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Abstract: Recently, persistent homology analysis has been used to investigate phase structure. In this
study, we apply persistent homology analysis to the QCD effective model with heavy quarks at finite
imaginary chemical potential; i.e., the Potts model with the suitably tuned external field. Since we
try to obtain a deeper understanding of the relationship between persistent homology and phase
transition in QCD, we consider the imaginary chemical potential because the clear phase transition,
which is closely related to the confinement-deconfinement transition, exists. In the actual analysis,
we employ the point-cloud approach to consider persistent homology. In addition, we investigate the
fluctuation of persistent diagrams to obtain additional information on the relationship between the
spatial topology and the phase transition.
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1. Introduction

Elucidating the nature of the phase structure of quantum chromodynamics (QCD) at
finite temperature (T) and finite real quark chemical potential (µR) is one of the interesting
and important topics in elementary particle, hadron, and nuclear physics. Understanding
the QCD phase diagram is necessary to analyze the experimental data obtained in recent
and future heavy-ion collisions; for example, see Ref. [1]. In addition, understanding
the QCD phase structure is necessary to clarify the detailed properties of compact stars;
for example, see Ref. [2]. In this sense, understanding the QCD phase structure is also
important for astrophysics.

In the pure gauge limit, where the quarks are static, the Polyakov loop respecting
the gauge-invariant holonomy well represents the deconfinement transition; see Ref. [3].
When quarks are static, the spontaneous center (ZNc) symmetry breaking, where Nc is
the number of colors, can describe the confinement-deconfinement phase transition, and
then the Polyakov loop can characterize the transition. This means that we can well define
the confinement-deconfinement transition using the spontaneous symmetry breaking
phenomena in this situation. However, the Polyakov loop cannot be considered as the
order parameter when quarks are dynamical since the relation between the Polyakov loop
and the free energy for the one-quark excitation is missed in this case. This means that
the spontaneous symmetry breaking is no longer useful to understand the confinement-
deconfinement transition if dynamical quarks exist in the system. Due to the above fact,
the confinement-deconfinement nature of QCD with realistic quark mass is still an open
question; for example, see Ref. [4] for the recently considered deconfinement scenario
at finite density, which is based on the quarkyonic picture [5], where the spontaneous
symmetry breaking phenomena is not important.

There are many approaches to investigate the confinement-deconfinement nature of
QCD. One interesting approach is the topological order that is proposed in condensed
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matter physics [6], which is not based on the spontaneous symmetry breaking. The topo-
logical order is based on the topology of the quantum state and can be clarified from
the ground state degeneracy at least at T = 0 [7]. In the topological order, the classical
order parameters that can be used in the Ginzburg–Landau analysis are not necessary; the
ground state degeneracy induced by the compactified spaces plays a crucial role to clarify
the topologically ordered and disordered states. This may indicate that the topology is
key to understanding the confinement-deconfinement nature of QCD. Unfortunately, the
ground state degeneracy is difficult to apply to the system with the thermal fluctuation,
and thus it is not straightforward to investigate the confinement-deconfinement transition
at finite T by using the topological order: some procedures to determine the ground state
degeneracy break down by the thermal fluctuation.

Recently, there have been some attempts to use the spatial topological structure of
configurations to clarify the confinement-deconfinement nature of QCD using persistent
homology [8,9] for QCD effective models [10,11]. This approach has a relationship with the
center cluster structure [12–14] and may provide additional information on the confinement-
deconfinement nature at finite temperature from the spatial structure of configurations.
Furthermore, persistent homology can detect the center vortex [15] clearly appearing
in the pure gauge limit [16], and therefore persistent homology may be an interesting
concept to understand the confinement-deconfinement nature from a topological point
of view. Thus, we can expect that the persistent homology can pick up not only the
information of the phase transition associated by the spontaneous symmetry breaking but
also the quantum phase transition. There are many studies that use persistent homology
to investigate the phase transition appearing in several physical systems [16–22] not only
for the standard phase transition but also for the topological phase transition. In addition,
there are other applications, such as investigating the string landscape and the structure of
the universe [23,24]. We currently work in the same direction as Refs. [17–20].

