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Abstract: In relativistic heavy-ion collisions, event-by-event fluctuations are known to have non-
trivial implications. Even though the probability distribution is geometrically isotropic for the initial
conditions, the anisotropic εn still differs from zero owing to the statistical fluctuations in the energy
profile. On the other hand, the flow harmonics extracted from the hadron spectrum using the multi-
particle correlators are inevitably subjected to non-vanishing variance due to the finite number of
hadrons emitted in individual events. As one aims to extract information on the fluctuations in
the initial conditions via flow harmonics and their fluctuations, finite multiplicity may play a role
in interfering with such an effort. In this study, we explore the properties and impacts of such
fluctuations in the initial and final states, which both notably appear to be statistical ones originating
from the finite number of quanta of the underlying system. We elaborate on the properties of the
initial-state eccentricities for the smooth and event-by-event fluctuating initial conditions and their
distinct impacts on the resulting flow harmonics. Numerical simulations are performed. The possible
implications of the present study are also addressed.

Keywords: flow fluctuations; hydrodynamical model; eccentricity

1. Introduction

Strong collective motion features the largely thermalized matter produced in relativistic
heavy-ion collisions. The primary characteristics of the system are indicated by the flow har-
monics extracted from the azimuthal correlations between the final state particles. Relativis-
tic hydrodynamics constitutes one of the most promising theoretical frameworks to describe
the temporal evolution of the underlying strongly coupled quark-gluon plasma [1–9]. As an
effective theory at the long-wavelength limit, such an approach models the system in terms
of a continuum. It plays a vital role in understanding the relationship between the empirical
observables and the initial conditions dictated by the underlying microscopic approach. The
latter furnishes the initial conditions as the input of the hydrodynamic model, primarily ex-
pressed in terms of the density distribution, which is subject to event-by-event fluctuations.
Even though specific details of the initial state might not survive the temporal evolution, it
is generally understood [10–22] that the collective flow carries crucial information on the
hot and dense system created in the heavy-ion collisions. These relevant harmonics vn are
defined as the Fourier coefficients of the one-particle distribution function in azimuthal
angle ϕ [23]

f (ϕ) =
1

2π

[
1 + ∑

n=1
2vn cos n(ϕ−Ψn)

]
≡ f1(ϕ), (1)
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where the reference orientation Ψn for a given order n is known as the event plane. In par-
ticular, the elliptic flow v2 is mostly attributed to the geometric almond shape of the initial
system [11]. The triangular flow v3 is due to the event-by-event fluctuations of the initial
conditions [12]. Many studies have been devoted to investigating the relationship between
the initial geometric anisotropy and the final-state flow harmonics [13,20–22,24–29].

Regarding the analysis of the initial conditions for hydrodynamics, the anisotropies
are measured by the complex eccentricities εn [13]

εn =
〈zn〉
〈|z|n〉 ≡

∫
dxdyρ(z)zn∫

dxdyρ(z)|z|n
, (2)

where z = x + iy. The average 〈· · · 〉 is performed for a given event, defined on the
transverse plane x− y weighted by the energy density ρ. Moreover, one assumes that the
center of the density coincides with the origin. Moreover, the cumulant κn has turned out to
be a helpful tool to extract further the connected part of the anisotropies [13,30,31], following
the exponential formula in combinatorial mathematics. Specifically, the cumulant can be
derived using the logarithm of the generating functional of moments. The literature often
assumes that vn is primarily proportional to |εn| for individual events. In other words, the
probability of |εn| is, up to a proper rescaling, that of the vn distribution. Due to fluctuations,
even though the probability distribution ρ(z) for the initial conditions is geometrically
isotropic, the resulting eccentricities do not vanish for n 6= 0. A notable example is the
identical point-source model subject to an isotropic Gaussian average density profile, as
proposed by Ollitrault [11]. There, it was shown [25,31] that the cumulants ε2{2} and ε2{4}
do not vanish as long as the number of partonic constitutes remains finite.

