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Abstract: Identification of small-scale auroral structures is key to searching for auroral events.
However, it is impracticable for humans to manually select sufficient aurora events for statistical
analysis, and it is also challenging for computers because of the non-rigid shape and fluid nature of
auroras. Fold structure is the most common type of auroral small-scale structure, and its appearance
is indicative of a variety of auroral events. This paper proposes a small-scale aurora structure
identification framework to automatically detect aurora fold structures. First, the location and shape
of auroras are identified based on a deep learning segmentation network. Then, the skeleton of the
auroral shape is extracted to represent the trajectories of auroras. Finally, the proposed skeleton-based
fold identification module (SFIM) can detect the aurora fold structure. To evaluate the effectiveness of
the proposed method, we built an aurora fold structure sample dataset, namely F-dataset, containing
2000 images at 557.7 nm obtained by the all-sky imagers at Yellow River Station (YRS), Ny-Ålesund,
Svalbard. Experimental results show that automatic identification can achieve good consistency with
human perception. Statistical analysis of over 30,000 images shows that the fold occurrence has a
distinct double-peak distribution at pre-noon and post-noon.

Keywords: aurora; all-sky image; aurora fold structure; small-scale structure; skeleton extraction;
automatic identification; artificial intelligence

1. Introduction

Auroras are light emissions caused by the collision of ionized streams of charged
particles with high-altitude atmospheric atoms and molecules. The aurora phenomenon is
perceived as a convenient projection of effects from complex and energetic plasma processes
of the outer magnetosphere [1]. The auroral behaviors are ascribed to various dynamic
processes of the solar wind–magnetosphere interaction. Aurora observation is very impor-
tant to studying space weather and solar wind–magnetosphere coupling [2]. Systematic
observations of auroral patterns and their evolution provide a wealth of information on
magnetospheric and solar–terrestrial electromagnetic activities. Two-dimensional optical
emission distribution thus is shown to represent the particle pattern precipitated from the
magnetosphere [3,4]. In recent years, optical observations have become important means
of studying auroral phenomena. Compared with satellite observations observing the entire
auroral oval, ground-based optical observations have a higher spatial resolution, which
can reveal spatial and temporal variations in auroras [5]. Long-term continuous auroral
observations provide an opportunity to study the aurora phenomena based on big data.
Since the first search engine for the automatic retrieval of aurora images was developed by
Syrjäsuo et al. in 2001 [6], researchers have conducted a growing number of studies on the
automated analysis of aurora images and have achieved some outstanding results. These
studies can be divided into two categories: auroral image classification and retrieval based
on single images [1,7–10], and auroral image sequence classification and event detection
based on image sequences [11–16].

Universe 2023, 9, 79. https://doi.org/10.3390/universe9020079 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe9020079
https://doi.org/10.3390/universe9020079
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0003-4009-7305
https://doi.org/10.3390/universe9020079
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe9020079?type=check_update&version=1


Universe 2023, 9, 79 2 of 14

Several of the analysis techniques mentioned above are based on the whole auroral
image. However, when studying the occurrence regularity and co-occurrence probability
of certain auroral events or local structures, it is inappropriate to consider all auroral
activity in the all-sky field as a whole, on the one hand because multiple events may occur
simultaneously, so independent auroral events cannot be counted correctly, and on the
other hand, because the whole-image-based methods focus more on global features of
auroral activity, the local auroral structures are often ignored. Even when auroral images
are labeled as the same auroral type (e.g., arc), the spatial structures and motion patterns
may be very different on small scales [17].

Many small-scale auroral structures can be observed by the all-sky imager (ASI), such
as auroral vortex [18,19], curl [20], fragmented aurora-like emissions [21,22], etc. The energy
distribution of precipitated electrons in an auroral small-scale structure provides the key
to understanding the acceleration mechanism operating above the ionosphere [23]. These
small-scale aurora structures move fast and occur in a short time [24,25]. Some artificial
intelligence techniques are required to automatically identify and statistically study small-
scale auroral structures. The fold structure is the most common type of auroral small-scale
structure, and its appearance is indicative of a variety of auroral events. Unlike the narrow
definition of mesoscale and clockwise folds (a type of aurora spiral), the fold structure here
is considered to be a deformation pattern of an auroral arc, which is an indicator of multiple
auroral forms. The size, number, and arrangement of the fold structures are very important
parameters of auroral physics [26]. In this paper, we propose a method to automatically
detect aurora fold structures in ASI images.