In this study, we try to investigate the behavior of the persistent homology when the
system has a clear phase transition. For this purpose, we employ the Potts model with a
suitably tuned external field as a convenient QCD effective model with heavy quarks, which
can pick up some features of the confinement-deconfinement nature of QCD. Unfortunately,
QCD and also QCD effective models, which can treat the confinement-deconfinement
transition, usually have a sign problem at finite real chemical potential. Thus, we use
imaginary chemical potential (µI) [25] in this study because there is no sign problem. In
particular, we concentrate on the region, θ := µI/T = π/3, where the Roberge–Weiss
(RW) transition appears. The imaginary chemical potential can have some interesting and
important properties related to the nature of the confinement-deconfinement transition; see
Ref. [26] for a review. For example, the real and imaginary chemical potentials are related
via the Fourier transformation and Fugacity expansion, which is the so called canonical
approach [27–31]; in the canonical approach, we can avoid the sign problem, but it appears
in different shapes and obstruct numerical calculations at finite density. Furthermore, the
existence of the RW transition may be related to the deconfinement nature of QCD from
the nontrivial degeneracy of free energy, see Refs. [32–34]; in these studies, the authors
propose the analogy between the nontrivial free-energy degeneracy and the ground-state
degeneracy of the confinement-deconfinement transition at finite temperature (T 6= 0),
but this classification of the confinement-deconfinement transition is still conjecture. In
this study, we try to investigate the confinement-deconfinement transition using spatial
topology; the center domain structure plays a crucial role in the nontrivial free-energy
degeneracy and thus it is not unnatural to think that the spacial topology has some hints to
understand the confinement-deconfinement transition.

This paper is organized as follows. In the next section, we explain the formulation
of the QCD-like Potts model. Numerical results are shown in Section 3, and Section 4 is
devoted to the summary.
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2. Formulation

In this study, we employ the Potts model with a suitably constructed external field.
First, we explain the formulation of the QCD-like Potts model. Next, we present a brief
explanation of persistent homology analysis.

2.1. QCD-like Potts Model

The energy of the standard Potts model is written as

HPotts = −κ ∑
x

∑
i

δkxkx+i , (1)

where kx are the degrees of freedom associated by the Z3 symmetry at each site x, i is
the three-dimensional unit vector and κ represents the coupling constant of the nearest
neighbor interaction. In this study, we allocate k = −1, 0 and 1 for the Z3 valued spin
degrees of freedom. For a review of the Potts model, see Ref. [35] as an example.

To construct the Potts model as the QCD effective model with heavy quarks, we
introduce the external magnetic field [36–38] as

H = HPotts −∑
x

[
h−Φx + h+Φ̄x

]
, (2)

where the Polyakov loop (Φx) and its conjugate (Φ̄x) at each site x are defined as

Φx = e2πikx/3, Φ̄x = e−2πikx/3, (3)

and the external fields (h∓) are set as

h∓ = e−β(M∓µ), (4)

with the inverse temperature β = 1/T, the quark mass M and the chemical potential
µ = µR + iµI, here µR and µI, are real values. In the µ = µR case, H becomes complex and
then this system has the sign problem even if the partition function is real. However, if
µ is pure imaginary as µ = iµI where µI, H is real, thus there is no sign problem. In the
following, we set µ = iµI. The term of external field represents the quark contributions
for a system with a heavy quark mass. In the following, we call this Potts model the QCD-
like Potts model. In the QCD-like Potts model, κ is treated as a temperature-like quantity
to control the behavior of the Polyakov loop. Since the present QCD-like Potts model
has simple degrees of freedom, it has a clear center domain structure, which is directly
represented by k.

