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Abstract: We investigate the dynamics of test particles endowed with both electric charge and
a magnetic dipole moment around a Schwarzschild black hole (BH) immersed in an externally
asymptotically uniform magnetic field. We further analyse the effective potential and specific angular
momentum and energy of the particles. Furthermore, we show that the upper limit for magnetic
interaction parameter β increases with increasing cyclotron frequency ωB, while the radius of the
innermost stable circular orbit (ISCO) for charged test particles decreases for the upper value of
β = βupper. Furthermore, we show that the energy efficiency released from the BH increases up
to about 90% due to the presence of the magnetic dipole moment of the test particle. We explore
a degeneracy between the spin parameter of rotating Kerr BH and the magnetic parameter for the
values of the ISCO radius and energy efficiency. We study in detail the centre of mass energy for
collisions of charged and magnetized particles in the environment surrounding the Schwarzchild BH.
Finally, as an astrophysical application, we explore the magnetized parameter and cyclotron frequency
numerically for a rotating magnetized neutron star. Interestingly, we show that the corresponding
values of the above-mentioned parameters for the magnetar PSR J1745-2900 that orbits around the
supermassive black hole (SMBH) that exists at the centre of the Milky Way galaxy are ωB ' 5 and
β ' 0.67, respectively, for the magnetic field is about 10 G.

Keywords: magnetized particles; black holes; magnetic field; and centre-of-mass energy

PACS: 04.50.-h; 04.40.Dg; 97.60.Gb

1. Introduction

The presence of black holes is a generic property of Einstein’s general theory of gravity.
However, they had been so far considered as candidates since the discovery of gravitational
waves via LIGO-VIRGO detection was announced as a result of two stellar black holes
merging [1,2] as well as the first supermassive M87 black hole image under collaboration
of the Event Horizon Telescope (EHT) [3,4]. These observations give new prosperity in
understanding unexplored problems of black holes and the universe. It is well known
that particles and even photons are affected drastically due to the strong gravitational
fields of black holes. However, it is essential to explore other existing forces acting on
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particles moving around the black hole. These alternative forces are connected to the forces
caused by the magnetic field and other sources surrounding the black hole; however, these
forces, that are negligible or weak compared with the gravitational field, are effective for
astrophysical processes occurring around the black hole [5–12]. Of them, the magnetic
field can exert its powerful influence on particles near the black hole, although it is weak.
Knowing this, we investigate charged and magnetized particle motion around a static and
spherically symmetrical black hole placed in an external magnetic field, thus allowing us to
test the general theory of relativity in a strong gravitational field regime.

Recent modern astronomical investigations of the output (≈1042–1047 erg/s) from
active galactic nuclei (AGN) in various forms, such as winds and jets, have been detected
by X-ray, very long baseline interferometer (VLBI), and γ-ray telescopes. High-energy pro-
duction near a black hole horizon by means of two colliding particles was first theoretically
addressed by Banados, Silk, and West (BSW) [13] to model such a high-energy phenomenon.
Following [13] there has been a huge amount of work in the different frameworks of stan-
dard general relativity in recent years [14–30]. Furthermore, theoretical investigation of
high-energy phenomena associated with the well-known Penrose process was addressed
by authors of [31]. Recently, the relations of the collisional Penrose process with spinning
particles have been considered [32].

The magnetic field becomes very important not only in developing accurate theoretical
investigations of astrophysical processes but also as a powerful tool in the investigation
of the output from active galactic nuclei for the transition from high energy to jets [33].
However, black holes are not endowed with their own magnetic fields [34] because of
gravitational collapse decaying with t−1; instead, they invoke external magnetic fields
induced by nearby magnetars or neutron stars [35,36] and the accretion disc around rotating
black holes [5]. Hence, in an astrophysical scenario, the magnetic field can be regarded
as a test field, thereby not modifying the spacetime geometry [37–45]. An extensive
analysis was addressed for the magnetic field strength [46] and at the horizon radius [47,48].
Observational studies of the binary black hole system V404 Cygni in the infrared, optical,
X-ray, and radio wave regions reported that the strength of the magnetic field can be
around 33.1± 0.9 G (see, for example [49]). However, its strength was estimated to be
between 200 G and 8.3× 104 G [50]. A lot of work has been conducted [51–59] addressing
the charged particle motion around black holes placed in the electromagnetic field in a
variety of gravity models. There are also investigations that address an extensive analysis
on periodic motions in various gravity models [60–63]. In previous papers, we have
widely discussed the dynamics of magnetized and spinning particles in the environment
surrounding magnetized and magnetically charged black holes in various theories of
gravity (see, for example [64–78]).

