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Abstract: In the present paper, strong deflection gravitational lensing is studied in a conformal gravity
black hole. With the help of geometric optics limits, we have formulated the light cone conditions for
the photons coupled to the Weyl tensor in a conformal gravity black hole. It is explicitly found that
strong deflection gravitational lensing depends on the coupling with the Weyl tensor, the polarization
directions, and the black hole configuration parameters. We have applied the results of the strong
deflection gravitational lensing to the supermassive black holes SgrA∗ and M87∗ and studied the
possibility of encountering quantum improvement. It is not practicable to recognize similar black
holes through the strong deflection gravitational lensing observables in the near future, except for the
possible size of the black hole’s shadow. We also notice that by directly adopting the constraint of the
measured shadow of M87∗, the quantum effect demands immense care.

Keywords: strong deflection gravitational lensing; conformal gravity; black hole physics

1. Introduction

Conformal (Weyl) gravity is a curious gravitational theory in four dimensions defined
through the action provided by the Weyl tensor square, where Scon f =

∫
d4x
√

gW2. The
Weyl’s transformation of the metric (gαβ → Ω2(x)gαβ) is a specific symmetry of that action.
This theory has appeared periodically for many causes. It was studied as a desirable UV
culmination of gravity [1–3] and also for the useful setting up of supergravity theories [4,5]
as a result of twistor string theory [6]. Recently, conformal (Weyl) gravity, formulated by
Weyl’s pure square action, has been considered a good substitute for Einstein’s gravity.
From the symmetry of conformal gravity and the equation of motion, the conformal
solution to Einstein field equations emerges naturally as a solution to conformal gravity.
Basically, depending on the state of the Neumann boundary, gravity may agree with
Einstein’s solution [7,8]. Moreover, in contrast to Einstein’s gravity, conformal gravity
has been proven to be repetitive in terms of four dimensions [9], resulting in exciting
forms of quantum gravity [10]. Another interesting feature of conformal gravity arises
from cosmology. Though Einstein’s gravity can fully explain the physics at a solar system
scale, there are some unresolved issues when considering large scales, which include
incompatibility detection of galactic curves and accelerating space. As a result, anonymous
organizations that are “dark matter and dark energy” should be introduced to address these
problems of non-compliance. Therefore, one may think of the possibilities for changing the
state of gravity for the explanation of physics at larger scales while preserving the right
character at the solar system scale. Moreover, conformal gravity allows for more solutions
than Einstein’s, which can yield effective energy in tandem with this visual object, making
it an attractive gravitational view [3,11–14]. Conformal gravity as well as Einstein’s gravity
can share similar solutions of spacetime, and a black hole’s thermodynamic quantities, such
as the mass and entropy, depend on the action instead of the line element.
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The difference in action can be explained by how the thermodynamics of black holes
for two different magnetic fields can vary. The thermodynamical phase structure of this
conformal gravity in 4D (A)dS black hole spacetime was examined [15–18]. The formation
of a conformal gravity contains two types of equations for statistics. One is a zero-order
phase transformation, while the other is a Hawking Page-like transformation. Now, we give
a brief review of gravitational lensing, which occurs due to the bending of light rays when
they pass nearby the massive object [19] and the object produces a noticeable deviation,
termed a gravitational lens. Now, this strong deflection (SD) lensing phenomenon has
been proven to be a major tool for detecting the existence of gravitational waves and black
holes in the cosmos [20]. In 1959, for the first time, it was predicted by Darwin [21] that
the light emitted by a large deviation could prevent many loops before its escape when
light rays pass too close to astrophysical structures such as black holes, and reliable images
appear on all sides of the object. In addition, the information contained in the photographs
involved can be useful in the study of the properties of massive objects in the cosmos. This
research could play a significant role in studying other theories of gravity in its strongest
deviation field [22–32]. Eiroa [33] explored the physical profiles of photons in Born–Infeld
electrodynamics and pointed out that the geodesics method depends on the Born–Infeld
combination. The nature of gravity is widely discussed in many theories of gravity [34–42],
and it has been proven to be a major aspect of celestial bodies. It is known that the dynamic
force of gravity depends on the formation of the curvature of the background, the powerful
features of photons, and the interaction of light with various other fields. Actually, light is
considered to be a type of electric wave. The distribution of photons will be altered due
to the coupling between the electromagnetic tensors and the curvature, resulting in some
incidents of SD gravitational lensing.

