing can
also be one of the detection tools of dark energy. Furthermore, we can use gravitational
lensing to study the cosmological parameter, the Hubble constant, and the age and density
of the universe [6]. Recently, Jee I. et al. proposed a method to determine the Hubble
constant by using the angular diameter distance to strong gravitational lenses as a suitable
calibrator [7].

Moreover, gravitational lensing was also adopted to investigate the black holes and
wormholes. Recently, Bohn et al. analyzed a binary black hole merger [8]. Lu and Xie
studied an Extended Uncertainty Principle black hole [9]. Sharif et al. numerically evaluated
the deflection angles in the strong field limit to find the locations of wormholes [10].
Ono T. et al. studied the deflection angle of light for an observer and source at a finite
distance from a rotating Teo wormhole, and the correction of the deflection angle due to the
limited distance from the rotating wormhole was obtained [11]. Takahashi et al. discussed
the negative-mass compact objects and the number density of Ellis wormholes [12]. Ovgun
applied the Gauss–Bonnet theorem to Damour–Solodukhin wormhole spacetimes to probe
weak gravitational lensing [13]. Recently, researchers focus on the black hole shadow, which
is the dark region in the center of a black hole image. It appears because the light rays are
close enough to be captured by the black hole itself, thereby leaving a black shadow in the
observer’s visual field. Perlick et al. proposed the derivation of the angular magnitude of
shadows in static sphere symmetric spacetime. They calculated the black hole shadows in
the expanding universe and also considered the effect of plasma on black hole shadows [14].
Akiyama et al. assembled the Event Horizon Telescope. The images they observed were
consistent with the prediction of general relativity concerning the shadow of the Kerr
black hole [15]. In addition, the first observation of Sagittarius A* (Sgr A*) using the Event
Horizon Telescope (EHT) can be found in [16]. The gravitational lensing effect is also
of great value for gravitational wave detection. For example, Cao et al. analyzed the
influence of lenses on gravitational wave signal parameters [17]. Oguri used gravitational
lensing magnification to analyze the distribution of gravitational waves generated by
binary star mergers [18]. Today, various emerging technologies have also been used to
explore gravitational lensing, such as convolutional neural networks [19] and 3D printing
technology [20]. With the further development of science and technology, it is foreseeable
that the study and application of gravitational lensing will be improved, which would help
us understand the vastness of universe on a deeper level.

In this manuscript, we first briefly introduce the fundamental principle of the grav-
itational lensing in Section 2. Then, we discuss the progress of the strong lensing of a
Schwarzschild black hole and the time delay in Section 3. Subsequently, cosmic shear,
signal extraction, dark matter, and dark energy detection based on weak lensing are intro-
duced in Section 4. For a better understanding of gravitational lensing, we recommend the
following references [21–24].

2. Fundamental Principle
2.1. Deflection Angle

When a photon passes by a massive object, such as a galaxy or a galaxy cluster,
the deflection of its trajectory is described by the deflection angle α̂. Assuming the effective
refractive index n = 1− 2Φ/c2, one can obtain α̂ from the Fermat’s principle that

~̂α =
2
c2

∫
~∇⊥Φds, (1)

where Φ is the scalar Newtonian potential that obeys the Poisson’s equation. Here, we use
~̂α to denote the angle with a direction since the right-hand side of (1) is an integral of a
vector. However, we will denote the angle without the arrow in this manuscript since we
are more concerned about the magnitude of the angle than its direction.

For a point lens, in Newtonian mechanics, the deflection angle α̂ is deduced from (1)
to be
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α̂ =
2GM
bc2 .

where M is the mass of lens and b is the closest distance of the photon to the lens, while,
in General Relativity, the deflection angle α̂ of a point lens with gravitational potential
Φ(r) = −GM/r is deduced to be

α̂ =
4GM
bc2 ,

which is twice of that in Newtonian mechanics. However, the deflection angle of light is
small and generally on the order of arc–sec.

Takizawa et al. [25] defined the deflection angle of light (αK) in an integral form to
eliminate the asymptotically flatness of space–time. Namely,

αK =
∫∫

ΩR+ΩS

KdS +
∫ PS

PR

κgd`+ φRS, (2)

where ΩR is a trilateral specified by the points R, P0, and PR, and ΩS is a trilateral specified
by the points S, P0, and PS. The right-hand side of (2) contains the radial coordinate
r ∈ [r0, rR] ∪ [r0, rS], where r0 means the closest approach of light. Ishihara et al. [26]
defined the deflection angle of light (αI) under the assumption of asymptotic flatness as

αI ≡ ΨR −ΨS + φRS, (3)

in which ΨR and ΨR are the angles between the radial direction and the light ray at the
source position and at the receiver position, respectively. φRS is a coordinate angle between
the receiver and source. Without the assumption of asymptotic flatness, Takizawa et al. [25]
proved the consistency of the above two definitions on a static and spherically symmetric
spacetime, i.e.,

αI = αK. (4)

In [27], Takizawa et al. also defined a deflection angle αG as

αG ≡ θ −ΨS + φRS, (5)

in which θ denotes the angular direction of the lensed image with respect to the lens
direction. It follows from (3) and (5) that

αI = αG, (6)

where we use ΨR = θ. One can deduce from (4) and (6) the equivalence of the above
three definitions.