Testing gravity theories using observational data from black holes is one of the most
important issues in relativistic astrophysics. In this sense, the GR is a well-tested theory.
In real astrophysical cases, it is impossible to “feel” the gravity theories dominating space-
time around black holes. However, these can be mimicked by electromagnetic interactions
between charged and magnetized particles with external magnetic fields around the black
hole in general relativity (GR). In fact, there are neutron stars and white dwarfs that have
not yet been observed in the vicinity of Sgr A* by the GRAVITY collaboration. One may con-
sider that the problem is connected to electromagnetic interactions. On the other hand, the
objects may have a high magnetic moment and fast rotation which may create an induced
electric field (charge); thus, it is important to compare the charge and magnetic moment
electromagnetic interactions between external magnetic fields. In this paper, we plan to
study the dynamics and collisions of test magnetized particles with electric charge around
a Schwarzschild black hole immersed in an external asymptotically uniform magnetic field,
taking into account electromagnetic interactions between the external magnetic field with
both electric charge and a magnetic dipole moment.
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The paper is organized as follows: In Section 2, we explore the motion of particles
possessing electric charge and a magnetic dipole in the spherically symmetrical black hole
placed in an external magnetic field. In Section 4, we focus on particle collisions that occur
very close to the black hole for specific collision scenarios. Section 5 is devoted to discussing
the relevance of the analysis for astrophysical applications. We end up with the concluding
remarks of the obtained results in Section 6. We use a system of units in which G = c = 1
throughout the paper.

2. Particles with Electric Charge and a Magnetic Dipole

In this section, we will propose a formalism to model the motion of particles endowed
with electric charge e and a magnetic dipole moment µ orbiting around a black hole
immersed in an external uniform magnetic field. The spacetime metric describing the
spherically symmetrical black hole is given by

ds2 = − f (r)dt2 +
1

f (r)
dr2 + r2(dθ2 + sin2 θdϕ2) , (1)

where f (r) has the form as

f (r) = 1− 2M
r

, (2)

with M referred to as the black hole mass.
Using the Wald method [5] the electromagnetic four-potential can be derived, corre-

sponding to the magnetic field around the BH in the following form,

Aφ =
1
2

B0r2 sin2 θ , (3)

where B0 is the asymptotic value of the external uniform magnetic field. One may immedi-
ately calculate the non-zero components of the electromagnetic tensor using the definition
Fµν = Aν,µ − Aµ,ν in the form

Frφ = B0r sin2 θ , (4)

Fθφ = B0r2 sin θ cos θ . (5)

The magnetic fields around the Schwarzschild BH, measured in the proper observer
frame of reference,

Bα =
1
2

ηαβσµFβσwµ , (6)

where, the four-velocity of the proper observer wµ is, ηαβσγ; and εαβσγ is the pseudo-
tensorial form of the Levi–Civita symbol, with the following relations:

ηαβσγ =
√
−gεαβσγ ηαβσγ = − 1√−g

εαβσγ . (7)

Here, g is the spacetime metric (1) g = −r2 sin2 θ. ε0123 = 1 is the Levi–Civita symbol
with even permutations, and for odd permutations, it is −1. Consequently, we have,

Br̂ = B0 cos θ, Bθ̂ =
√

f (r)B0 sin θ (8)

2.1. Equation of Motion

For a charged test particle with a magnetic dipole, we exploit the Hamilton–Jacobi
equation to describe its equation of motion as follows:



Universe 2023, 9, 135 4 of 22

gµν

(
∂S
∂xµ + eAµ

)(
∂S
∂xν

+ eAν

)
= −

(
m2 − 1

2
DµνFµν

)2

, (9)

where DµνFµν is regarded as scalar as the product of polarization Dµν and electromagnetic
field Fµν tensors and describes the interaction between the magnetic field and dipole
moment of the particle. The tensor Dµν and magnetic dipole of the particle are related by
the expression [35]:

Dαβ = ηαβσνuσµν, Dαβuβ = 0 , (10)

where µν and uν refer to the four-dipole moment vector and four-velocity of the particle
measured by a proper observer, respectively. The relationship between the electromagnetic
field tensor and electric Eα and magnetic Bα fields is given by

Fαβ = u[αEβ] − ηαβσγuσBγ . (11)

Taking into account the condition given in Equation (10) the product of polarization
and electromagnetic tensors for the proper observer is defined by

DµνFµν = 2µα̂Bα̂ = 2µB0

√
f (r) . (12)

For further analysis, we shall assume that the direction of the magnetic dipole moment
with components µα = (0, µθ , 0) is parallel with the magnetic field (i.e., perpendicular
to the equatorial plane). Thus, particle dynamics around a magnetized black hole at the
equatorial plane (i.e., θ = π/2 and θ̇ = 0) can be described by the following action

S = −Et + Lφ + Sr , (13)

With this in view, one can write the variables in a separate form in the Hamilton–Jacobi
equation. The radial motion of the particle can be then defined by

ṙ2 = E2 −Veff(r) , (14)

where Veff(r) for the radial motion takes the form

Veff(r) = f (r)

[(
1− β

√
f (r)

)2
+

(
L
r
+ ωBr

)2
]

, (15)

where L = L/m is the specific angular momentum of the particle and β = 2µB0/m is the
magnetic coupling parameter that describes the interaction between the dipole moment
and the magnetic field. Here, ωB = eB0M/(2m) is a dimensionless parameter and refers to
the “effective” cyclotron frequency (or the magnetic parameter).