Drummond [43] found that the effective action of photons is achieved by single-loop
vacuum polarization when a similar kind of coupling is applied in quantum electrodynam-
ics (QED). By considering the effective field theory, the coupling of the electromagnetic
field and the Riemann curvature tensors is considered to be quantum, and hence all the
combined terms remain small. Thus, the combined terms must have values of the second
order of the Compton wavelength of the electron λ̃e. Turner [44] found more interesting
results than the electromagnetic variation by rethinking the Drummond model [43] with
the coupling combination. Ni [45,46] presented a generalized electrical model and proved
that the electrical power with the Riemann curvature tensor is often combined at the in-
tervals of integration. Ni’s electric model [45,46] has been discussed extensively [47–53].
Such kinds of model have been thoroughly studied for the specific selection of constants
in [44–61] for the cause of further physical attraction. Ritz and Ward [62] showed that the
electric power of Weyl’s adjustment and the global relationship with the average payout
of U(1) has a changing holographic conduction after the (A)dS space period. The value
of the critical temperature and the order of the phase are altered in the origination of
holographic superconductors [63–70]. The powerful evolution and the Hawking radiations
for electromagnetism have dependence on the integration parameter of the field [71–75].

The authors of [76,77] measured the weak as well as SD gravitational lensing that
removes the gravity of photons attached to the Weyl tensor and found the SD angle, the
angular separation, and the brightness variation among the relativistic picture outcomes.
Moreover, the time delay among such types of interlinked images was also found in [78,79].
Among these, gravitational lensing in the weak or strong gravity regime of a black hole
has gained a lot of attention since it can reveal a black hole’s features [80–95]. For instance,
Horvath et al. studied gravitational lensing in the Kehagias–Sfetsos spacetime emerging
in the framework of Hořava–Lifshitz gravity [80]. Eiroa and Sendra studied gravitational
lensing by braneworld black holes with no matter or mass [81]. Moreover, Izmailov et al.
investigated light deflection in modified gravity in the weak and strong field regimes [82].
Weak and strong deflection gravitational lensing by the hairy black holes in Einstein-scalar
Gauss–Bonnet gravity with five types of coupling functions (quadratic, cubic, quartic,
inverse-polynomial, and logarithmic), which can evade the no-hair theorem, were stud-
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ied by Gao and Xie [83]. Cheng and Xie [84] showed that the black bounce traversable
wormhole is indistinguishable from a Schwarzschild black hole and is loosely tested by
the Event Horizon Telescope in strong deflection gravitational lensing. In addition, Zhang
and Xie studied weak and strong deflection gravitational lensing with a black bounce
Reissner–Nordström spacetime and obtained their lensing observables [85].

Li [96,97] proposed the old photon tests integrated with the Weyl tensor for the solar
system. Pang [98] explored the gravitational lensing of massless and giant particles in a
Reissner–Nordström (RN) black hole. Tsukamoto [99] calculated the SD angle in the static,
spherically symmetric, and asymptotically flat spacetime. Eiroa [32] investigated the SD
gravitational lensing phenomenon by taking an RN black hole as a lens and worked on
the positions and magnifications of these relativistic images. Zakharov [100] explored the
direct measurements of a black hole’s charge with future astrometrical missions. Moreover,
weak and SD gravitational lensing by a charged Horndeski [101] and renormalization
group-improved Schwarzschild black hole [102] were investigated. The phenomenon of SD
gravitational lensing was investigated through several black holes, including braneworld
black holes [103], a charged Galileon black hole [104], and a modified Hayward black
hole [105]. More work concerning SD gravitational lensing has been performed for different
black hole spacetimes, such as a Kerr black hole [106], a regular phantom black hole [107],
a Kiselev black hole [108], and a charged Kiselev black hole [109]. All the considered black
holes for SD gravitational lensing are asymptotically flat. It would be interesting to study
the SD gravitational lensing for a non-asymptotically flat black hole, such as a conformal
gravity black hole, which is non-asymptotically flat due to terms proportional to r and r2.