The global information of the system can be seen from the spatially averaged Polyakov
loop defined as

Φ :=
〈 1

N ∑
x

Φx

〉
, (5)

where N is the total number of sites and 〈· · · 〉 means the configuration averaged value. At
finite imaginary chemical potential, the modified version of Equation (5)

Ψ :=
〈 1

N ∑
x

e−iθΦx

〉
, (6)

is a more convenient quantity, where θ = µI/T which is the convenient imaginary di-
mensionless chemical potential, because it has RW periodicity, unlike the pure Polyakov
loop [39]; this Ψ is the so-called modified Polyakov loop. This quantity represents the
modified ZNc symmetry appearing in the partition function at finite imaginary chemical
potential. Unfortunately, these quantities cannot respond to the local structure of the system
because spatial averaging is imposed. Therefore, we may need some other quantities that
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represent the local structure of the system. To overcome this point, we consider persistent
homology in this study. It should be noted that behavior of the system energy and the
specific heat have important information on the phase transition. Our purpose in this study
is investigating the relation between the phase transition and the system topology and thus
we do not discuss the energy and specific heat in this paper.

2.2. Persistent Homology

One of the ways to investigate the topology of the spatial structure that appears in the
data space is through persistent homology analysis. For our purposes, we can consider two
different ways to investigate the spatial structure of the configuration space. The first is
the standard persistent homology analysis of the ratio of birth-and-death times of holes
based on the point-cloud data. Second is that we treat the spin configuration as the pixel
data and apply the persistent homology analysis via super-level filtration. Since persistent
homology is a complicated mathematical concept, we here just briefly explain it; for details,
see Ref. [40].

2.2.1. Point-Cloud Data

In the approach with point-cloud data, we first divide the spin configuration into
different data sets, namely the data set with spins k = −1, 0, and 1; this means that if sites
have spin k = i where i = −1, 0, 1, such sites are “on” and the others are set to “OFF” in
the corresponding data set: In the actual calculation, we analyze the data set with k = 0,
which corresponds to the trivial center sector; this treatment is proposed in Ref. [10]. After
this procedure, we obtain the spatial structure which respects the spin degrees of freedom;
this mapping is based on the center domain structure. Then, we can consider the following
procedure.

• Consider balls whose center is set to the “ON” sites for each data point (point-cloud).
This procedure creates the point-cloud data, which are input data for the persistent
homology analysis;

• The radius r of each ball increases with increasing time (filtration). This procedure
introduces the hole structure for the point-cloud data;

• When time passes sufficiently, the balls begin to overlap. Then, the hole created by the
overlapped balls appears. We call this time as birth time, tB;

• After the overlapping, the hole vanishes with increasing time. We call this time as
death time, tD. Therefore, we have tB < tD.

Unfortunately, the above strict filtration is numerically difficult and thus the alpha
complex is usually employed to represent it. In this study, we used this approach to
evaluate persistent homology. It should be noted that this approach is suitable for the
present QCD-like Potts model because the model has a simple spin structure, but it may
miss some information when we apply it to QCD.

2.2.2. Pixel Data

In the approach with pixel data, we consider a procedure similar to that in the approach
with point-cloud data. However, when we consider mapping the configuration to the pixel
data, we need a more complicated procedure. This process can be performed as follows.

• Construct the data set that contains the spatial structure with the actual values of spin
k = −1, 0 and 1. Then, the data set becomes the pixel data; all sites have one of three
values, −1, 0 and 1. We can regard it as a function f (X) where X denotes each site.

• Level sets are performed in the pixel data as

Xh := {x ∈ X| f (x) ≤ h}, (7)

where h denotes the threshold value.
• Then the threshold values of level sets are decreased, we can define the following

process (super-level filtration).
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Xh1 ⊂ Xh2 ⊂ Xh3 ⊂ · · · , (8)

with

h1 ≤ h2 ≤ h3 ≤ · · · , (9)

and then the birth time appears after the death time, tD < tB.