In Figure 1, we demonstrate the radial profiles of the effective potential for the radial
motion of magnetized and charged test particles. In the figure, we show how positively and
negatively charged particles with a magnetic dipole as well as neutral particles affect the
effective potential of the radial motion. As can be seen from Figure 1 that positive values of
both the magnetic-coupling parameter and cyclotron frequency give rise to a decrease in
the strength of the potential, while for negatively charged particles its maximum is higher
in contrast to neutral particles. Alternatively, the magnetic field decreases (increases) the
height of the potential for positive (negative) magnetic parameter ωB accordingly.
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Figure 1. The radial dependence of the effective potential for magnetized and charged test particles.

Now we focus on stable circular orbits around the black hole. For circular orbits, the
following conditions for the effective potential and its first derivative must hold:

Veff = E2 , ∂rVeff = 0 . (16)

The above equations solve to give the specific angular momentum L and the energy E
of particles moving at the circular orbits, respectively:

L± =
1

r− 3M

[
−Mr2ωB ±P(r)

]
,

E± = Veff(r;L±) , (17)

where

P2(r) = r4ω2
B(r− 2M)2 + 2β2Mr

(
6M2 − 5Mr + r2

)
+ Mr2(r− 3M)

(
1− 3β

√
1− 2M

r

)
. (18)

It is easy to see from Equation (17) that there are the following symmetries in the
solutions of angular momentum:

L+ωB<0 = −L−ωB>0, L+ωB>0 = −L−ωB<0 (19)

In further analysis, we will study the solution L+.
The radial dependence of the corresponding specific energy and angular momentum

at the circular orbits is shown in Figure 2 for different values of the interaction parameters
ωB and β. It is certain that the corresponding values of the specific energy and angular
momentum increase with increasing ωB < 0, while they decrease as a consequence of the
increase in the magnetic interaction parameter β.
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Figure 2. Radial profiles of the specific energy (left panel) and angular momentum (right panel) for
magnetized and charged particles at the circular orbits.

For the innermost stable circular orbits (ISCOs), one needs to solve the following
equation

∂rrVeff ≥ 0 .

For magnetized and charged particles around the black hole in the magnetic field, the
above equation implicitly gives the ISCO radius from the condition:

0 ≤ r
{

M2
(

68r3ω2
B − 9r− 12P(r)

√
rωB

)
+ M

(
2P(r)r3/2ωB − 30r4ω2

B + r2
)

(20)

+ 6M3
(

3− 8r2ω2
B

)
+ 4r5ω2

B

}
+ 3βM(r− 3M)

×
{

2β

3

(
6M2 − 6Mr + r2

)
− 9M2 − 7Mr + r2√

f (r)

}
,

In Figure 3, we show the ISCO radius as a function of parameters ωB (left panel) and
β (right panel) for different values of β and ω, respectively. It is clearly seen that the ISCO
radius decreases with increasing cyclotron frequency ωB. We notice that the decreasing
rate for the ISCO radius is slightly stronger for negatively charged particles in comparison
with positively charged particles.
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Figure 3. The dependence of the ISCO radius on the parameters ωB (left panel) and β (right panel).

Moreover, it is seen from the figure that there is an upper value of the parameter β of
the particles with positive electric charge ωB, while the upper value for electrically neutral
magnetized particles is β = 2/3, and in that value of β the ISCO lies at infinity. This means
that the particles with β = 2/3 cannot be in stable orbits around magnetized black holes.
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The upper value of parameter β increases as ω increases. However, the ISCO radius is
limited in the case of ω > 0, and it decreases as the ω parameters increase. Therefore, we
are now interested in which relationships of parameters ωB and β the ISCO radius takes
the value rISCO = 6 M; the same as ISCO radius of electrically neutral particles around the
Schwarzschild black hole. We provide relations between the parameters ωB and β for a
constant ISCO radius in Figure 4.

6M

5M

7M

10M

5M

0.0 0.2 0.4 0.6 0.8 1.0

-0.04

-0.02

0.00

0.02

0.04

β

ωB

Figure 4. Possible values of parameters ωB and β for a ISCO radius between 5 and 10 M.

One can see from the figure that there is no symmetry in that relationship with respect
to ωB → −ωB. The line at rISCO = 6 M is closed, but for the cases when rISCO 6= 6 M one
can see cutting the values of the parameters limited by the dashed lines.

2.2. Energy Efficiency

The Keplerian accretion around astrophysical black holes can be used to model the
geometrically thin disk governed by properties of circular geodesics in spacetime [79]. The
energy efficiency of the accretion disk refers to the maximum energy extracted as radiation
as that of falling matter into the black hole from the disk.

Energy efficiency can be obtained by taking the following expression

η = 1− EISCO, (21)

where EISCO is the particle energy at the ISCO radius, characterized by the ratio of the
binding energy (BH-particle system).

In Figure 5, we show the dependence of the energy efficiency on the magnetic-coupling
parameter for different values of the cyclotron frequency.

As shown in Figure 5 the energy efficiency linearly grows when increasing the param-
eter β, while it slightly increases as a consequence of the positive values of ωB. In contrast,
for positive values, it is observed that the energy efficiency decreases similar to nega-
tively charged particles. For simplicity, we show the numerical calculations to understand
in depth the behaviour of energy efficiency. The efficiency reaches 88.6% in the case of
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particles with zero electric charges (i.e., ωB), while its highest values reaches ∼84% for
ω = ±0.01 and up to∼70% for ω = ±0.05 for the corresponding upper values of parameter
β. These numerical results imply that the model considered here may be helpful to explain
in depth the source of highly energetically charged and magnetized (elementary) particles
in cosmic rays.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40

60

80

β

η
,%

ωB=0

ωB=0.01

ωB=-0.01

ωB=0.05

ωB=-0.05

Figure 5. Dependence of the energy efficiency on the magnetic-coupling parameter β for different
values of the parameter ω.