Aside from the requirement for dark matter in galaxies, the standard Newton–Einstein
theory also calls for more dark matter in clusters of galaxies than is contained within the
individual galaxies within the cluster. This fact is also qualitatively consistent with the
conformal theory, because the linear potential term leads to larger and larger deviations
from the standard theory at larger and larger distance scales. Galactic gravitational lensing
provides an actual possible comparative test of the relative merits of the conformal theory
and the standard dark matter scenario, which might even be demonstrated to be conclusive
once a detailed picture of gravitational lensing is calculated in a fourth-order theory, such
as the Weyl theory of gravity. Thus far, all considered black holes for SD gravitational
lensing have been asymptotically flat. It would be interesting to study SD gravitational
lensing for a non-asymptotically flat black hole, such as a conformal gravity black hole,
which is non-asymptotically flat due to a term proportional to r [110].

In this work, the SD gravitational lensing phenomenon is explored for the photons
coupled to the Weyl tensor in a conformal gravity black hole. In addition, we study the
consequences of coupling on the motion of the photon sphere, the SD angle, and the SD
gravitational lensing observables for SgrA∗ and M87∗. This paper is ordered as follows.
In Section 2, the equations of motion are investigated for the photons coupled to the Weyl
tensor in conformal gravity. In Sections 3 and 4, the photon sphere equation, the SD angle,
and the SD gravitational lensing observables for SgrA∗ and M87∗ are probed. In the last
section, we give our outcomes.

2. Conformal Gravity Black Hole

The electromagnetic field action for the photons coupled to the Weyl tensor
[62,76,78,97,106,108,109] is given by

S =
∫

d4x
√
−g[

R
16πG

− 1
4
(FαβFαβ − 4α̃CαβµνFαβFµν)], (1)

where Fαβ = ∇α Aβ −∇β Aα denotes the electromagnetic field tensor, Aα represents the
gauge potential, and α̃ is a coupling parameter. Other terms such as R and Cαβµν repre-
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sent the Ricci scalar and the Weyl tensor, respectively. For any n dimensional spacetime,
Cαβµν [76] is defined as follows:

Cαβµν = Rαβµν −
2

n− 2
(gα[µRν]β − gβ[µRν]α) +

2
(n− 1)(n− 2)

Rgα[µgν]β. (2)

The simplest form of the four-dimensional conformal gravity black hole [111–113] is
defined by

ds2 = g(r)dr2 + r2(dθ2 + sin2 θdφ2)− f (r)dt2 , (3)

with
f (r) = c0 + c1r +

d
r
− 1

3
Λr2, (4)

and g(r) = f−1(r). The four integral constants c0, c1, d, and Λ can be defined under the
given constraint [113]

c2
0 = 3c1d + 1, (5)

which implies
c0 = ±

√
3c1d + 1 . (6)

If we take c1 = 0 and c0 = 1, then the solution reduces to the Schwarzschild (A)dS
black hole. The last term of Equation (4) contains Λ, which corresponds to the“cosmological
constant” that comes from the integral rather than the action. The electromagnetic field
action in Equation (1) with (Aα) gives the following corrected Maxwell equation [76]:

∇α(Fαβ − 4α̃CαβµνFµν) = 0, (7)

which means that the photons’ propagation will change via the Weyl tensor, and the
wavelength of the coupled photons is greater than the electron Compton wavelength,
but it is smaller than the traditional curvature scale (i.e., λ̃e < λ̃p < L̃). This signifies
that both the electromagnetic and gravitational fields may be neglected by the typical
curvature scale for the coupled photon propagation. Now, by using the geometric optics
approximations [43,114–119], we can easily find the electromagnetic field tensor [76]:

Fαβ = fαβeµθ . (8)

The term fαβ = kαaβ − kβaα and the quantity θ are the slowly varying amplitude and
rapidly varying parameter, respectively. Here, aα defines the polarization vector satisfying
the condition kαaα = 0, and kα represents the wave vector (i.e., kα = ∂αθ). The derivative
term fαβ;λ can be omitted. Now, by solving Equations (7) and (8), we can find the equation
of motion for the photons coupled to Cαβµν:

kαkαaβ + 8α̃Cαβµνkαkµaν = 0. (9)

Now, we introduce the field of tetrads (vierbeins) as follows [76]:

gαβ = ηµνeµ
αeν

β, (10)

and
eµ

α = diag(
√

f (r) ,
√

g(r) ,
√

h(r) ,
√

h(r) sin θ) . (11)

In Equation (10), ηµν defines the Minkowski metric, and eµ
α , eν

β are called vierbeins. The
vierbeins in the form of an antisymmetric combination may be expressed as [43,114–116]
Uµν