On the side of the collective flow, to extract the harmonics vn from the experimen-
tal data, one needs to adopt a specific estimation scheme. The conventional event plane
method [23,32,33] aims to estimate the event planes Ψn in Equation (1) and subsequently
the flow harmonics vn. The approach is somewhat plagued by the fact that the reaction
plane fluctuates on an event-by-event basis [12] and cannot be directly measured experi-
mentally. One can detour the difficulty by forming particle pairs, where the event planes
are canceled. In this regard, many other approaches have been primarily based on particle
correlations. In particular, the mathematical formalism can be concisely expressed in the
generating function [34,35]. This class of approaches consists of the multi-particle cumu-
lant [34–37], Lee-Yang zeros [38–40], and symmetric cumulants [41], among other recent
generalizations [42,43].

In practice, even though the accessible number of events is significant, for an individual
event, the particle multiplicity is finite. When averaging over the events, the variance of
the extracted harmonic coefficients remains finite even though the particles emanated
independently according to a well-defined one-particle distribution function. Such a
degree of statistical uncertainty will present itself as flow fluctuations. In practice, it might
become indistinguishable from those caused by the event-by-event fluctuations in the initial
conditions discussed above. The latter is understood to reflect the physics of the underlying
microscopic model, different from its counterpart of statistical origin.

The present study is mainly motivated to explore the above aspect in flow fluctuations.
We examine how the initial geometric fluctuations and finite multiplicity give rise to the
variance in the measure flow harmonics and multi-particle correlators. The remainder of
the present paper is organized as follows. In Section 2, we briefly review the identical
point-source model and derive the fluctuations of eccentricities. In Section 3, we study the
statistical fluctuations in the estimated harmonic coefficients due to the finite multiplicity.
These two aspects are simultaneously taken into consideration in Section 4, where the
main results of the current paper are presented. Section 5 is devoted to further discus-
sions regarding the implication of flow analysis in relativistic heavy-ion collisions and the
concluding remarks.
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2. Eccentricities and Its Fluctuations

In this section, we address the eccentricity fluctuations owing to the finite number
of participants, which eventually form “nuggets” in the initial energy distribution. This
characteristic is largely demonstrated in many well-known event generators, such as MC
Glauber [44], CGC MC-KLN [45–48], NeXUS [49,50], EPOS [51–53], among others. As
shown in the specific energy profiles of the generated initial conditions (see, for instance,
Figure 2 of Ref. [54], Figure 1 of Ref. [5], and Figure 2 of Ref. [55]), the event-by-event
fluctuating initial conditions typically feature a granular energy profile. The primary idea
is that the density fluctuations even on top of an isotropic density distribution will break
the symmetry of the average distribution. For the present purpose, one may consider that
the initial conditions are composed of sources owing to partonic binary collisions, as in
the context of the Glauber model. For mathematical convenience, these sources and their
fluctuations are generated by a given identical form and are spatially uncorrelated. As
the number of sources N becomes significant, one may utilize the multivariate central
limit theorem (CLT), where the number of variables is governed by the relevant degree
of freedom of the initial distribution. Subsequently, the mathematics simplifies and the
derived feature is shown to be largely universal [11]. This is because the CLT concerns
the eventual convergence to a multivariate normal distribution of an average among the
sampled independently distributed random variables. The latter, in practice, can be taken
as the coordinates on the transverse plane. To derive the distribution of eccentricity ε2,
one may follow Refs. [11,56] by performing a change of variables into new variables that
include eccentricity. When feasible, the resultant eccentricity distribution is obtained by
integrating out the remaining variables.