3. Spin of Kerr BH versus Magnetic Interactions

Relying on astrophysical observations with so-called accretion disk luminosity, quasiperi-
odic oscillation (QPO) analysis (i.e., the QPOs possessing the X-ray power observed in mi-
croquasars as a primary source of low-mass X-ray binary systems including neutron stars
or black holes) and observations related to the ISCO measurements around black holes,
it is believed that black holes can be regarded as rotating Kerr black holes. However, in
theoretical studies of direct/indirect measurements in the context of alternative theories of
gravity, another gravity parameter can be obtained, thus being an alternative to the spin of
a rotating Kerr black hole. Here the challenging question is how to distinguish the black
holes with the help of these above-mentioned measurements.

To settle this question, one can analyse mimicking cases for several gravity parameters,
and so one is able to distinguish these parameters from the spin parameter of the Kerr black
hole (see, for example [76]).

3.1. In the Same ISCO Radius

With the above motivation, one can compare the ISCO radius around the Schwarzschild
black hole embedded in the magnetic field with the one around the Kerr black hole.

In Figure 6, we show the degeneracy for the ISCO radius value between the parameter
β and the spin parameter in the case of different values of parameter ωB. As can be
seen from Figure 6, in the case of β = 0.417129 it can mimic the spin of an extreme
rotating Kerr black hole (i.e., a = M) for electrically neutral particles. Moreover, based
on the numerical calculations, we show that β can mimic the spin parameter a up to
a/M =0.551657 (a/M = 0.23889) for the fixed ωB = 0.05 (ωB = −0.05), while up to
a/M = 0.6337 with its upper value β = 0.4256.
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Figure 6. Degeneracy between parameter β and a, i.e., for a given value of β there exists a Kerr
geometry with a given value of spin parameter a/M that has the same ISCO radius for various
combinations of parameter ωB. The point to be noted here is that a/M represents a black hole rotation
(spin) parameter.

3.2. In the Same Accretion Disk Luminosity

In this subsection, we analyse the energy efficiency, which is relevant to the total
bolometric luminosity of the accretion disk around a black hole. Note that the bolometric
luminosity is proportional to the efficiency of the energy release from the black hole, i.e.,
η = Lbol/(Ṁc2) with Ṁ being the rate of accretion matter falling into the black hole [73,80].
Thus, it is of primary importance in astrophysical observations.

Figure 7 shows the same behaviour as Figure 6 for the same energy efficiency. Here,
the parameter β mimics the spin parameter up to a/M ∈ (0.752–1) for its corresponding
values β ∈ (0–0.1786), while for particles with ωB = 0.05 (ωB = −0.05) it mimics up to
a/M ∈ (0.4617–1) and (a/M ∈ (0.8724–1)), respectively.
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β

Figure 7. Degeneracy between the parameter β and the spin parameter of Kerr BH, providing the
same energy efficiency for different values of parameter ω.
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4. Particle Collisions

It is still of primary importance to estimate the total amount of energy released
by various relativistic astrophysical processes occurring around compact gravitational
objects. It is well known that the luminosity of AGN is of order 1045erg/s and powered by
supermassive black holes.

There are several models proposed to extract energy from rotating black holes. Pen-
rose first proposed a mechanism for energy extraction from black holes [81]. Later, this
mechanism was developed by a number of authors [31,55,82]. According to the Penrose
mechanism, when a falling particle enters the so-called ergosphere restricted by an event
horizon at one end and by the static radius at the other, it can be decayed into two particles,
i.e., one falls into the black hole and the other escapes to infinity with energy greater than
initial one. This is precisely what has been shown with explicit calculation by the Penrose
mechanism. Note that energy efficiency with this process is relevant to how large the
ergoregion is, i.e., the energy released becomes larger if the ergoregion is large.

Another interesting process was theoretically studied by Banados–Silk–West
(BSW) [13,22] considering the high-energy collisions of particles in the vicinity of the
black hole horizon. In this context, a large amount of work has since been developed in
various situations [16–24,26–29,70,83–86]). It has been shown that the energy efficiency
extracted from the central black hole is more effective in the cases of head-on collisions.

Here, we wish to address the study of high-energy collisions between neutral par-
ticles and electrically charged particles with a magnetic dipole in the background of a
Schwarzschild BH immersed in an external asymptotically uniform magnetic field. Here,
we assume that particles come from infinity with E1/m1 = 1 and E2/m2 = 1. Follow-
ing [13] we use the following general expression for the centre-of-mass energy Ecm extracted
by collisions of two particles.(

1√−g00
Ecm, 0, 0, 0

)
= m1uµ

(1) + m2uν
(2), (22)

with uµ

(1) and uν
(2) being the four-velocities and m1,2 being rest masses of the particles. By

proposing the normalization condition, gµνuµuν = −1, we obtain the expression for Ecm as

E2
cm

m1m2
=

m2
1 + m2

2
m1m2

− 2gµνuµ
1 uν

2 . (23)

Hereafter, for simplicity we consider the equal masses m1 = m2 = m. In doing so, we
study the high-energy collisions of particles.