It is difficult to detect the fold structure using a supervised approach with a limited
number of uncertain annotated samples. The supervised object detection techniques [27–29]
require a large number of manual annotations for training. Unlike the objects to be detected
in the previous studies, the scale and shape of local auroral structures in an ASI image are
more random and varied. Additionally, the auroral emissions are inherently transparent
and have no boundaries (the boundary of an aurora in an ASI image is determined by
the preprocessing method). Therefore, it is almost impossible to obtain a large number of
accurate manually annotated samples due to the uncertainty of the aurora fold structure
(including variations in shape, scale, illumination, etc.) and the ambiguity of manual
annotation. In addition, even if some relatively reliable manually labeled samples are
obtained by spending a lot of time and effort on collecting them, the generalization ability
of a supervised object detection technique is limited for auroral local structures. The objects
in the previous study are mostly rigid or morphologically stable. The solar wind that causes
the aurora is plasma with magnetic fluid properties, so the captured aurora image presents
morphological instability. As for fold structure, there is no fixed template or pattern in an
auroral image to be learned for object detection techniques.

In this paper, we propose an automatic identification method for aurora fold structure
in ASI images without manual annotations. Based on the proposed method, aurora fold
structures are retrieved from the ASI image dataset. We thereby analyzed the relationship
between fold structure and dayside aurora appearance types and obtained the dayside
occurrence distribution of aurora fold structures.

2. Methods

We propose a three-stage local auroral structure detection scheme based on skeleton
extraction in ASI images. Instead of directly detecting local structures in ASI images, we
first depict the morphological structure of the aurora, and then measure the fold structure
based on the morphological structure. A three-stage approach is proposed to identify
aurora fold structures, as shown in Figure 1.
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Figure 1. Workflow of the proposed aurora fold identification method comprising three modules. 
A U-Net segmentation network is used to find auroras in all-sky images; a skeleton extraction 
method is used to portray the trajectory of auroral arcs; a local relaxation factor (RF) is applied on 
auroral skeletons to identify aurora fold structures. 

2.1. Aurora Shape Knowledge Extraction 
The aurora area is extracted from the background by image segmentation technol-

ogy. Besides rich textures, low image contrast, and blurred boundaries, the intensity of 
auroral images varies over a wide range, and intensity inhomogeneity within a single ASI 
image is also very common. Due to these challenges of ASI auroral image, we resorted to 
the U-Net network, which has achieved great success in processing complex data [30–32]. 
We annotated hundreds of aurora images to train a U-Net segmentation network. The 
trained U-Net was used to achieve aurora image segmentation, and the network architec-
ture with the parameters is shown in Figure 2. 

 
Figure 2. U-Net network architecture used in all-sky image segmentation. 

Compared to the task of directly identifying fold structures, it is much easier to iden-
tify auroras in ASI images. There are much more aurora sample data than small-scale au-
rora fold structures, and large areas of aurora arcs are easier to annotate, which greatly 
mitigates the problem of sample imbalance. More importantly, subsequent identification 
results do not rely strongly on the accuracy of manual annotations of the aurora arc 

Figure 1. Workflow of the proposed aurora fold identification method comprising three modules. A
U-Net segmentation network is used to find auroras in all-sky images; a skeleton extraction method
is used to portray the trajectory of auroral arcs; a local relaxation factor (RF) is applied on auroral
skeletons to identify aurora fold structures.