In what follows, we consider a simplified scenario to illustrate eccentricities generated by
fluctuations. To be specific, one employs the identical point-source model [11,31], where the
sources are point-like, and the probability distribution satisfies an average Gaussian profile

p(zi) =
1

πR2
0

exp

(
−|zi|2

R2
0

)
, (3)

where the location of source i is denoted by zi, where i = 1, · · · , N. In this case, the resultant
probability distribution of |ε2| can be derived analytically, which is found to be [11]

P(|ε2|) = (N − 2)|ε2|
(

1− |ε2|2
) N

2 −2
, (4)

where N is the number of point sources. By integrating Equation (4), it is straightforward
to show that

E[|ε2|] =

√
πΓ
(

N
2

)
2Γ
(

N+1
2

) ,

E
[
|ε2|2

]
=

2
N

,

E
[
|ε2|4

]
=

8
2N + N2 , (5)

where for a positive interger M, the Γ function implies Γ(M) = (M− 1)!. The variance of
|ε2| is readily given by Equation (5) as

Var[|ε2|] =
4

N2 −
πΓ
(

N
2

)2

4Γ
(

N+1
2

)2 . (6)
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The expected value and variance discussed here refer to the average between differ-
ent events.

Moreover, the cumulants of the eccentricity are found to be [11]

ε2{2} =
√

E[ε2|2] =
√

2
N

,

ε2{4} =

(
2E
[
|ε2|2

]2
− E

[
|ε2|4

])1/4
=

(
16

N2(N + 2)

)1/4
. (7)

The above results indicate that the eccentricities do not vanish due to the finite par-
ticipants. In the continuum limit, however, eccentricities do not persist, as it is apparent
that ε, its variance, and the cumulants vanish in the limit N → ∞. In this regard, it is worth
noting that eccentricities generated by initial state geometric fluctuations are not necessarily
implemented in a discrete fashion. Even at the limit N → ∞, continuous fluctuations in the
initial conditions also give rise to non-vanishing eccentricities. In particular, analyses have
been carried out using an expansion in 1/N and the magnitudes of the fluctuations [57–59].

3. Variance of the Flow Harmonics

Although the flow harmonics is formally defined by Equation (1), in practice, one
needs to utilize a statistical estimator to extract its value from the empirical data. The latter
inevitably leads to a degree of uncertainty due to the finite multiplicity.

In the literature, most methods to extract the flow harmonics are based on particle
correlations, and the cornerstone of such an approach is based on the following k-particle
correlation [37]

〈k〉n1,··· ,nk ≡ 〈e
i(n1 ϕ1+···+nk ϕk)〉, (8)

where ϕi is the azimuthal angle of the ith particle, the average is taken for all distinct
tuples of particles. To focus on the flow harmonics vn, one usually chooses a specific set of
(n1, · · · , nk) so that ∑k

j=1 nj = 0. For instance, in the case of two-particle correlation k = 2,
one often considers n1 = −n2 = n.

For a realistic event composed of finite multiplicity, the average 〈· · · 〉 on the l.h.s.
of Equation (8) is carried out as a summation for all distinct tuples. Moreover, any auto-
correlation must be properly removed. One, therefore, introduces

k̂{n1,n2,···nk} ≡
∑

k−tuples
w1w2 · · ·wkei(n1 ϕ1+n2 ϕ2+···+nk ϕk)

∑
k−tuples

w1w2 · · ·wk
=

N〈k〉n1,n2 ···nk

D〈k〉n1,n2 ···nk

. (9)

where the formalism has been further generalized to include weight wk [41].
In practice, the numerator and denominator of Equation (9) can be expressed by

employing the Q-vectors [10], given by

Qn,p ≡
M

∑
j=1

wp
j einϕj , (10)

where p is an exponent that can be chosen conveniently to simply the resultant expressions.
As an example, for k = 2, one has

N〈2〉n1,n2
= Qn1,1Qn2,1 −Qn1+n2,2, (11)

D〈2〉n1,n2
= Q2

0,1 −Q0,2, (12)