αβ = eµ
αeν

β − eµ
βeν

α. The complete Weyl tensor Cαβµν can be rewritten as follows [76]:

Cαβµν = A(2U12
αβU12

µν −U13
αβU13

µν −U14
αβU14

µν + U23
αβU23

µν + U24
αβU24

µν − 2U34
αβU34

µν), (12)
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where
A = − 1

12r2 [r
2 f ′′(r)− 2r f ′(r) + 2 f (r)− 2]. (13)

Here, we introduce the three combinations of momentum components [43,114–116]
(i.e., lβ = kαU12

αβ, nβ = kαU13
αβ, and mβ = kαU34

αβ). After a tedious calculation, Equation (9)
provides the precise light cone conditions [76]:

g11k1k1 + g22k2k2 + g33k3k3 + g44k4k4 = 0 , (14)

with

g11 = −(et
1)

2, g22 = (er
2)

2, g33 = (eθ
3)

2 W(r), g44 = (eφ
4 )

2 W(r). (15)

Here, we have

W(r) =
3r3 + 12α̃d− 4α̃r + 4α̃c0r
3r3 − 24α̃d + 8α̃r− 8α̃c0r

. (16)

and

W(r) =
3r3 − 24α̃d + 8α̃r− 8α̃c0r
3r3 + 12α̃d− 4α̃r + 4α̃c0r

, (17)

The variable W(r) depends on the coupled photon polarization. Therefore, Equation (16)
is analogous to the coupled photon polarization along lα for PPL, and Equation (17) is
analogous to the coupled photon polarization along mα for PPM.

3. Equation of the Photon Sphere

The effective metric γαβ (i.e., γαβkαkβ = 0) in a conformal gravity black hole is defined
as follows [76,120]:

ds2 = B(x)dx2 + C(x)W−1(x)dθ2 + C(x)W−1(x) sin2 θdφ2 − A(x)dt2, (18)

and
A(x) = B−1(x) = c0 + c1x +

d
x
− 1

3
Λx2, (19)

C(x) = x2, (20)

W(x) =
3x3 + 12α̃d− 4α̃x + 4α̃c0x
3x3 − 24α̃d + 8α̃x− 8α̃c0x

for PPL, (21)

W(x) =
3x3 − 24α̃d + 8α̃x− 8α̃c0x
3x3 + 12α̃d− 4α̃x + 4α̃c0x

for PPM. (22)

By using the symmetry of the black hole, we can obtain the geodesic constants of
motion [76]:

E =
dt
dλ

, L =
dφ

dλ
A(x) C(x) W−1(x). (23)

The parameter E stands for the energy, and L stands for the angular momentum per
unit mass, while λ is called the affine parameter. Moreover, it is found that the photons
obtain various trajectories with various polarizations, and hence every side of the bodies
has two sets of relativistic images, since the observer as well as the source are placed in
the required equatorial plane (i.e., θ = 90◦). With Equation (23), and using the condition
kα = gαβ

dxβ

dλ , we see that Equation (9) for the photons in the conformal gravity BH can be
further rewritten as follows:

(
dx
dλ

)2 = A(x)
(

E2

A(x)
−W(x)

L2

C(x)

)
. (24)
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Now, by studying the photon sphere equation [22,121,122], it is easy to find the impact
parameter and the equation of the photon sphere [76] in this scenario:

u(x) =
√

C(x)√
A(x)W(x)

, (25)

and
A(x)C(x)W ′(x) + [A′(x)C(x)− A(x)C′(x)]W(x) = 0. (26)

Here, the sign ′ represents the radial derivatives. Here, the photon sphere is described
as the innermost circulating orbit for the photons. If we find the solution to Equation (26),
then the radius of the photon sphere appears as its largest root. We study the radius xps
with α̃ (coupling parameter) and c1 (black hole parameter) for the PPL and PPM cases
(see Figure 1). This shows that when α̃ increases with c1, the radius becomes xps = 1.9
for PPL and xps = 2.85 for PPM. It is easy to find that α̃ is a constant with the length-
squared dimension, and in order to be consistent with the observation, we have to constrain
α̃ ≤ 1013m2 [96]. If we take the the BHs in the galactic center as SgrA∗ having a mass
M = 4.28 × 106M� [123] and M87∗ having a mass m• = 6.5 × 109M� [124], then the
dimensionless coupling constant α̃ ∼ 10−7. The same procedure was adopted in [107] to
discuss the strong gravitational lensing for photons coupled to the Weyl tensor in a regular
phantom BH.