4.1. Critical Angular Momentum

In this sub-subsection, we study the critical value of the angular momentum of collid-
ing particles. The centre-of-mass energy of colliding particles reaches its maximum near
the horizon, for this reason the particles must come close to the BH. To move towards
the BH, the radial velocity of the particles should meet the ṙ2 ≥ 0 condition. ṙ2(L) is the
function of the angular momentum of the particles as well as the other parameters. An
increase in angular momentum decreases radial velocity near the BH, and if the angular
momentum is higher than its critical value then ṙ2 becomes negative or, in other words,
there are turning points before reaching the BH’s horizon. We can find critical values of the
angular momentum by solving two equations: ṙ = 0, and ∂r ṙ = 0. Furthermore, we have a
non-linear system of equations which can be solved numerically.

In Figure 8, the dependence of the critical values of the angular momentum on the
magnetic-coupling parameter β is illustrated by varying the magnetic parameter ω from
positive (left panel) to negative (right panel). It can be seen that larger values of the
magnetic-coupling parameter β and magnetic parameter ω correspond to larger values of
the angular momentum;
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Figure 8. The dependence of critical angular momentum on parameter β with the different values
of ωB.

4.2. Collisions of Neutral and Electrically Charged Particles

In this subsection, to compare the collision scenarios between charged particles with a
magnetic dipole, we shall first consider collisions between neutral and positively (nega-
tively) charged particles as stated by Equation (23). Let us write the equations of motion
for neutral particles as follows:

ṫ =
E

f (r)
, ṙ2 = E2 − f (r)

(
1 +

l2

r2

)
and φ̇ =

l
r2 . (24)

and for charged particles

ṫ =
E

f (r)
, ṙ2 = E2 − f (r)

[
1 +

(
l
r
−ωBr

)2]
,

φ̇ =
l

r2 −ωB . (25)

Substituting Equations (24) and (25) into Equation (23), we are able to define the
centre-of-mass energy Ecm as

E2
cm = 1 +

E1E2

f (r)
−
(

l1
r2 −ωB

)
l2 (26)

− 1
f (r)

√√√√√
E2

1 − f (r)

1 +

(
l1
r
−ωBr

)2


{
E2

2 − f (r)

(
1 +

l2
2

r2

)}
.

Here, let us then analyse the behaviour of Ecm extracted by the collision between
positively charged and electrically neutral particles for different values of ωB > 0.

In Figure 9, we show the radial dependence of Ecm for colliding electrically charged
and neutral particles for different values of ωB including the particle charge. The left
panel shows the impact of ω > 0 on the radial profile of Ecm extracted by the collision
between positively charged and neutral particles, while the right panel shows the impact of
ωB < 0 for the collision between test particles and negatively charged particles. As shown
in Figure 9, one can observe that Ecm energy increases with increasing ω very near to the
horizon as a consequence of the interaction between charged particles and the magnetic
field. From Figure 9, one can easily notice that all coloured curves match with the black one,
provided that the external magnetic field is switched off. Note that all curves intersect at the
horizon, taking the same values for Ecm due to the dominant effect of the gravitational field.
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Furthermore, one can observe that the curves are cut at a critical distance from the BH. This
happens because the Lorentz force arising from the external magnetic field dominates over
the rest of the forces, thus drastically affecting the charged particle geodesics. Ecm energy
for collisions of neutral–neutral particles reaches

√
2m0c2, while it continues to increase

with the increase in ωB for charged particles.
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Figure 9. Figure shows the radial dependence of Ecm of the collisions of two positively and negatively
charged particles with electrically neutral particles on the different values of the charge.

4.3. Collisions of Electrically Neutral and Magnetized Particles

In this subsection, we study Ecm energy extracted by the collision between magnetized
and neutral particles. Similarly, the equations of motion for particles with a magnetic dipole
moment are defined by

ṫ =
E

f (r)
,

ṙ2 = E2 − f (r)

[(
1− β

√
f (r)

)2
+

l2

r2

]
,

φ̇ =
l

r2 . (27)

For this case, substituting Equations (24) and (27) into (23) Ecm takes the form as

E2
cm = 1 +

E1E2

f (r)
−
(

l1
r2 −ωB

)
l2 (28)

− 1
f (r)

√√√√E2
1 − f (r)

(
1 +

l2
1

r2

)√√√√E2
2 − f (r)

[(
1− β

√
f (r)

)2
+

l2
2

r2

]
.

In Figure 10, we show the radial dependence of Ecm on the collision of neutral and
magnetized particles without charge for different values of the magnetic parameter. The
left panel shows the impact of the magnetic parameter β on the radial profile of Ecm energy
extracted by the collision between positively magnetized particles and neutral particles,
while the right panel shows the impact of β on the collision between test particles and
negatively magnetized particles.
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Figure 10. The same as Figure 9 but for collisions of neutral-magnetized particles with positive
magnetic dipole particles.

As seen in Figure 10, one can infer that Ecm energy decreases with the increase in the
value of magnetized particles very near to the horizon, similar to the interaction between
magnetized particles and the magnetic field surrounding the black hole.