2.1. Aurora Shape Knowledge Extraction

The aurora area is extracted from the background by image segmentation technology.
Besides rich textures, low image contrast, and blurred boundaries, the intensity of auroral
images varies over a wide range, and intensity inhomogeneity within a single ASI image
is also very common. Due to these challenges of ASI auroral image, we resorted to the
U-Net network, which has achieved great success in processing complex data [30–32]. We
annotated hundreds of aurora images to train a U-Net segmentation network. The trained
U-Net was used to achieve aurora image segmentation, and the network architecture with
the parameters is shown in Figure 2.
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Figure 2. U-Net network architecture used in all-sky image segmentation.

Compared to the task of directly identifying fold structures, it is much easier to identify
auroras in ASI images. There are much more aurora sample data than small-scale aurora
fold structures, and large areas of aurora arcs are easier to annotate, which greatly mitigates
the problem of sample imbalance. More importantly, subsequent identification results
do not rely strongly on the accuracy of manual annotations of the aurora arc boundaries.
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Based on the manual annotations of auroras, the U-Net segmentation network was used at
the first stage to find aurora areas in ASI images, which are also the approximate areas of
auroral arc skeletons.

2.2. Skeleton Representation of Aurora

Similar to using a sketch of wave-like distortions to describe aurora vortex, fold, and
curl in previous studies [33–35], the skeleton was used to represent auroral trajectory for
identifying fold structure. It makes more sense to extract skeletal information about the
auroral shape than to elaborately depict the boundaries of the aurora. Auroras observed in
the sky at Earth’s high latitudes do not actually have distinct boundaries, and the sharp
aurora boundaries in the processed ASI images depend on the dynamic range used to
preprocess raw aurora image data. In contrast, the trajectory of the aurora is relatively
stable, and its information can reflect a variety of important information about the aurora
arc, such as the direction, distortion, number, length, and spacing of arcs. Figure 3a,b
shows an example of extracting auroral skeletons on segmentation results, which contains
the skeletonization process of the aurora, and the change in the pixel gray values from
segmented aurora areas to skeletons within a fixed distance, respectively. Figure 3c shows
some skeletonization results overlaid on ASI images.
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Figure 3. Extraction of auroral skeletons. (a) The skeletons of auroral arcs are obtained from ASI
images. (b) The profiles along the blue lines shown in (a). (c) Some examples of extracted auroral
skeletons in ASI images.

Kerschnitzki et al. [36] extracted the medial axis of the three-dimensional foreground
by iteratively removing voxels. We used this method to extract the skeleton on two-
dimensional aurora images. Based on the obtained probability map of the aurora, we
selected aurora pixels in ASI images. These aurora pixels were individually decided
and iteratively removed until the one-pixel-thick skeleton was formed. Pixels were iter-
atively removed from the surface of the binary image if removing them did not change
the connectivity of their 3 × 3 neighborhood and if they had more than one neighbor
in their 3 × 3 neighborhood. The result is a one-pixel-thick medial axis skeleton that is
homotopic to the aurora segmented from ASI images. The connectivity and topology of
auroral arcs are preserved during skeletonization, and the resultant skeleton can portray
the trajectory of auroral arcs.
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2.3. Identification of Fold Structure

Based on the obtained skeleton, we identified aurora fold structures in a filtering way.
Instead of detecting two-dimensional local structures in an ASI image, a two-dimensional
filter works by moving through the skeleton to detect local fold structures. Specifically,
a window of size H×H was used to capture a local skeleton segment, which slides pixel
by pixel over the entire skeleton. The identification process of the aurora fold structure is
shown in Figure 4, i.e., the skeleton-based fold identification module (SFIM), which consists
of four steps of skeleton evolution.
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skeleton pixels in each skeleton set of SFIM, respectively.

Given the original skeleton set S = [s1, s2 . . . . . . sN ] containing N skeletons, to further
eliminate noise and acquire a useful skeleton that is more likely to contain fold structures,
S is processed to the refined skeleton set Z = [z1, z2 . . . . . . zN′ ] as Z = T[S], and N′ is less
than N. The transformation T[ ] includes truncating the skeleton with a zenith angle greater
than θ and filtering the skeleton shorter than L. When the center of the filter traverses to
the kth pixel of zi, there are M(k) pixel points

{
p1

i,k, p2
i,k . . . . . . pM(k)

i,k

}
in the k th window.