The gravitational lensing deflection angle can reflect the overall geometry of the
foreground universe. In 2008, Gibbon and Werner first proposed a mathematical method to
measure the asymptotic deflection angle α̂ of the gravitational lenses adopting the Gauss–
Bonnet method [28]. In 2012, Werner discovered that for a stationary observer in the Kerr
spacetime, a spatial light ray is a geodesic in a certain Randers metric space [29]. Given that
a light ray is in a geodesically complete surface whose Gaussian curvature in the optical
geometry is K. It can be shown that its asymptotic deflection angle α̂ is

α̂ = −
∫∫

S∞
KdS, (7)

where the integral is used over the infinite region S∞ of the surface bounded by the light
ray excluding the lens. Based on the same approach, in 2020, Halla and Perlick used the
Gauss–Bonnet theorem to provide a mathematical representation of the deflection angle of
gravitational lenses in the NUT metric space [30].

As a generalization of traditional geometric backgrounds, Finsler background space-
time, especially Randers spacetime, has a wide range of physical applications. There is also
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a corresponding deflection angle definition on it. We refer to [31] for more details of the
underlying geometry of the SFR gravitational model, as well as the field equations for the
SFR metric. Kapsabelis et al. [31] derived the deflection angle in SFR spacetime as

αSFR =
4GM

b
1− a√
1− 2a

. (8)

Expanding (8) in powers of a = Ã0b
J , the deflection angle can be written as follows:

αSFR ≈
(

1 +
a2

2

)
4GM

b
, (9)

where J is the angular momentum, and Ã0 is a constant obtained when solving field equations.
Compared to the deflection angle αGR = 4GM

b in General relativity, αSFR includes a
small additional Randers contribution term s, which yields a slight deviation from αGR.
Considering by

∣∣Ã0
∣∣� 1, it follows that

lim
Ã0→0

αSFR = αGR. (10)

The difference between the deflection angle in SFR spacetime and αGR may be due to
Lorentz violations [32], or the small amount of energy that is added to the gravitational
potential of SFR.

Recently, the first author of this work introduced, for the first time, the asymptotically
Minkowskian flat properties on the general Finsler metric manifold. Moreover, an integral
representation of the integral symmetric normal deflection angle γ∞ of the gravitational
lens on an asymptotic symmetric Minkowskian flat Finsler manifold in a large range was
provided [33]. Concretely,

γ∞ = −L
∫∫

D∞

1 + TN(T)
L(x)

[X∗(Kω1 ∧ω2 − Jω1 ∧ω3) + log TN(T) ∧ X∗(ω3)], (11)

where D∞ is a region bounded by the deflection light, L and L(x) are the lengths of the
indicatrixes at the infinity and at x, respectively, TN(T) is the T-curvature, K is the Gauss
curvature, and J is the Landsberg curvature. Formula (11) is a generalization of (7) and can
be adopted to illustrate a new geometric explanation of dark matter and dark energy,
as well as their effects.

2.2. Lens Equation

In general, the scale of the lens is much smaller than both the distance from the light
source to the lens DLS and the distance from the lens to the observer DL. Therefore, the lens
is often reduced to fall on a flat surface. For lenses with a mass distribution of ρ, we use ξ to
represent the position vector on the plane of the lens. Its surface mass density is provided
by ∑(ξ) =

∫
ρ(ξ, s)ds. Then, the deflection angle at ξ is

α̂(ξ) =
4GM(ξ)

c2ξ
=

4G
c2

∫ (ξ − ξ ′)∑(ξ ′)

|ξ − ξ ′|2
d2ξ ′2, (12)

in which we call Rsc =
2GM(ξ)

c2 the Schwarzschild radius.
The line-of-sight dominates the plane of the light source, the plane of the lens, and the

optical axis of the observer. Without a lens, the observer will see the light from the
light source at an angle of β to the optical axis. Under the gravitation of massive objects,
the observer will see the angle θ. Thus, using geometric relations, under the setting ξ = DLθ,
we can write it as
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β = θ − α(θ), (13)

α(θ) = −DLS
DS

α̂(θ), (14)

where (13) is known as the lens equation and has further expression and applications [34,35].
A schematic geometry of the lens equation can be seen in Figure 1.