To be more specific, let us consider a pair of particles that are emitted independently
for an individual event according to the one-particle distribution function. Therefore, k = 2,
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and one considers w1 = w2 = 1, n1 = −n2 = 2. By denoting the azimuthal angles of the
pair by ϕ1 and ϕ2, it is readily verified that the expected value of ei(ϕ1−ϕ2) gives

〈2〉2,−2 ≡ 〈ei2(ϕ1−ϕ2)〉 = 〈cos 2(ϕ1 − ϕ2)〉 = v2
2, (13)

where the average

〈· · · 〉 =
∫

dϕ1dϕ2 · · · f (ϕ1, ϕ2)

is evaluated by integrating the azimuthal angles using the joint probability

f (ϕ1, ϕ2) = f1(ϕ1) f1(ϕ2), (14)

where f1 is defined by Equation (1). In other words, one has considered the statistical limit
of infinity multiplicity.

On the other hand, in practice, for an event of a finite number of multiplicity M, one
may estimate v2

2 by the following form

2̂{2,−2} ≡ v̂2
2 =

1
M(M− 1) ∑

i 6=j
cos 2(ϕi − ϕj), (15)

where the summation enumerates all distinct M(M− 1) ordered pairs. It is worth pointing
out that Equation (15) is not identical to but a discrete version of Equation (13).

In this regard, Equation (15) is a statistical estimator [60] of the physical quantity
θ = v2

2, denoted as θ̂, for an individual event. Mathematically, the quality of an estimator is
measured in terms of its expected value and variance regarding the event average. If the
underlying distribution, namely, Equation (14), is known beforehand, we have

E
[
2̂{2,−2}

]
= v2

2, (16)

Var
[
2̂{2,−2}

]
=

1 + v2
2

M(M− 1)
+ 2

M− 2
M(M− 1)

v2
2(1 + v4) +

(M− 2)(M− 3)
M(M− 1)

v4
2 − v4

2. (17)

Again, we note the difference between the event average denoted by E[· · · ] and that
for a given event between particle tuples denoted by 〈· · · 〉 by assuming infinite multiplicity.

It is apparent that Equation (16) indicates that the estimator Equation (15) is unbiased,
while Equation (17) gives an uncertainty of the estimation, between different events of
finite multiplicity M. Even though the value of v2 is well-defined in Equation (1), again,
multiplicity inevitably gives rise to a finite variance. The latter will be mixed up with and,
to a certain degree, indistinguishable from those due to the initial state fluctuations. These
flow fluctuations occur on an event-by-event basis and do not vanish unless, for instance,
one generates an infinite number of particles in a hydrodynamic simulation.

Moreover, the physical nature of the variance shown in Equation (17) is rather different
from that given by Equation (6). The former is understood to be governed by the underlying
microscopic model and whose expected value does not vanish at a significant number of
events. The latter is purely statistical. As long as the estimator is unbiased, the expected
value tends to approach the true value when the number of events becomes significant,
while the variance persists on an event-by-event basis. Furthermore, depending on the
quality of the estimator, different flow estimation schemes might give different variances.
As the flow evaluation scheme must be applied to real events with finite multiplicity, it is
inevitably subject to some statistical uncertainty.

Before closing this section, we elaborate on another example of flow fluctuations due
to finite multiplicity associated with particle correlation estimator. We consider k = 3,
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w1 = w2 = w3 = 1, n1 = n2 = 2, n3 = −4, and also assume Ψ2 = Ψ4 = Ψ for simplicity.
By explicit integration, one finds

E
[
3̂{2,2,−4}

]
= v2

2v4, (18)

Var
[
3̂{2,2,−4}

]
=

1
M(M− 1)(M− 2)

{[
4v2

2v4 + 2v2
4v8

]
+ (M− 3)

[
4v4

2 + 8v2
2v2

4 + 4v2
2v4v8 + 2v3

4

]
+ (M− 3)(M− 4)

[
4v4

2v4 + v4
2v8 + 4v2

2v3
4

]
+ (M− 3)(M− 4)(M− 5)v4

2v2
4

}
− v4

2v2
4. (19)