We propose RF to measure the pattern of the segmented skeleton, which is defined as

Ri,k = Ai,k − Bi,k, (1)

Bi,k = ‖p1
i,k, pM(k)

i,k ‖
2
, (2)

where Ai,k is skeleton length computed by counting the number of connected pixels in

the skeleton, and Bi,k is the Euclidean distance between two endpoints p1
i,k and pM(k)

i,k of
the segmented skeleton within the kth window of zi. Ri,k is assigned to the kth pixel of zi,
which reflects the distortion degree of the segmented skeleton. With the sliding window,
we can assign a value for each skeleton pixel, and finally obtain a quantified skeleton set
Q = [q1, q2 . . . . . . qN′ ].

The fold structure is identified based on Q. The larger the value of Ri,k, the more likely
the local area of the skeleton pixel is to form a fold structure. We can determine whether
the segmented skeleton contains the fold structure via hard thresholding and derive a
binarized skeleton set F = [ϕ1, ϕ2 . . . . . . ϕN′ ].

ϕi(n) =
{

1, qi(n) ≥ τ, i = 1, . . . , N′

0, qi(n) < τ, i = 1, . . . , N′,
(3)

where the n th skeleton pixel of ϕi is assigned a logical value and τ is a preset threshold
parameter. Due to the serious deformation at the edge of the lens during ASI image
shooting, τ is set to a dynamic threshold that increases the further away from the image
center. A segment of ϕi that is assigned consecutive positive values is considered to be a
connected pixel set of a fold skeleton. Thus, the bounding box of the segmented skeletons
with large distortions can be obtained. By adding a window width to the bounding box and
mapping it back to the original ASI image, the position and size of the region containing
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the fold structures are obtained. The detailed procedure of the automatic identification
algorithm for aurora fold structure is given in Algorithm 1.

Algorithm 1: Aurora fold structure automatic identification.
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3. Data
3.1. Observation Data

The aurora image sequences used in this paper were acquired from the all-sky imagers
at YRS, Ny-Ålesund, Svalbard, with the geographic coordinates of 78.92◦ N, 11.9◦3 E,
and corrected geomagnetic latitude of 76.24◦ and MLT≈UT + 3 h. Since 2003, the optical
imaging system at YRS can make 24 h surveys of auroral emissions with a temporal
resolution of 10 s in winter seasons. Thus, more than 1200 h of ASI images at three bands
(R: 630.0 nm, G: 557.7 nm, and V: 427.8 nm) are obtained annually. Normally, the number
of ASI images of YRS increases by more than one million frames per year. The size of the
original ASI image is 512 × 512 pixels, and the average spatial resolution is 1.35 km as the
zenith angle is from 0◦ to 90◦ (at 150 km). In this paper, ASI images at 557.7 nm acquired
from December 2003 to February 2009 were used for the study of detecting fold structure.
All images in this paper have been preprocessed and are 440 × 440 pixels.

3.2. F-Dataset

For quantitative evaluation of the proposed method, 2000 ASI images at 557.7 nm
containing fold structures were selected by auroral experts from 2003 to 2009 observation
data, which comprise the F-dataset. The F-dataset contains 2000 ASI images with various
types of aurora fold structures, such as Figure 5a. By comparing the identification results by
our method with those annotated by auroral experts, there are four possible identification
outcomes: (1) true positive (TP)—the listed ASI image in the F-dataset is identified to have
true fold structures; (2) false positive (FP)—the unlisted ASI image is identified as having
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fold structures; (3) false negative (FN)—the listed ASI image is identified as a non-fold; and
(4) true negative (TN)—the unlisted event is identified as a non-fold.
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In addition, we performed the proposed method on a large-scale aurora dataset. This
way, we could statistically study the occurrence distribution and periodicity of the fold
structures, and study the co-occurrence relationship between the small-scale structures
and global appearance types, such as arc and corona. The auroral global appearance types
are from a manually annotated ASI image dataset [1] (referred to as D-dataset), where
38,044 dayside (03:00–15:00 UT) ASI images captured in 19 days in the winter of 2003–2004
are annotated as arc (green), drapery corona (blue), radial corona (yellow), and hot-spot
(red), as shown in Figure 5b. The detailed time and annotation of the D-dataset are shown
in Figure 5c.