Figure 1. A schematic geometry of the lens equation.

Equations (12)–(14) are classic lens equations in gravitational lensing. Nowadays,
the study of lens equations has been further advanced and different forms have been
proposed. We introduce more definitions of the deflection angle, as well as a class of exact
gravitational lens equations at finite distances.

Takizawa et al. deduced the exact gravitational lens equation for αG (in Equation (5)) as

αG − θ − arcsin

 DL√
(DLS)

2 + (DS)
2 tan2 β

sin θ

+ arctan
(

DS
DLS

tan β

)
= 0. (15)

They also considered a static and spherically symmetric solution in Weyl conformal
gravity, and provided iterative solutions for the finite-distance lens equation up to the
third order.

Furthermore, Takizawa et al. [36] showed that the hyperbolic (spherical) trigonometry
can be used in the exact lens equation for a de-Sitter (anti-dS) background and discussed
possible effects by the curvature of the dS/AdS background. Moreover, they provided a
unified form of Lens equations in Euclidean, hyperbolic, and spherical geometry by

α− θ = arcsin

(√
1 + KD̂2

S tan2 β

D̂2
LS + D̂2

S tan2 β
D̂L sin θ

)
− arctan

(
D̂S

D̂LS
tan β

)
, (16)

where the parameters with corner markers are normalized defined quantities, and K
denotes 1, 0, and −1 for spherical, flat, and hyperbolic geometry, respectively. Based on
the curvatures of the dS/AdS background, they presented the deflection angle in dS/AdS
background by

α =
2rg

DLθ
−

rgθ

2DL

[
1 +

(
DL
DLS

)2
]
+

rgΛDLθ

6
+ O

(
r2

g, rgθ3, rgΛDθ3, rgΛ2D3
)

, (17)
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in which rg ≡ 2m for the mass m. Although dS and AdS are geometrically different, their
deflection angles are formally the same.

In small angle approximations, the difference in the form among the dS/AdS lens
equations and the exact lens equation in the Minkowski background begins at the third
order. The angular separation of the lensed images is decreased by the third-order deviation
in the dS lens equation, while it is increased in AdS.

An Einstein ring occurs when the source, lens, and observer are aligned well. That
is, using β = 0 in (13), we can obtain the angular radius of the ring, namely, the Einstein
radius, as

θE =

√
4GM(θE)

c2
DLS

DLDS
= 16.5

[
M(θE)

1014h−1M�

] 1
2
(

DLS
DLDS

) 1
2
. (18)

Combining (12)–(14), the graviational lensing equation can be rewritten as

α =
2RscDLS
θDLDS

= θ − β. (19)

The property of the Einstein ring is special when there is a point source. In this case,
Equations (12), (18), and (19) provide that

θ2 − βθ − θ2
E = 0, (20)

which can be solved by

θA,B =
1
2

β±

√(
1
2

β

)2
+ θ2

E. (21)

Therefore, we can obtain that the angular radius of Einstein’s ring is θA,B = ±θE by
setting β = 0 in (21).

The magnification of an Einstein ring is

µi =
dωi
dωs

=

∣∣∣∣det
(

∂β

∂θi

)∣∣∣∣−1
, (22)

where dωi is the solid angle covered by the lensed image, and dωs denotes the angle in the
absence of the lens.

For Einstein rings, noticing the geometric relationship between the source, the lens,
and the observer (i.e., the axisymmetric property), one can simplify (22) as

µi =
θidθi
βdβ

. (23)

Hence, we can deduce the magnification of an Einstein ring from (23) as

µE =
2θE
dβ

, (24)

where dβ represents the true angular radius of the source.
In the case of the imperfect alignment of sources, lenses and observers, i.e., β 6= 0,

the angular separation between the two images is deduced from (23) and (21) as

∆θ =
√

β2 + 4θ2
E.

Hence, the magnification is

µA,B =
1
4

(
∆θ

β
+

β

∆θ
± 2
)

. (25)
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Moreover, the total magnification is

µT =
1
2

(
∆θ

β
+

β

∆θ

)
. (26)

The figure of an Einstein ring as a smiley in the following link, taken by the NASA/ESA
Hubble Space Telescope: https://images.nasa.gov/details-GSFC_20171208_Archive_e000791
(accessed on 14 January 2023).