Super-level filtration means that the appearance and disappearance of islands (holes)
are considered by lowering the threshold from larger to smaller, and thus the birth time is
larger than the death time because the threshold values of them are directly related to the
time; for example, see the tutorial of HomCloud for the grayscale data [41]. Unfortunately,
we only have the discrete Z3-valued data in this model; it has a simple spatial structure
to use the pixel data approach. Therefore, we did not adopt this approach in this study;
this section is included for reference only. However, this approach is promising when we
apply persistent homology analysis to QCD because we will encounter continuous values
instead of ZNc values. By using the procedure, we can treat the continuous value of the
Polyakov-loop properly, unlike the point-cloud data approach, since the point-cloud data
approach is based on the mapping of the continuous value to the three discrete regions.
Therefore, some information may be lost in the point-cloud approach for QCD. Then, we
should consider the pixel data instead of the above point-cloud data.

2.2.3. Observables

To see the global information of the system via the persistent homology analysis, we
consider the expectation value of the averaged ratio of the tB and tD defined as

Rave =
〈 1

Nh
∑
n

Rn

〉
=
〈 1

Nh
∑
n

( tn,D

tn,B

)〉
, (10)

where in the summation runs for all holes, n assigns each hole and Nh means the total
number of holes for each configuration. Since all information of created holes in the
filtration are considered in Equation (10), information coming from several trivial holes is
taken into account. Usually, such trivial holes are not considered to be important in the
persistent homology analysis. However, such a trivial hole is a necessary building block to
reproduce the behavior of the global feature of the order parameter as shown in Ref. [11]
which investigates the isospin chemical potential region. In contrast, the expectation value
of the maximum value of the ratio,

Rmax =
〈

max
( tD

tB

)〉
, (11)

can rather be responsible for the local information of the system because it is usually
expected that data appearing from the diagonal line of persistent diagram can have the non-
trivial spatial structure. Since Equation (11) represents information on the most nontrivial
hole, its behavior is interesting. By using Equations (10) and (11), we may have information
on the relation between the phase transition and the persistent diagram. It should be noted
that there is the possibility that we may have some more good quantities for clarifying the
phase transition. Thus, we consider different quantities, as shown below, in this study.

In addition to Rave and Rmax, we investigate the fluctuation of data on persistent
diagrams. Value is defined as

rave =
〈√ 1

Nh
∑
n
(Rn − Rave)2

〉
. (12)

Since this represents the fluctuations of data about the birth and death times on persistent
diagrams, it respects the spreading behavior of data. For the distribution of standard order
parameter in configuration space, the fluctuation can pick up the phase transition. For
example, there are two or more relevant domains when the first-order transition happens;
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in this case, the deviation of each configuration from the mean value can be large because
of the separation. Additionally, in the case of the second-order transition, there is the flat
region in the Ginzburg–Landau potential and thus configurations can be spread. Then,
each configuration has a large deviation from the mean value. Of course, it is not trivial that
there are some relations between each data of the birth-to-death time ratio and its mean
value. Clarifying the relationship is one of the main objectives of this study.

To consider fluctuation, we can consider another way, as follows. After evaluating the
persistent diagram, we have several sets of birth and death times for each configuration.
Then, we can regard the data sets as the new point-cloud data and perform persistent
homology analysis on them. After the procedure, we have a new persistent diagram; this
can be called the persistent diagram of the persistent diagram (PH-PH diagram). In this
approach, several trivial holes and nontrivial holes create the hole structure and thus the
PH-PH diagram can pick up the fluctuation. A persistent diagram is a two-dimensional
diagram in which the vertical and horizontal lines are the birth and death times, and thus
the homology of the 0th or the 1st order is good to investigate. The other way uses the
block-spin like transformation, which corresponds to the coarse graining of the system.
When the fluctuation is large, holes with several scales exist in the system. In this case,
data on the persistent diagram is expected to persist against coarse graining. Thus, it is
interesting to investigate the behavior of the persistent diagram against the coarse graining.
We will discuss these approaches elsewhere.

3. Numerical Results

In all the calculations in this study, we set M = 5 and T = 1. The number of spins in the
system is 103. We generate 104 configurations for each computation using the Metropolis
method [42], and statistical errors of expectation values are estimated using the Jackknife
method; see Ref. [43] as an example. The one-spin flipped probability distribution in the
Metropolis method is set to P = exp(−β∆H) where ∆H is the energy difference for the
one-spin flipping process. Persistent homology is estimated using HomCloud [40,41], and
we analyze the 1st order homology. Systematic studies with changing M and T will be
included in our future work.