4. Experimental Results and Analysis
4.1. Setting and Preprocessing

In the segmentation of ASI images, we trained U-Net on NVIDIA GeForce RTX 3080 Ti
graphics cards, and the framework for deep learning is Pytorch 1.9.1. In the transformation
of original skeleton images, we adopted θ =63◦ and L = 50. In the calculation of the RF
for each pixel, we defined the size of the window as 71 × 71. In the identification of the
fold structures, we set the thresholds τ = 20, 16, and 12 from the edge to the center of the
image, respectively, to screen more suitable candidate fold structures.
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To improve the performance of the proposed method in identifying fold structures
from ASI images, we must preprocess the ASI images before implementing all algorithms,
including dark current subtracting, gray-scale mapping, masking and cropping, and image
rotation. These operations help to eliminate noise interference in original ASI images,
confine the effective dynamic range, and calibrate the zenith angle and the magnetic north
orientation.

We evaluate the aurora segmentation results in various challenges. Figure 6 shows four
representative segmentation challenges, including (1) intensity inhomogeneity, (2) abun-
dant texture structure, (3) small-scale aurora structure, and (4) low image contrast. From
top to bottom in Figure 6, we show the segmentation results by (a) Otsu’s method, (b) an
FCM-based image segmentation method, (c) a level set-based image segmentation method,
and (d) U-Net, respectively. As shown in Figure 6, the U-Net outperforms the other three
methods on four challenges. As shown, Otsu, FCM, and level set fail to handle the issue of
low contrast. In the recognition of the continuity and complex structure of auroral arcs, the
U-Net method has achieved good performance for various forms of auroras.
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4.2. Performance of Aurora Fold Structure Identification

To demonstrate the effectiveness of the proposed automatic identification method
for the aurora fold structure, we have conducted extensive experiments on the ASI image
dataset. First, the performance of the RF-based skeleton pattern analysis was tested. Second,
a quantitative evaluation was conducted in the F-dataset, with retrieval precision and recall
computed to verify the accuracy of the proposed method. Finally, the retrieval of the fold
structure in the large-scale dataset was analyzed in detail to illustrate the generalization
ability and limitations of the method for various fold structures.

To evaluate the performance of RF-based skeleton pattern analysis, the RF-quantification
skeleton is shown in Figure 7, where larger values on the skeleton indicate a greater distor-
tion of the auroral arc. Based on the selected skeleton patterns, we can obtain fold structure
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regions, as shown in the red box on the ASI images. As shown, whether it is one or more
fold structures (a), large-scale or small-scale (b), weak or strong auroral emission (c), and
diffusion or discrete structures (d), our method can accurately identify the position and
size of the fold structures.
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Figure 7. Identification results of different types of folds, including (a) one and more fold structures,
(b) large-scale and small-scale fold structures, (c) weak and strong auroral emission, and (d) diffusion
and discrete structures.

A quantitative evaluation is conducted in the F-dataset to verify the accuracy of
the proposed method. By comparing the automatic identification results with the expert
annotations, we can calculate the retrieval precision and recall rate as

Pprecise =
TP

TP + FP
(4)

Precall =
TP

TP + FN
(5)

where TP is the count of samples in the F-dataset which are identified as fold structures,
FN is the count of samples in the F-dataset which fail to be identified as fold structures, and
FP is the count of samples that are not in the F-dataset but are identified as fold structures.
The precision rate indicates the probability of being correct in the detected fold structure
samples, and the recall rate indicates the probability of finding fold structure samples
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in the F-dataset. The results are shown in Table 1, where the precise rate of identifying
aurora folds is 90.27% and the recall rate is 63.55%. In total, 1271 ASI images in the F-
dataset are correctly identified, which indicates that the proposed algorithm can identify
the fold structures accurately. Meanwhile, 729 ASI images in the F-dataset are missed by
our method, which indicates that our method is not suitable for some fold structures.