2.3. Convergence and Shear

Lens Equation (13) could be considered as a mapping from the source plane to the lens
plane. It can especially be linearized to obtain local information of the mapping. The Jaco-
bian matrix of (13) has component Aij =

∂βi
∂θj

= δij − αij, which could be decomposed into
two parts as

A(θ) =

(
1− κ − γ1 −γ2
−γ2 1− κ + γ1

)
= (1− κ)

(
1 0
0 1

)
−
(

γ1 γ2
γ2 −γ1

)
, (27)

where κ and γ(γ1, γ2) are the convergence and shear parameters, respectively, defined by

κ =
∑(θ)

∑crit
=

1
2
∇2

θΨ, (28)

γ1 = |γ| cos(2φ) =
1
2
(ψ,11 − ψ,22), (29)

γ2 = |γ| sin(2φ) = ψ,ij, (30)

where Ψ is the lensing potential, whose expression is

Ψ =
2
c2

DLS
DLDS

∫
Φds =

4GM
c2

DLS
DLDS

ln |θ|. (31)

Furthermore, α = ∂Ψ
∂θ , so that (13) could be rewritten as

β = θ −∇Ψ.

∑crit in (28) is named as the critical surface mass density, and is defined by ∑crit =
c2Ds

4πGDLSDL
. κ is a parameter of homothetic transformation, indicating that the light source is

isotropically amplified or reduced. Meanwhile, γ adds anisotropic effects to the imaging.
The distortion of the image can be described by the inverse matrix of the above Jacobian,
which is denoted by M = A−1.

By the eigenvalues λ± of the Jacabian matrix A, one can determine the radial elonga-
tion factor to be 1

λ−
, and the tangential factor to be 1

λ+
. It follows for θ̂ > 0 that

λ+ =
β̂

θ̂
= 1− 1

θ̂n+1
, (32)

λ− =
dβ̂

dθ̂
= 1 +

n
θ̂n+1

. (33)

These imply that the convergence and the shear are

κ = 1− λ+ + λ−
2

=
1− n

2
1

θ̂n+1
, (34)

γ =
λ+ − λ−

2
= −1 + n

2
1

θ̂n+1
. (35)

For ε < 0, the lensing shear can be similarly obtained as

https://images.nasa.gov/details-GSFC_20171208_Archive_e000791
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γ =
λ+ − λ−

2
=

1 + n
2

1
θ̂n+1

, (36)

For cases where the position of the lens is unknown, the origin of the two-dimensional
coordinates can be selected as the center of the lens object. For a pair of radially elongated
images (ε < 0), they are aligned with each other, while, for a pair of tangentially elongated
images, they are parallel to each other. Thus, radial and tangential elongations can be
distinguished by measuring such image alignment in observations.

In the weak field and thin lens approximation, the image is tangentially elongated due
to the gravitational action of the lens model on the light, while the gravitational repulsion
of light by the other models always radially distorts. This feature of the shape of the lens
image can be used to search for (or confine) local exotic matter or energy. For more details
and developments, we recommend [37].

In fact, cosmic shear is based on measurements of the shape of galaxies, so what is
really observed is not the shear γ but the reduced shear g = γ/(1− κ), which has the same
spin-two transformation properties as the shear.

In addition, the magnification of the image, denoted by µ, can be expressed by the
inverse of the determinant of the Jacobian matrix, i.e.,

µ =
1

det(A)
=
(
(1− κ)2 − γ2

1 − γ2
2

)−1
. (37)

Furthermore, according to (37), the image is magnified, i.e., µ > 1, so it looks brighter
than the source.

Curves with infinity magnification, namely, det(A) = 0, in the image plane are called
critical curves. The corresponding curves on the source plane are called caustic curves. If a
source is located near a caustic curve, it will be highly amplified and distorted. For example,
it may create a huge arc in a star cluster. However, the magnification is not infinite, and a
source will only produce one image, provided that the magnification of a gravitational lens
is limited anywhere.

3. Strong Gravitational Lensing

In addition to the Einstein ring mentioned above, which has a tremendous visual
aesthetic, we can also observe other important strong lensing phenomena. The observation
and application of these phenomena have helped us further promote the development of
cosmology and the advancement of modern technology.

For strong gravitational lensing, there are many observable values, such as the relative
position of the image, the relative flux of the image, and the time delay of the change
in luminosity between the lens images. These observables depend not only on the mass
distribution of the source but also on cosmological parameters [23]. A mass model of the
light source can be built to solve the lens equation with the help of light trace quality (LTM)
or non-LTM methods. Today, based on these two methods, there is a lot of software code
for strong lens models that can be applied.

Strong lenses can also be used to obtain the magnification of images [38]. Although we
do not know the brightness of the light source, the ratio of the luminosity between images
is observable. For the observed images A and B, we have

δθB = M(θB)δβ = M(θB)M−1(θA)δθA = MBAδθA, (38)

where M is the magnification matrix. Formula (38) can be considered as a linear transforma-
tion between two lens image spaces. On the other hand, the flux ratio is also an important
constraint of the mass model of the lens.