4.4. Charged-Magnetized

The expression for the centre-of-mass energy of charged and magnetized particle
collisions can be described by the following expression:

E2
cm = 1 +

EiEj

f (r)
−
(

li
r2 −ω

(i)
B

)
lj −

√
E2

i − f (r)
[

1 +
( li

r
−ω

(i)
B r
)2
]

(29)

× 1
f (r)

√√√√E2
j − f (r)

[(
1− β j

√
f (r)

)2
+

l2
j

r2

]
. (30)

where i and j can be taken as 1 and 2, and they cannot be equal to each other.

4.4.1. Positively Charged Particle–Magnetized Particle with Positive β

In Figure 11, we show the radial dependence of Ecm for two colliding charged and
magnetized particles.

2 3 4 5
1.5

1.6

1.7

1.8

1.9

2.0

r/M

ℰcm

β1=ω2=0; β2=0.23 ω1=0.3

ω1=0.25

ω1=0.20

ω1=0.15

2 3 4 5
1.5

1.6

1.7

1.8

1.9

2.0

r/M

ℰcm

β1=ω2=0; ω1=0.3 β2=0.1

β2=0.4
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Figure 11. The same as Figure 9 but for collisions of positively charged particles with no magnetic
dipole-positive magnetized particles with no charge.
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We now focus on a collision scenario in which the collision between charged parti-
cles without a magnetic dipole and magnetized particles without electric charge is taken
into account.

The left panel of Figure 11 shows the impact of the parameter ω1 including different
values of charge on the radial profile of Ecm for fixed β2, the right panel shows the impact
of β2 including different values of the magnetic dipole for fixed ω1.

From Figure 11, interestingly, one can deduce that Ecm energy grows up as the param-
eter ω1 increases. Note here that an increase in the value of ω1 gives rise to the increase
of the particle charge accordingly. Moreover, one can see from the right panel that the
extracted energy is similar behaviour for all values of the magnetic coupling parameter
at the distance around the horizon, while in the case of far away from the horizon, we
observe that an increase in the value of the coupling parameter leads to the decrease of
Ecm energy. This happens because, at a far distance from the horizon, the gravitational
force starts dominating over the force arising from the external magnetic field affecting the
particle’s geodesics. This continues up a critical distance and beyond which Ecm energy
grows again.

4.4.2. Negatively Charged Particle–Magnetized Particle with Positive β

In Figure 12, we show the radial dependence of Ecm for two colliding negatively
charged particles and magnetized particles with β > 0.
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β2=0.5

β2=0.9

Figure 12. The same as Figure 9 but for the collisions of negatively charged particles with non-dipole-
positive magnetized particles with no charge.

Note that here the magnetized particle and charged particle parameters are given by
β1 = 0 and ω2 = 0, respectively.

The left panel of Figure 12 shows the impact of parameter ω1 including different
negative charges on the radial profile of Ecm for fixed values of magnetized particle β2,
while the right panel shows the impact of β2 for fixed ω1 for negatively charged particle.
This clearly shows that Ecm energy increases with the increase in charged particles near to
the horizon, similar to the interaction between the particle’s electric charge and external
magnetic field.

From Figure 12, the curves merge at the horizon; however, the initial energy takes a
larger value as one increases the magnetic field while keeping the value of the negative
charge fixed. As was mentioned above, curves are cut at a particular distance from the
black hole. This happens because of the dominance of the Lorentz force drastically affecting
the particle geodesics, thereby leading to the absence of particle collisions at that distance
(left panel). However, the opposite is observed for the below one. For this, curves start at
the same point and end at 2 M, thus indicating that the magnetic-coupling parameter β2
has little effect on Ecm energy (right panel).
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4.4.3. Positively Charged Particle–Magnetized Particle with Negative β

In Figure 13, we show the radial dependence of Ecm energy extracted by the collision
of two particles endowed with charge and a magnetic dipole. In the left panel, the different
charge values are used to fix the magnetic dipole, while both the values of charge and the
magnetic dipole are used in the right panel. In contrast, in the left panel, as a consequence of
the increase in the particle charge value, the collision between particles occurs at a distance
close to the horizon with larger Ecm energy (Figure 13 (right panel)).
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Figure 13. The same as Figure 9 but for collisions of positively charged particles with non-dipole-
negative magnetized particles with no charge.

4.5. Particles Collision Having Electric Charge and a Magnetic Dipole

In Figure 14, we show the radial profile of Ecm energy for two colliding electrically
charged particles for the different particle charge values. The left panel shows the combined
effects of positively charged particles having the magnetic dipole on the radial profile of
Ecm energy for different values of the magnetic-coupling parameter β, while the right one
reflects the combined effects of positively charged particles for different values of parameter
ω in the case of fixed β. As seen in Figure 14, the collision occurs at a particular distance
close to the black hole with larger Ecm energy. Regardless of this fact, the curves in both
panels approach Ecm energy at 2 M.