Table 1. The identification result of fold structures on F-dataset.

Annotation
Identification Result

Positive Negative

Positive 1271 729
Negative 137 863

Precise (%) 90.27
Recall (%) 63.55

To illustrate the generalization ability and limitations of the method for various fold
structures, we checked the retrieval results of the fold structure in the large-scale dataset.
Figure 8a shows sixteen true-positive samples, which contain different types of auroras
and are all detected with fold structures. Figure 8b shows eight ASI images without fold
structures that are regarded as fold structures, which indicates that adjacent arcs are prone
to false fold structures. Figure 8c shows eight missed fold structures. By overlaying the
auroral skeleton on the ASI image, we found that the small-scale weak aurora structures are
difficult to represent adequately with skeletons, which may be the reason why our method
is unable to identify them.
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4.3. Statistical Study of Aurora Fold Structures

To explore the distribution of fold structures in a large-scale aurora dataset and the
co-occurrence relationship between fold structures and macroscopic auroral types, we
applied the proposed method to the D-dataset to retrieve the aurora fold structure. A total
of 5657 images were detected with fold structure, which are labeled as cyan in Figure 9.
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Figure 9. The occurrence time of aurora fold structures detected in D-dataset.

As shown, the fold structures occur multiple times and continuously in a day, and
may occur periodically and repeatedly in the auroral oval. In order to show the temporal
distribution of the fold structures, the temporal axis was divided into 72 bins of 10 min
durations. Images falling into each bin were counted. The occurrence distributions are then
normalized by the total number of all images within the same time bin. The occurrence
distribution of the aurora fold structure is shown in the bottom panel of Figure 10, which
is compared with the distributions of the four discrete auroral types (arc, drapery corona,
radial corona, and hot-spot, as shown in Figure 5). It is found that the fold occurrence has
a distinct double-peak distribution. The first one is a small peak from 4:40 to 6:10 (UT),
and the second one is a large peak from 12:10 to 14:10 (UT), which falls in the so-called
pre-noon and post-noon occurrence peaks mainly contributed by the arc aurora.
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Figure 10. Temporal occurrence distribution of the aurora fold structure (bottom panel), which is
compared with four categories of dayside aurora (1st–4th panel) in the D-dataset.

5. Discussion and Conclusions

Aurora fold structures, the most common type of small-scale structures, are difficult
to detect by whole-image-based techniques due to their variety of forms. In this study, we
proposed an automatic identification method by combining deep learning and morphologi-
cal knowledge to quickly identify, locate, and label aurora fold structures. Since the trained
U-Net has a good segmentation performance on ASI images, it can help us to extract the
shape of auroras from ASI images. Followed by iteratively skeletonizing auroral shape, the
skeletons are extracted to represent the trajectory of auroras. For the identification step, the
SFIM can identify aurora fold structures only by measuring the morphological feature of
the skeleton without laborious labeling procedures on a large-scale dataset.
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The experimental results showed that our method can identify the fold structure
under different challenges, including different scales, quantities, brightness, and patterns.
Compared with human annotations, our identification method achieves a high accuracy
rate. On the large-scale dataset, we found the temporal occurrence peak of the aurora fold
structure and the arc aurora is closer to the emergence pattern of the fold structure.

The ultimate purpose of identifying the small-scale aurora structure is to offer mor-
phological interpretations of auroral types for aurora physics studies. In the future, we will
conduct more aurora physics studies, such as the study of the statistics and classification of
aurora spirals, based on the proposed local structure identification method. Meanwhile, the
lower recall rate implies that some fold structures are undetected using our method, which
may be caused by inaccurate skeletons. Our future work will also focus on improving the
representation ability of skeletons for small-scale auroras with large curvature.
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