Although a bit tedious, the evaluations of the above expressions are straightforward.
All possible combinations involve picking out particle pairs from two ordered tuples, which
consist, respectively, of three distinct particles. One enumerates all different possibilities
where one, two, or three particles from the two tuples coincide. Owning to finite multiplicity
M, the results given in Equations (17) and (19) demonstrate the fact that, in general, the
estimators k̂{n1,n2,···nk} are subject to finite uncertainty. In reality, the event planes Ψ2 and
Ψ4 do not coincide precisely. Subsequently, the three-particle correlator 3̂{2,2,−4} actually
carries the information on the event plane correlation [29,42].

4. Flow Variance Due to Statistical and Initial Geometric Fluctuations

In this section, we turn to discuss the scenario where both factors discussed in the two
preceding sections are taken into consideration. As discussed above, in a realistic event,
the flow fluctuations, demonstrated in terms of the variance of flow harmonics, carry the
information on both initial-state geometrical and final-state statistical fluctuations. We first
show the effect numerically using Monte Carlo simulations and then present the analytical
results on the resultant flow fluctuations.

In Figure 1, we present the obtained elliptic and triangular flow coefficients for the
generated events of smooth and fluctuating initial conditions. For fluctuating initial con-
ditions, they are prepared according to Equation (3), where one assumes the number of
nuggets N = 10. Then, the eccentricities εn are extracted using the definition Equation (2),
where the recentering correction is considered. Namely, one replaces z with z′ = z− z0,
where

z0 =

∫
dxdyzρ(z)∫
dxdyρ(z)

. (20)

This leads to ε1 = 0 for all the events. One can readily verify the numerical implemen-
tation by considering the case N = 2, which, by the definition Equation (2), one has ε2 = 1,
free of the event-by-event fluctuations. For simplicity, we adopt the usual assumption that
the genuine flow harmonics are proportional to the eccentricities,

vn = Cvεn. (21)

For illustrative purposes, it is further assumed that the proportional constant Cv = 1.
These flow coefficients, in turn, determine the one-particle distribution given by Equation (1).
In the present calculation, the flow harmonics in Equation (1) are truncated at n = 5. We
employ a Monte Carlo procedure to generate the hardons to simulate the realistic events
with a finite multiplicity M. Subsequently, the values of vn are estimated by the square root
of v̂2

n, which is a straightforward generalization of Equation (15). To be specific,

2̂{n,−n} ≡ v̂2
n =

1
M(M− 1) ∑

i 6=j
cos n(ϕi − ϕj), (22)
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where in our calculations, n = 2, 3. As a result, the estimated flow harmonics bear statistical
uncertainty due to finite multiplicity in the particle emission according to Equation (1). The
results are presented as a scatter plot of estimated flow harmonics as a function of the event
multiplicity, vn vs. M.

0 150 300 450
0.0

0.2

0.4

0.6

0.8

1.0

M

v
2

 fluctuating initial conditions
 smooth
 statistical uncertainty estimated by Equation(17)
 asymptotical value estimated by Equation(25)

0 150 300 450
0.0

0.2

0.4

0.6

0.8

1.0

M

v
3

 fluctuating initial conditions
 smooth initial conditions
 statistical uncertainty estimated by Equation(17)

Figure 1. The extracted elliptic and triangular flow coefficients for the events of smooth and fluctu-
ating initial conditions, as a function of multiplicity per event M for N = 10. The values of v2 are

estimated using
√

v̂2
n given by Equation (22). The hollow red triangles represent the results obtained

by the smooth initial condition, and the filled black circles are those by the identical point-source
model. The solid blue curve estimates the statistical uncertainties using Equation (17). The dashed
green curve shows the asymptotical value of the square root of the variance given by Equation (25)
due to event-by-event fluctuations.