E2
cm = 1 +

E1E2

f (r)
− r2

(
l1
r2 −ω

(1)
B

)(
l2
r2 −ω

(2)
B

)
− 1

f (r)

×

√√√√E2
1 − f (r)

[(
1− β1

√
f (r)

)2
+
( l1

r
−ω

(1)
B r
)2
]

×

√√√√E2
2 − f (r)

[(
1− β2

√
f (r)

)2
+
( l2

r
−ω

(2)
B r
)2
]

. (31)
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Figure 14. The same as Figure 9 but for the collisions of two positively charged particles with a
magnetic dipole for different values of ωB (left panel) and β (right panel).

5. Particles with Electric Charge and a Magnetic Dipole Moment in Astrophysics

It is worth noting that current astronomical observations associated with very long
baseline interferometers (VLBI) [1,2], black hole cameras, and EHT [3,4] have been regarded
as viable sources to provide very useful tests to precisely measure the parameters related
to astrophysical black holes. Furthermore, Sgr A* existing at the centre of the Milky Way
galaxy has currently been considered the leading astrophysical laboratory to understand
in depth the nature of the black hole accretion disk, jet formation, and magnetic field
structure in the surrounding black hole environment [87–90]. In this context, in a realistic
astrophysical scenario, it is particularly important to take into account the motion of neutron
stars orbiting around supermassive black holes, such as Sgr A*, as well as the motion of
elementary particles (i.e., protons) that exist in an accretion disk around the stellar black
hole. With this in view, we further wish to make an approximate numerical analysis to
estimate the values of ω and β for neutron stars and elementary particles.

5.1. Neutron Stars and White Dwarfs as Test Particles with a Magnetic Dipole Moment and
Electric Charge

It is worth noting that the magnetic field configuration for astrophysical neutron stars
and white dwarfs behaves as a dipolar structure. This happens because an induced electric
field generates high magnetic fields due to rapid rotation.

Let us now focus on the magnetic interaction parameter and cyclotron frequency
corresponding to the interaction between the external magnetic field and charged particles.
Here, we can consider a magnetized neutron star for the test particle, having a magnetic
dipole and electric charge. As is known, neutron stars refer to the rapid rotation of stars
and thus have a tremendous surface magnetic field.

Of them, neutron stars appear with a slightly different nature, according to which
the magnetic field lines are not aligned with the rotational axis due to the fact that, at
the surface of the star, an induced electric field is created due to the rapid rotation, i.e.,
Eind = (1/c)ΩRBs with Ω being the angular momentum of the neutron star. In other
words, the induced electric charge plays an important role in generating the induced
electric field. Therefore, the particles with an electric charge considered here may have
interesting consequences in the magnetized neutron star applications. With this motivation,
we then further estimate the values of the dimensionless parameters β and ω using a
geometrized system tabulated in Table A1.

Here, we can assume that a neutron star is a magnetized particle with µ = (1/2)BNSR3
NS

and orbits around a supermassive black hole in the case of an external magnetic field with
different configurations. Thus, the magnetic-coupling parameter β can be easily estimated
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with the help of the observational parameters of the neutron star and the approximate
value of the external magnetic field for a supermassive black hole.

Let us now evaluate β and ω for neutron stars and white dwarfs orbiting a supermas-
sive black hole in the case of an external asymptotically uniform magnetic field.

With this in view, we separate the parameters of NS/WD and BH from the external
magnetic field using the dimensionless parameter α, responsible for the object’s parameters.

β = αMBHBext; α =
BNS/WDR3

NS/WD

MNS/WDMBH
. (32)

From the above equation, we can easily calculate α for the NS and SMBH systems,

αNS = 0.259
B12R3

6
M14M6

, αWD = 3.75
B4R3

9
M1M6

, (33)

where B12 = BNS/(1012G) and B4 = BWD/(104G) are the dimensionless surface magnetic
fields of the NS and WD normalized to 1012G and 104G, respectively; R6 = RNS/(106cm)
and R9 = RNS/(109cm) are the normalized radii of the NS and WD to 10 km and 104,
respectively; and the mass of the star, WD and SMBH is also given in the normalized form
as M14 = MNS/(1.4M�), M1 = MWD/(M�) and M6 = MBH/(106M�), respectively.

Thus, the parameter β can be estimated using Equations (32) and (33), and thus
we have

βNS = 0.032
B12R3

6B2

M14
, βWD = 0.451

B4R3
9B2

M1
, (34)

where we have defined B2 = Bext/(102G).
A neutron star or white dwarf, owing to its rotation, creates an induced electric field

that is proportional to the surface magnetic field Eind = ΩRB, and the induced electric
charge is defined as

qind = EindR2
NS/WD , Eind = ΩNS/WDRNS/WDBNS/WD . (35)

Now, we evaluate the value of the total induced charge for typical NSs and WDs.

qind(NS) = 2.1× 106R3
6B12P−1

s cm

= 2.525× 1021R3
6B12P−1

s Coulomb

qind(WD) = 1.7× 104R3
9B4P−1

3 cm

= 1.972× 1019R3
9B4P−1

3 Coulomb (36)

and the charge-to-mass relation

qind(NS)

MNS
' 10.35

R3
6B12

Ps M14
,

qind(WD)

MWD
' 0.0185

R3
9B4

P3M1
, (37)

Using the above assumptions, one can estimate the magnetic parameter for NSs
and WDs.