0

0.5

1.0

1.5

xps

0

0.75

1.5

2.25

xps

Figure 1. Color-indexed variations of the radius (xps) with α̃ and c1 (left) for PPL and (right) for PPM.
Here, we set c0 =

√
3c1d + 1, d = 1, and Λ = −1.

4. Strong Deflection Angle

In this part, we study the SD angle as the null geodesic (i.e., the photons coming from
infinity) become limited. Hence, the SD angle can be defined as [125]

α(x0) = I(x0)− π, (27)

and
I(x0) = 2

∫ ∞

x0

dx√
A(x)C(x)

W(x)

√
A(x0)C(x)W(x0)
A(x)C(x0)W(x) − 1

. (28)

The variable x0 stands for the closest approach distance. We see that as x0 → xps, the
SD angle α(x0) diverges while the photons are caught from the black hole, which assures
that certain light rays cause a complete loop about the heavy objects before arriving at the
observer. Furthermore, as α(x0) changes into 2π for a specific value of x0, the SD angle
increases, but the distance decreases. Hence, the physical characteristics of the SD angle are



Universe 2023, 9, 130 7 of 16

perfectly various. By adopting the Bozza technique z = 1− x0
x [27], Equation (28) further

reduces to

I(x0) =
∫ 1

0
F(z, x0)R(z, x0)dz, (29)

where

R(z, x0) = 2
W(x)x2

√
C(x0)

x0C(x)
= 2W(z, x0), (30)

F(z, x0) =
1√

W(x0)A(x0)− W(z,x0)A(z,x0)C(x0)
C(z,x0)

. (31)

The function F(z, x0) deviates as z → 0, but the function R(z, x0) is regular for each
value of x0 and z . Now, we separate the integral in Equation (29) into two particular parts
(ID(x0), the divergent part, and IR(x0), the regular part) as follows:

ID(x0) =
∫ 1

0
R(0, xps)F0(z, x0)dz. (32)

and

IR(x0) =
∫ 1

0
[R(z, xo)F(z, x0)− R(0, xps)F0(z, x0)]dz. (33)

The function F0(z, x0) is described as follows:

F0(z, x0) =
1√

f1(x0)z + f2(x0)z2
, (34)

with

f1(x0) =
x0

C(x0)
{W(x0)[A(x0)C′(x0)− A′(x0)C(x0)]− A(x0)C(x0)W ′(x0)}, (35)

f2(x0) =
x0

2C2(x0)
{2[C(x0)− x0C′(x0)][A(x0)W(x0)C′(x0)− C(x0)(A(x0)W(x0))

′]

+ x0C(x0)[A(x0)W(x0)C′′(x0)− C(x0)(A(x0)W(x0))
′′]}. (36)

When f1(x0) is nonzero (x0 6= xps), the dominant order of the divergence in F0(z, x0)

assumes the form of 1√
z but is integrated to give limited consequences. As f1(x0) vanishes

(x0 = xps), the aforementioned result becomes 1
z , which causes the integral to appear to

be divergent. In this situation, every photon (x0 < xps) is caught from the central body
and cannot be brought back up. However, the SD angle diverges logarithmically for the
photons [27]:

α(θ) = −ā log[
θDOL
u(xps)

− 1] + b̄ + O[u(x)− u(xps)]. (37)

Here, we have

ā =
R(0, xps)

2
√

f2(xps)
,

bR = IR(xps),

b̄ = ā log[
2x2

hsu(xps)′′

u(xps)
]− π + bR. (38)

Here, DOL stands for the distance between the observer and the gravitational lens.
From Equations (21) and (22), the numerical characteristic of α(θ) in conformal gravity is
studied. The variations of the quantities with bars (ā and b̄) for different values of α̃ and c1
are given in Figures 2 and 3. The coefficients ā and b̄ not only depend on the parameters of
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the black hole but also on the coupling parameter and the polarization directions of the
photons. Hence, with the increase in α̃ and in the constant c1, the coefficients ā and b̄ have
values ā = 1.25 and b̄ = 4.1 for PPL and ā = 1 and b̄ = 3.2 for PPM. Since, the coefficients
are the functions of α̃, the alike features may be observed in the SD angle. We study the
variations of α(θ) calculated at u = ups + 0.003, presented in Figure 4, where it is noted
that the SD angle (α(θ)) has the values α(θ) = 5.75 for PPL and α(θ) = 4.75 for PPM.