In this section, to demonstrate the effective application of the strong lensing, we
introduce the ongoing field of it, including Schwarzschild black hole and time delay.
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3.1. Schwarzschild Black Hole

The deflection angle has already been briefly introduced in the last section. In this sec-
tion we describe the deflection angle in the Schwarzschild’s black hole and the considerable
measurements in it. The strong field limit coefficients and the deflection angle of the black
holes can be obtained by performing the strong field limit method, which is a basic ap-
proach of this topic. For instance, Chagoya et al. [39] adopted a hybrid analytic–numerical
approximation to determine the deflection angle in Schwarzschild spacetimes. Similar
research on deflection angles and related applications can be found in [40–42]. The general
Schwarzschild metric is defined by

ds2 = −A(r)dt2 + B(r)dr2 + C(r)
(

dθ2 + sin2 θdφ2
)

, (39)

where A(r), B(r), and C(r) are functions of r. The corresponding photosphere equation is

C
′
(r)

C(r)
=

A
′
(r)

A(r)
. (40)

The maximum root of (40), denoted by rm, is called the radius of the photosphere.
For photons from the infinity, when approaching a black hole, there exist deviations

from their original orbits. Let u nr the collision parameter, and r0 be the minimum radial
distance of a photon from the black hole during the traveling. The relationship between u
and r0 obeys the conservation of the angular momentum as

u =

√
C(r0)

A(r0)
. (41)

We may choose θ = π
2 in (39) for the spherical symmetry of space–time. Therefore,

from the radial equation of the photon

1
2

ṙ2 +
L2

2r2

(
1− 2M

r

)
=

1
2

E2,

the expression of the deflection angle becomes [43]

α(r0) = I(r0)− π = 2
∫ ∞

r0

√
Bdr

√
C
√

C
C0

A0
A − 1

− π, (42)

in which A0 and C0 are the values of A(r) and C(r) at r0, respectively. The deflection angle
α(r0) depends on r0. More precisely, α(r0) increases as r0 reduces. It requires that r0 ≤ rm
for the photons to be fully absorbed. According to the bijective correspondence of θ and r0,
the deflection angle can be represented by θ as

α(θ) = −ā ln
(

θDOL
um

− 1
)
+ b̄ = −ā ln

(
θDOL

√
A(rm)

C(rm)
− 1

)
+ b̄, (43)

which is the deflection angle equation under strong field approximation. The two strong
field limit coefficients ā and b̄ in (43) could be deduced as

ā =
R(0, rm)

2
√

qm
,

b̄ = IR(rm) + ā ln
2qm

ym
− π,
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where the quantities marked with the subscript m indicate the values of them at r0 = rm.
The specific measurement parameters may be clarified by observing the strong field effect.
Based on it, the structure of the lens should be detected.

Moreover, the relation between the image position and magnification can be obtained
by substituting (43) into the lens Equation (13).

3.2. Time Delay

Light travels along geodesics in curved space. The effect of gravity will increase the
distance and cause a difference in time compared to the situation without gravity, which
is called the time delay. In this case, we will only describe the propagation of light from
sources at a great distance from the lens.

When light travels far from the lens, its path could be regarded as the geodesic in the
Friedmann–Robertson–Walker gauge, which is an exact solution of Einstein’s field equations

ds2 = −dt2 + R2(t)
(

dr2

1− kr2 + r2(dθ2 + sin2 θdφ2)

)
, (44)

where R(t) is the cosmic scale factor, which determines the geometric scale of the space.
Denoting the closest point on the light path to the lens by P, the intrinsic length of the light
path from the source to P and from P to the observer is∫ tO

tS

dt
R(t)

= σSP + σPO, (45)

in which tS and tO are the moments when the photon leaves the source and reaches the
observer, respectively. However, the time it requires for a photon to reach the observer
without the lens is ∫ t′O

tS

dt
R(t)

= σSO, (46)

in which σSO is the intrinsic distance along the geodesic from the source to the observer,
and t′O is the moment when the photon arrives at the observer. Therefore, comparing (45)
and (46), the time delay is

∆t f = tO − t′O = R(tO)(σSP + σPO − σSO). (47)

Another expression of (47) is the following, with the assistance of the geodesic equation,
that is

∆t f =
R(tO)rO(L)rO(S)β2

2rL(S)
, (48)

where rO(S) and rO(L) are the normal radial coordinates of the source S and the point
P, respectively, and beta is the angle between the observer-to-source connection and the
observer-to-P connection.

Accounting for the cosmic redshift effect, that is, R(tO) = (1 + zL)R(tL) and using
dA(OL) = R(tL)rO(L), (48) could be modified to be

∆t f =
(1 + zL)dA(OL)dA(OS)β2

2dA(LS)
. (49)

Time delay has been employed to determine the Hubble constant, but it is imprecise
due to insufficient astronomical observations.