First, we check the validity of the present QCD-like Potts model by considering the
θ- and the κ-dependence of Ψ because the qualitative behavior of Ψ is well known. The
θ-dependence of the modified Polyakov loop (Ψ) is shown in Figure 1.
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Figure 1. The θ-dependence of Ψ at θ = 0 and π/3− ε, where we set to ε = 10−3. The (left) and
(right) panels show the real and imaginary parts of Ψ, respectively. The circle and square symbols
are the results of the high- and low-temperature situations, respectively. Lines in all panels in this
paper are the eye guides.

In the large κ region, which corresponds to a high-temperature situation, there is a
gap in Im Ψ. On the contrary, we cannot see the gap of Im Ψ in the small κ region, which
corresponds to a low-temperature situation. These behaviors match the QCD results at
finite imaginary chemical potential; for example, see Refs. [44–48] for lattice QCD data.
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This indicates that the QCD-like Potts model can pick up some features of the confinement-
deconfinement transition of QCD, approximately.

The κ-dependence of Ψ is shown in Figure 2. The left and right panels show the
results at θ = 0 and π/3, respectively. These panels basically indicate the temperature
dependence of Ψ; small κ almost corresponds to the low T situation and large κ does the
high T situation.
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Figure 2. The κ-dependence of Ψ. The (left) and (right) panels show the results at θ = 0 and π/3− ε,
respectively. The circle and square symbols are the results of the real and imaginary parts of Ψ,
respectively.

Since the numerical calculation at the points where phase transition occurs is difficult,
here we shift θ to π/3 − ε from π/3 with ε = 10−3. At θ = π/3, we can expect the
phase transition, which is the so-called Roberge–Weiss (RW) transition from the model-
independent analysis of QCD [25]. We can see the sharp change at κ ∼ 0.55 with θ = π/3−
ε in our numerical data; this indicates the first-order transition, and the transition point
is called the RW endpoint. In contrast, we cannot see such behavior at low temperature.
In fact, when the quark mass is sufficiently large, the phase transition (RW endpoint) is
usually the first order reported from the lattice QCD simulation; see Ref. [48] as an example.
Our numerical data are matched with the fact.

Next, we perform persistent homology analysis on configurations at θ = 0 and near
θ = π/3. So far, there are no studies that investigate the imaginary chemical potential
region using persistent homology even with QCD effective models. Here, we analyze
2nd-order homology, since the configurations are obtained in the three-dimensional space,
and then we can have two-dimensional holes. Figure 3 shows the averaged ratio (Rave) and
the maximum ratio (Rmax) as a function of κ.
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Figure 3. The κ-dependence of the ratio of the birth-and-death times calculated from configurations.
The (left) and (right) panels show the results of Rave and Rmax, respectively. The square and circle
symbols are the results at θ = 0 and π/3− ε, respectively.

We can see that Rave behaves similarly to Ψ. However, Rave shows a little bit of
sensitive behavior around κ∼0.55 compared to Ψ. This indicates that Rave may have
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more information for the phase transition than Ψ. On the contrary, Rmax shows the valley
and peak structures before and after κ∼0.55, respectively. Compared with the results at
θ = 0 and π/3− ε, there is a difference between them around the phase transition point.
This result may be related to the phase separation induced by the first-order transition
because the quantitative behavior of the phenomenon is affected by the strength of the
first-order transition. These behaviors of Rave and Rmax were already reported at finite
isospin chemical potential in Ref. [11]; the valley structure was found for the first-order
transition, but the plateau appears instead of the valley structure when the second-order
phase transition occurs. We may say that such behavior is common for the phase transition
at least in the QCD-like Potts model, and thus they can be expected to appear in QCD.