0

0.25

0.50

0.75

1.00

1.25

α

0

0.2

0.4

0.6

0.8

1.0

α

Figure 2. Color-indexed variations of the coefficient (ā) with α̃ and c1 (left) for PPL and (right) for
PPM. Here, we set c0 =

√
3c1d + 1, d = 1, and Λ = −1.

3.00

3.25

3.50

3.75

4.00

b

1.00

1.50

2.00

2.50

3.00

b

Figure 3. Color-indexed variations of the coefficient (b̄) with α̃ and c1 (left) for PPL and (right) for
PPM. Here, we set c0 =

√
3c1d + 1, d = 1, and Λ = −1.
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2

3

4

5

α θ)

1

2

3

4

α θ)

Figure 4. Color-indexed variations of the SD angle (α(θ)) with α̃ and c1 (left) for PPL and (right) for
PPM. Here, we set c0 =

√
3c1d + 1, d = 1, and Λ = −1.

5. Strong Deflection Gravitational Lensing Observables for SgrA∗ and M87∗

To probe the polarization consequences for the photons in conformal gravity, we deal
with the lens equation [28,126,127]:

γ =
DOL + DLS

DLS
θ − α(θ) mod 2π. (39)

The variable γ represents the angle in the direction of the source, which is analogous
to the optical axis, while DOL stands for the observer lens distance and DLS stands for the
source lens distance. The angular separation s between the nth relativistic image and the
lens yields the following result [28,126,127]:

θn ' θ0
n(1−

upsen(DOL + DLS)

āDOLDLS
), (40)

where
θ0

n = (1 + en)
ups

DOL
, en = e

b̄+|γ|−2πn
ā . (41)

The position of the relativistic image analogous to the SD angle α(θ) = 2nπ for any
number n is θ0

n. The term en → 0 (at n → ∞) yields the impact parameter ups associated
with an asymptotic position of the set of the images θ∞:

ups = DOLθ∞ . (42)

Furthermore, to evaluate the coefficients (ā, b̄) from Equation (37), we deal with the
perfect situation [27,28,126,127], and hence we obtain the following relations:

s = θ1 − θ∞ = θ∞e
b̄−2π

ā , (43)

r = 2.5 log R0 = 2.5 log(
µ1

∑∞
n=2 µn

) =
5π

ā
log e. (44)

Here, the variable s stands for the angular separation, obtained by separating the
outermost image (θ1) and the innermost images (θ∞). The variable r stands for the relative
magnitudes, and the quantity R0 stands for the flux ratio of the outermost image (θ1)
and the innermost images (θ∞). With the help of these observables (θ∞, s, and r), it is
easy to evaluate the minimum impact parameter ups and the coefficients (ā, b̄) of the SD
angle in the conformal gravity black hole. We consider SgrA∗ to be a lens having a mass
M = 4.28× 106M� and DOL = 8.32 kpc [123]. From this assumption, it is easy to estimate
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the values of the observables (θ∞, s, and r) for the SD gravitational lensing phenomenon.
In general relativity, SgrA∗ is supposed to be a Schwarzschild black hole, and hence the
values of the observables (θ∞, s, and r) for the Schwarzschild black hole are θ∞ = 26.4 µas,
s = 33.0 nas, and r = 6.8 mag. The color-indexed values of the observables (θ∞, s, and r) for
the conformal gravity black hole are given in Figure 5, corresponding to the Schwarzschild
black hole. Specifically, the observable θ∞ varied, ranging from 15 µas to 45 µas for PPL
and 14 µas to 43 µas for PPM, whereas it had the theoretically lower limits (i.e., when
c1 = 0 and α̃→ 0) of 15 µas and 14 µas for PPL and PPM, respectively. Based on the results
presented in Figure 5, the value of the observable s (angular separation) ranged from about
5 nanoarcseconds (nas) to about 35 nas for PPL, whereas the angular separation s ranged
from about 7 nas to about 36 nas for PPM. In Figure 5, the observable r (relative magnitudes)
had values ranging from 6 mag to 8.8 mag for PPL and from 5.3 mag to 8 mag for PPM.
Similarly, these observables (θ∞, s, and r) can easily be found by using the same technique
for the case of M87∗ having a mass m• = 6.5× 109M� and distance DOL = 16.9 Mpc [124].
From Equations (42–44), we have the following relations for M87∗:

θ∞,M87∗ =
m•,M87∗

m•,SgrA∗

DOL,SgrA∗

DOL,M87∗
θ∞,SgrA∗

= 0.7484 θ∞,SgrA∗ , (45)

sM87∗ = 0.7484 sSgrA∗ , (46)

rM87∗ = rSgrA∗ . (47)

We assume M87∗ to be a Schwarzschild black hole. Then, the values of the observables
θ∞ and s for M87∗ are θ∞ = 19.7 µas and s = 24.7 nas, whereas the observable r = 6.8 mag
remains unchanged and obtains the same value as it attained in the case of SgrA∗. The
pattern of the observables (θ∞, s, and r) will be same in Figure 5, but their values will be
changed for M87∗. We observed that the values of the observables θ∞ and s for the confor-
mal gravity black hole reached 11.25 µas for PPL, 11.48 µas for PPM as well as 26.194 nas for
PPL and 26.942 nas for PPM, respectively. However, the observable r remained unchanged.
It is viable to observe the quantum correction by calculating the variation of the shadow θ∞
and the variations combined by the relativistic images, which are unworkable due to the
lack of adequate angular separation. We have to assert repeatedly that being very accurate
is a prerequisite when the calculation via EHT [128] is accurately practiced to constrain the
conformal gravity BH considered here, as the models for measuring the properties of the
shadow of M87∗ [124] obtain two essential factors: the rotation of the black hole and the
GRMHD of the plasma about it, neither of which are studied in the present work. However,
when placed on the calculated diameter 42± 3 µas of the shadow of M87∗ [128], we can
measure the tentative and rough bounds on α̃ and c1 as 0.1 ≤ α̃ ≤ 1 and 0.01 ≤ c1 ≤ 0.3 in
the given domain D. According to Figure 5, for M87∗, these are natural signs for the case
of the quantum effect but not legitimate constraints on it. We would like to mention that
0.1 < α < 1 is a multiple of 10−7.
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Figure 5. Color-indexed variations of the observables (θ∞, s, and r) in the SD gravitational lensing in
the conformal gravity BH from that of a Schwarzschild one for SgrA∗ (left) for PPL and (right) for
PPM with α̃ and c1.

6. Conclusions

The SD gravitational lensing phenomenon and the dynamical equations of motion for
photons were studied with the background of a conformal gravity black hole. We found
that the black hole parameter c1, the polarization directions, and the coupling parameter
α̃ are influential for the improvement of photons in the conformal gravity black hole. We
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observed that the parameters played a significant role in expounding the photon sphere
radius, the SD coefficients, the SD angle, and the other SD lensing observables. The altered
light cone conditions recommend that the photons move along the null geodesics. We
found that the photon sphere was described as the innermost circulating orbit for the
photons, but the photon sphere radius was the largest root of Equation (26). In Figure 1, we
presented the radius (xps) for the cases of PPL and PPM. This explains that with an increase
in the coupling parameter and the constant c1, the radius (xps) becomes xps = 1.9 and
xps = 2.85 for PPL and PPM, respectively. The color-indexed deviations of the coefficients
for the specific values of the constant c1 were presented in Figures 2 and 3. We identified
that the SD coefficients ā and b̄ had the values ā = 1.25 for PPL and ā = 1 for PPM, whereas
b̄ = 4.1 for PPL and b̄ = 3.2 for PPM. The variation in the SD angle (α(θ) = 5.75 for PPL
and α(θ) = 4.75 for PPM) was figured out to be u = ups + 0.003, as can be seen in Figure 4.
By taking SgrA∗ and M87∗ as two lenses, it is concluded that the present technology can
only calculate the supposed size of the shadows of black holes and their variations from
those of the Schwarzschild type. On behalf of the calculated diameter of 42± 3 µas for
M87∗’s shadow [128], we can have rough and tentative limits for the coupling parameter
and the constant (c1) as 0.1 ≤ α̃ ≤ 1 and 0.01 ≤ c1 ≤ 0.3 in the given domain D. According
to Figure 5 (for M87∗), these are natural signs for the case of quantum effects but not
legitimate conditions for it.
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