A smoothness condition is imposed on the gravitationally deformed paths followed
by the photons from the source to the observer. Maggiore, N., et al. [44] considered
an alternative formula for time delay, which was generalized to the arbitrary angles of
the standard one. It can be applied to investigate the discrepancy between the various
estimations of the Hubble constant.
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Inspired by its various effective applications, the research of time delay has been devel-
oped rapidly. It provides a powerful cosmological detector through the time delay distance.

However, it is not easy to achieve the ideal effect, because the images have the mea-
surement gap, noise, and no prior function model, which causes the robust time delay
estimation to be challenging. In fact, Hojjati et al. [45] used Gaussian process techniques
and was successfully demonstrated in an accurate blind reconstruction of time delays and
a reduction in uncertainties for real data. The results will be more accurate in the future
when more information is accumulated.

4. Weak Gravitational Lensing

Strong gravitational lensing causes a large signal and produces phenomena that
look extremely spectacular, such as Einstein rings and Einstein crosses. However, such
phenomena rarely occur.

Conversely, there are a large number of weak gravitational lensing signals in the
universe because the universe is filled with various structures, such as dark matter halos,
fibers, etc. Especially in the past two decades, research on weak lenses has flourished.
Moreover, weak gravitational lensing plays an important role in the field of astronomical
detection [46–48]. Theoretically, if we can accurately measure information such as the defor-
mation and redshift of galaxies in the universe, it is possible to reconstruct the distribution
of matter in the whole universe, because the lens signal can reflect the information of matter
in the path. The combination of lens signals with different redshifts provides ways to
accurately determine the fundamental parameters in cosmology, such as Ωm, Ωλ, σ8.

As related to the Schwarzchild black hole, a static and spherically symmetric modified
spacetime metric depends on the inverse distance to the power of positive n (n = 1 for
Schwarzschild metric, and n = 2 for an Ellis wormhole) in the weak-field approximation.
Izumi, K., et al. obtained the following deflection angle in such space–time [37].

α =
ε

bn

∫ π
2

0
cosn ψdψ + O

(
ε2
)

, (50)

where ε is the book-keeping parameter. Under the thin lens approximation, the modified
lens equation becomes

β =
b

DL
− DLS

DS
α(b). (51)

For the case of ε > 0, the matter (and energy) need to be exotic if n > 1; (51) could be
rewritten as the following in the vectorial form.

β̂ = θ̂ − θ̂

θ̂n+1
(θ̂ > 0), (52)

β̂ = θ̂ − θ̂(
−θ̂
)n+1 (θ̂ < 0), (53)

where we normalize β̂ ≡ β
θE

and θ̂ ≡ θ
θE

for the angular position of the image θ = b
DL

, β̂,
and θ̂ denote the corresponding vectors.

4.1. Cosmic Shear and E/B Modes

At present, cosmic shear is extremely important in the physical study of weak lensing, since
its signal can reflect the distribution of matter and limit the cosmological parameters [49–51].

Nicola et al. [52] puts predictive constraints on the cosmological and mass calibra-
tion parameters for a combination of LSST cosmic shear and Simons Observatory tSZ
(thermal Sunyaev-Zel’dovich) cluster counts. They found competitive constraints on clus-
ter cosmology. Mancini et al. [53] studied 3D cosmic shear and Minkowski functionals,
and demonstrated parameter inference from Minkowski functionals in a cosmic shear
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survey. Their work is the first step toward the use of Minkowski functionals as a probe of
cosmology beyond the regular method of two-point statistics.

Convergence and shear are briefly described in Section 2.3. In fact, utilizing the Fourier
transform, they can be connected as

〈γ̂(k)γ̂(k)〉 =
〈
κ̂(k)κ̂

(
k′
)〉

= (2π)2C(k)δD
(
k− k′

)
, (54)

where the quantities marked withˆ̇indicate the corresponding values in the Fourier trans-
formation.

Cosmic shear could be adopted to measure the coherent distortion of background
galaxies, determine the matter–power spectrum, and illustrate the properties of dark matter.
Technically, we represent the distance prefactor as

DLS
DLDS

→ χS − χ

χSχ
, (55)

so that (31) is equal to

Ψ(θ) =
2
c2

∫ χS

0
dχ

χS − χ

χSχ
Φ(χθ , χ), (56)

where χ is the co-moving angular–diameter distance.
From (28) and (56), considering the extended lens, we can deduce the convergence κ

to be

κ =
4πG

c2

∫ χS

0
dχ

(χS − χ)χ

χS
a2ρ(χ), (57)

where ρ is the mass density.
Equation (57) means that κ is the geometrically weighted line-of-sight integral of ρ.