Finally, we consider the fluctuation on persistent diagrams: it is a first attempt for
persistent homology analysis. Figure 4 shows the fluctuation (rave) as a function of κ at
θ = 0 and near θ = π/3.
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Figure 4. The κ-dependence of fluctuation calculated from persistent diagrams. The square and circle
symbols are the results at θ = 0 and π/3− ε, respectively.

We can see that there is a nontrivial behavior around κ = 0.55. In addition, the
fluctuation starts to strongly increase around the point, and afterwards it starts to decrease.
This behavior means that the distribution of data on persistent diagrams is spread out
near the phase-transition point, but it is not spread so much below and above the phase-
transition point. This means that a similar tendency of the order parameters, which
are related with the spontaneous symmetry breaking, are also observed for data of the
birth-to-death ratio on persistent diagram. From these results, we can say that not only
the averaged and maximum ratios of the birth-and-death times but also the spreading
behavior of the data in persistent diagrams relates to the phase transition; we can see the
behavior through rave. It is interesting that we apply this approach to more complicated
theories such as the two-dimensional XY model and realistic QCD, which have fruitful
phase structures compared to the present QCD-like Potts model, since the quantities shed
light on the different faces of the phase transition compared with the standard persistent
homology analysis.

4. Summary and Outlook

In this study, we apply the persistent homology analysis to the QCD effective model
with heavy quark at finite imaginary chemical potential; e.g., the Potts model with the
suitably tuned external field. The quark mass (M) and the chemical potential (µ) are
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introduced to the external field. This model can pick up some properties of the confinement-
deconfinement transition appearing in QCD. The imaginary chemical potential (µ = iµI) is
considered a laboratory for investigating the phase transition that is closely related to the
confinement-deconfinement transition through persistent homology. In fact, this model can
reproduce the Roberge–Weiss periodicity and transition, which are important properties
of QCD at finite imaginary chemical potential, and thus it can be used as a laboratory for
QCD at finite imaginary chemical potential.

To investigate the phase transition from the topological point of view, we consider the
averaged ratio and the maximum ratio of birth-and-death times to investigate the global
and local topological structures of configurations. In the analysis, we employ point-cloud
data to analyze persistent homology; we employ HomCloud on Python to evaluate the
persistent homology and configurations are generated using Metropolis method. Further-
more, we consider the fluctuations of persistent diagrams to obtain a deeper understanding
of the relationship between the persistent homology and the phase transition. Usually,
the fluctuation of order parameters is important and interesting for the phase transition.
Therefore, the fluctuation of the persistent diagram may be interesting and is expected to
have interesting information on the phase transition.

From the standard persistent homology analysis that analyzes the configurations
based on 2nd-order homology, we found that the averaged ratio of birth-and-death times
shows the same tendency as the modified Polyakov loop, and the maximum ratio of birth-
and-death times shows the valley and peak structures near the phase transition. These
results show the same trend as the results obtained from the QCD-like Potts model at finite
isospin chemical potential [11]. Therefore, also in the imaginary chemical potential region,
the averaged ratio of birth-and-death times represent the global information of the system,
and the maximum ratio of birth-and-death times have more information for the system
than the averaged one. Therefore, we may conclude that these tendencies are general for
the confinement-deconfinement transition, at least in the QCD-like Potts model. From the
fluctuation of persistent diagrams, we have the result that the fluctuation actually relates to
the phase transition: the spreading behavior of data on persistent diagrams is accentuated
around the phase transition point.

In the near future, we will apply the present approach to the two-dimensional XY
model and realistic QCD; they have continuous values in the configuration space, and
also spatial topology plays a more important role than the present model. Furthermore, it
is clarified in this study that the distribution of data on the persistent diagrams plays an
important role in the phase transition, and thus it is interesting to apply machine learning
for phase recognition based on persistent homology; see Refs. [49–53] for some applications
of machine learning for the phase transition as an example. We will discuss this in the near
future. In addition, we can consider persistent homology analysis on persistent diagram
to investigate the fluctuation. This analysis may pick up new information of the phase
transition. We will discuss this elsewhere.
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