ωB(NS) ' 0.221
R3

6B12B2M6

M14Ps
, ωB(WD) ' 0.00227

R3
9B4B2M6

M1P3
,

where Ps and P3 are the period of the NS and WD measured in seconds PNS/(1 s) and
PWD/(103 s), respectively.

Now, we can obtain the relationships between the parameters β and ωB for NSs and
WDs in the following form:

ωB(NS) ' 6.9βNS
M6

Ps
, ωB(WD) ' 5× 10−3βWD

M6

P3
. (38)
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As is seen from Equation (38), the charge interaction is larger than the magnetic dipole
in NSs, while in WDs the magnetic dipole interaction dominates.

One may apply the calculation to estimate the value of the magnetic-coupling parame-
ter for a realistic case of the magnetar SGR (PSR) J1745–2900 orbiting around Sagittarius A*
(Sgr A*). Through the estimation of the coupling parameter, we considered the magnetic
field around Sgr A* to be in the order of 10 G, the magnetic dipole moment of the magnetar
µ ≈ 1.6× 1032 G ·cm3 and its mass m ≈ 1.4M� [91]. Consequently, the value of β for the
system is β ' 0.67, ωB ' 5, where the magnetic field is Bext =10 G and its induced charge
is about ∼1024 C. These estimated high values of the parameters β and ωB can explain the
further position of the magnetar from Sgr A* and implies that due to the huge magnetic
interactions, up to now, only NS has been observed.

5.2. Electron and Protons as Candidates for Particles with Electric Charge and a Magnetic
Dipole Moment

Moreover, our calculations, using Tables A1 and A2, show that the parameter β for
electrons in the magnetic field B normalized to 102 G is about βe ' 2.3 · 10−12 B2, while for
protons βp ' 8.2 · 10−7 βe and neutrons βn ' 5.4 · 10−7 βe. While, ωB ' 1016 for electrons
and ωB ' 1013 for protons. It can be seen from these values of β that the dipole moment
interaction is almost negligible for elementary particles. This means that electrons and
protons can only be considered charged particles in the presence of external magnetic fields.
However, in the absence of external magnetic fields, the dynamics of the particles are the
same as neutral particles.

6. Conclusions

In this paper we studied the dynamics of electrically charged particles with a magnetic
dipole moment using a “hybrid” form of the Hamilton–Jacobi equation. We derived a
general form for the effective potential for radial motion. We further analysed the effective
potential. As a consequence of ISCO analysis we showed that particles can be stable in
circular orbits if, and only if, they have a magnetic moment with an magnetic parameter
upper limit of β > 2/3. We showed that the upper limit increases as a consequence of the
increase in parameter ωB, while the ISCO radius decreases for βupper.

Furthermore, we studied the energy efficiency released from a BH as a result of charged
particles possessing a magnetic dipole and electric charge and orbiting around the accretion
disk as stated by the Novikov–Thorn model. We showed that the energy efficiency increases
by up to ∼93% as a consequence of the presence of a magnetic dipole. Interestingly, we
realized that increasing the particle charge leads to a decrease in energy efficiency.

It is particularly important to understand possible black hole mimickers. In this regard,
we studied whether the effect of the magnetic interaction could mimic the spin of Kerr BHs,
thus providing the same ISCO and energy efficiency. We showed that the spin parameter
can mimic the magnetic-coupling parameter up to nearly β ≈ 0.15 with a possible range
of a/M ∈ (0.75÷ 1) for electrically neutral particles. For positively (negatively) charged
particles, the above range expands (shrinks) to a/M ∈ (0.4÷ 1) (a/M ∈ (0.87÷ 1)). The
process becomes quite different in the case of the same energy efficiency such that the
spin parameter can mimic the magnetic-coupling parameter up to β = 0.4 for the neutral
particles, while β can mimic the spin parameter up to a/M ' 0.46 within the range β ' 0.41
for positively charged particles with ωB = 0.05 and only up to a = 0.264 within the range
β = 0.63 for the negative particles.

For the collision between charged and magnetized particles, we showed that the
collision of electrically charged particles limits the collision area, i.e., the area shrinks
(expands) when increasing particle charge (magnetic dipole moment).

We have interpreted neutron stars and elementary particles such as electrons, protons,
and neutrons, estimating their magnetic interaction parameter and cyclotron frequencies
where the magnetic field is about 100 G. We have shown that the magnetic interaction of
elementary particles is almost negligible.
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In the next project, we plan to consider possible comparisons with the event GW170817
neutron star–neutron star collision energy. It would be of primary importance to understand
the dynamics of magnetized objects carrying electric charges.
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Appendix A

Table A1 displays the details used to convert into sm unit.

Table A1. Units and conversions in Gaussian and geometrized systems.

Gaussian Geometrized Conv.

Period 1 s 2.99× 1010 cm c
Mass 1 g 7.42× 10−29 cm G/c2

Electric charge 1 statC 2.87× 10−25 cm
√

G/c2

Magnetic field 1 Gauss 8.16× 10−15 1/cm
√

G/c

Table A2. The realtion between elctron, proton and neutron.

q, e m, me µ, µB

Electron, e −1 1 −
Proton, p 1 1836 1.5 · 10−3

Neutron, n 0 1839 −10−3
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