Noticing that ρ and its cosmological mean value ρ̄ are provided by

ρ = ρ̄δ, (58)

ρ̄ =
3H2

0
8πG

Ωm0a−3, (59)

where δ is the dimensionless density contrast, H0 is the Hubble constant, and Ωm0 is the
dimensionless matter–density parameter. Considering (57)–(59), the convergence κ is

κ =
3
2

H2
0

c2 Ωm0

∫ χS

0
dχ

χ(χS − χ)

χS

δ(χ)

a
. (60)

It follows from (60) that cosmological parameters are closely related to the evolution
of density contrast δ, which depends on local gravity and global geometry. Thus, cosmic
shear can be used to explain the accelerating expansion of the universe, that is, whether it
should be the existence of dark energy or the correction of gravitational theory.

By the linear growth factor D+(a) and the shape function P(k), the matter power
spectrum Pδ(k) is Pδ(k) = σ2

8 D2
+(a)P(k). It can be deduced that the power spectrum of the

shear (convergence) Ck(l) has the form that

Cκ(l) =
9
4

(
H0

c

)4
Ω2

m0σ2
8

∫ χS

0
dχ

[
D+(a)

a
χ(χS − χ)

χS

]2

P
(

l
χ

)
.

The convergence can be observed by considering the dark matter density contrast δm
with the number density of galaxies ng.

We can sketch the shape of a galaxy by the sheared two-point correlation function,
which is expressed as

ξ±(θ) =
〈
γt(xi)γt

(
xj
)〉
±
〈
γr(xi)γr

(
xj
)〉

, (61)
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where θ =
∣∣xi − xj

∣∣ is the angular distance between two galaxies. However, there are many
observational effects, such as the image distortion caused by the camera’s optical system,
which would affect the final analysis and the determination of the galaxy shape. In the
specific data analysis, multiple steps of correction are required. Therefore, it is necessary to
understand the impact of systematic errors on the final result.

E/B modules are a common way to assess systematic errors. Observable signals fall
into two categories, E-mode without rotation and B-mode sensitive to shear field rotation.
By setting the two-dimensional vector field u as

u ≡ ∇κ =

(
γ1,1 + γ2,2
γ2,1 − γ1,2

)
, (62)

the E-mode and B-mode can be defined by

∇2κE ≡ ∇ · u, (63)

∇2κB ≡ ∇× u = u2,1 − u1,2, (64)

∇2φE,B = 2κE,B. (65)

where (65) provides both E-mode and B-mode potentials.
B-mode can be used to determine the system residual values. There are many factors

that contribute to the creation of B-molds, such as physical factors and artificial factors.
For example, the PSF correction with some sort of approximation will result in a B-mode.
Another typical cause is the existence of intrinsic alignment, classified into II correlation
and GI correlation, which will produce a B-mode. The B-mode may decrease as the number
and density of the background galaxies increases. The following link shows the E/B modes:
https://www.cosmostat.org/wp-content/uploads/2017/04/EBmode2.png (accessed on
15 January 2023).

4.2. Lensing Signals

The lensing signal can be used to estimate the cosmological parameters and mass
distribution of galaxies [54]. It is a focus of current applications. Hamana et al. [55] studied
the dilution effect of galaxy cluster members and foreground galaxies on weak lensing
signals from galaxy clusters in HSC surveys. Lombardi et al. [56] detected clear weak lens
signals in i (F775W) and z (F850LP) filters for the first time at z > 1 using the Hubble Space
Telescope (HST).

It is not easy to accurately extract the lens signal, and a lot of information is often
discarded at the measuring and preprocessing stage. It is often said that we only observe
what we want to observe, and we agree. Here, we briefly describe the basic mathematical
methods for measuring signals.

After a series of preprocessing on the collected images, such as background removal,
source detection, cosmic rays, and bad pixel identification, we collect shear measurements
of the galaxy. Theli integrates the functions of multiple image processing softwares (e.g.,
sextractor and scmap) to find galaxies and stars on CCDs, identify cosmic rays, measure
astrometry and magnitude, and so on. Theli’s strategy for better background removal
is to model the background twice. The first time is to use the median value of the pixel
reading on the CCD to perform the overall background removal. The second time is to
find all the sources on the CCD and establish a background model again after subtracting
these sources. Once the detection of the source and background removal are complete,
astrometry is required. By matching the stars and reference stars in the CCD, the linear term
and nonlinear term coefficients required to transition from CCD coordinates to celestial
coordinates can be determined.

We need to separate the stars and galaxies once the sources on the CCD are ascertained.
According to the PSF effect, the ellipticity of the source is generally not 0. Although we
deconvolve the detected source, there still may be a residual PSF effect on the image.

https://www.cosmostat.org/wp-content/uploads/2017/04/EBmode2.png
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This effect statistically attenuates the galaxy’s gravitational lensing signal. The Fourier
quadrupole moment method can be adopted to solve this problem. Due to the different
statistical methods employed to calculate the shear signal, the presence of a star has no
theoretical effect on the weak lens signal. See Zhang et al. for details [57].

It is time to measure the shear after the separation of the star from the galaxy. Several
methods have been proposed, such as KSB [58], Lensfit [59], and the classical method
proposed by U. Seljak and M. Zaldarriaga [60]. Their idea is to provide a shear estimate
evolving the partial derivative of the galaxy’s brightness to the position. In Fourier space,
considering the PSF effect, the two components of the shear signal g1 and g2 can be provided
by three shear quantities: G1, G2, and N. Precisely,

〈G1〉
〈N〉 = −g1 + O

(
g3

1,2

)
, (66)

〈G2〉
〈N〉 = −g2 + O

(
g3

1,2

)
. (67)

More information can be referred to [61].
Perturbated by various factors, including geometric and physical ones, the telescope

twists the original shape of an object during the imaging. The image field distortion effect
is involved in the change of the source at the CCD position. If the detected source is a point
and if it is an extended source, the image field distortion is also reflected in the change in
the shape of the source. In addition, the weak lens formula can be used to calculate image
field distortion [62], and the image field distortion can also be used to check the accuracy
of galaxy deformation measurements.

4.3. Dark Energy and Dark Matter

In 1998, observations of Type Ia supernovae found that the brightness of the more
distant supernova was dimmer [63], indicating that the expansion of the universe is acceler-
ating. There are still two popular explanations for this phenomenon, namely, the existence
of dark energy with negative pressure and the modified theory of gravity. Since the in-
troduction of dark energy, a large number of dark energy models have been proposed,
such as RDE [64] and HDE [65]. The ΛCDM model is widely popular [66–68], and its
corresponding dark energy equation of state is

w(a) ≡ pde
ρde

= −1
3

d ln ρe

d ln a
− 1. (68)

We can regard weak gravitational lensing signals near low-density regions as cos-
mological probes to characterize the dark energy equation of state. This is because the
low-density region is less affected by the nonlinear evolution of matter and the behavior of
the baryon matter. Hence, it is an ideal region to test the dark energy models. According
to the different definitions of low-density areas, the corresponding measurement meth-
ods are also distinct. Using the article Gruen et al. [69] as an example, they smoothed
the density distribution of the foreground galaxies based on the photometric redshift of
bright red galaxies (redMaGiC), and obtained lensing signal measurements with high
signal-to-noise ratios.

When performing numerical simulations, it is normal to limit the parameters using
CMB measurements. Plenty of modified cosmological models involving more variable
parameters can be proposed.

Since Zwicky proposed the dark matter, several observations have supported this
hypothesis, such as V. Rubin et al.’s measurements of the rotation curves of the Spiral
Galaxy [70], and observations of the Bullet Cluster [71]. The density perturbation in
the universe enters a nonlinear evolution stage at a redshift of about 10, in which the
density disturbance intensity is higher than the critical linear density contrast δc and the
surrounding matter collapses under gravity to form a dark matter halo. The dark halo
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mass function is a good cosmological probe. This is because, under the deduction of linear
theory, a region collapses to form a self-binding gravitational system when the density
perturbation of it reaches deltac = 1.69. Therefore, considering the distribution of matter in
the universe to be a density perturbation field, we can predict the number of halos that this
density field will produce at any time, as long as the initial density field is deduced linearly
and the density of perturbations greater than deltac is counted [72]. The number of halos
with a mass of [M, M + dM] and a redshift of [z, z + dz] can be calculated as

d2N
dΩdz

=
r2(z)
H(z)

dn(M, z)
dM

dM, (69)

where n(M, z) is number density, which could be calibrated from numerical simulations.
The use of weak gravitational lensing signals to reconstruct the mass function of dark

halos stimulates gravitational lensing to be an important tool in the research of dark matter
halos. Assuming that the halo has a spherically symmetric density profile, NFW could
be utilized to fit the gravitational lensing signal around the dark halo. The mass function
of the halo can also be measured using an N-body numerical simulation. The accurate
measurement of the halo mass function is crucial for cosmological research, and may
provide more abundant and more accurate cosmological models.

Nowadays, the detection of dark matter and dark energy is developing, such as
in the detection of dark matter CDMS [73], AMS [74], and the research of dark energy
PLANCK [75] and BIGBOSS [76]. Astronomical observations can determine dark matter
from small- to large-scale structures. The evolution of the dark energy equation of state can
be investigated once the data have been accumulated and analyzed sufficiently. However,
there are still specifics to improve to overcome the limitations of detection such as redshift
information and supernova data. This will be a field of great value in the future.
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