For the events with smooth initial conditions, the calculations are rather similar, except
that the fluctuations in eccentricities are frozen. One will always take their mean values on
the r.h.s. of Equation (21). Again, even though the initial Gaussian distribution is isotropic,
the average eccentricities do not vanish.

From Figure 1, it is observed that the flow harmonics are subjected to fluctuations,
which decrease with increasing event multiplicity. As expected, the geometrical fluctuations
in the initial state give rise to additional uncertainties of flow harmonics on top of those
statistical ones. This is demonstrated as the scatters from events of smooth initial conditions
mostly sit in a narrower region on top of those generated by fluctuating initial conditions.
Moreover, as the event multiplicity increases, such a difference becomes more significant.
According to Equation (17), for the events of smooth initial conditions, the variance of flow
harmonics decreases with increasing event multiplicity and vanishes at the M→ ∞. On
the other hand, for the events generated by fluctuating initial conditions, although the
variance of flow harmonics decreases with event multiplicity, they approach a constant
value, as further discussed and evaluated below. The above results are confirmed by the
quantitative values presented in Table 1, where one estimates the elliptic and triangular
flows and their variance. In order to show the robustness of our conclusion, we also carried
out calculations using a more significant number N = 50. The latter results are presented
in Table 2. It is observed that the main feature persists: finite multiplicity gives rise to
additional flow variance on top of those due to event-by-event initial conditions.

In Figure 2, we present the distribution of the elliptic and triangular flows. Again,
the distributions associated with event-by-event fluctuation initial conditions feature a
more significant deviation when compared to that associated with the smooth initial
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conditions. As the number of event multiplicity increases, the variance decreases owing to
the suppression of statistical uncertainties, which is consistent with the results shown in
Figure 1 and Table 2. Moreover, the difference between the fluctuating initial conditions
and smooth ones becomes more significant. Since the probability distribution of flow is a
relevant observable, which can be measured experimentally, such a distinction may lead to
interesting physical implications.

Table 1. The calculated flow harmonics and their fluctuations using the identical point-source model
with N = 10. The calculations are carried out for smooth and fluctuating initial conditions with event
multiplicity M = 10, 20, 50, 100, and 500.

M IC E[v2] Var[v2] E[v3] Var[v3]

10 smooth 0.375 3.467× 10−2 0.393 3.039× 10−2

fluctuating 0.397 3.647× 10−2 0.409 3.359× 10−2

20 smooth 0.316 2.119× 10−2 0.338 1.870× 10−2

fluctuating 0.341 2.633× 10−2 0.359 2.480× 10−2

50 smooth 0.283 1.116× 10−2 0.321 9.532× 10−3

fluctuating 0.307 2.044× 10−2 0.335 2.125× 10−2

100 smooth 0.287 6.533× 10−3 0.328 4.778× 10−3

fluctuating 0.292 1.812× 10−2 0.324 1.984× 10−2

500 smooth 0.295 2.410× 10−3 0.331 1.288× 10−3

fluctuating 0.282 1.696× 10−2 0.319 1.833× 10−2

1000 smooth 0.297 2.041× 10−3 0.333 8.467× 10−4

fluctuating 0.289 1.769× 10−2 0.317 1.832× 10−2

Table 2. The same as Table 1, but the calculations are carried out for N = 50.

M IC E[v2] Var[v2] E[v3] Var[v3]

10 smooth 0.312 2.332× 10−2 0.342 2.712× 10−2

fluctuating 0.348 2.879× 10−2 0.347 2.744× 10−2

20 smooth 0.249 1.723× 10−2 0.275 1.461× 10−2

fluctuating 0.251 1.769× 10−2 0.287 1.944× 10−2

50 smooth 0.193 7.953× 10−3 0.216 8.454× 10−3

fluctuating 0.215 1.114× 10−2 0.242 1.341× 10−2

100 smooth 0.173 4.774× 10−3 0.207 5.051× 10−3

fluctuating 0.186 8.352× 10−3 0.221 1.136× 10−2

500 smooth 0.167 9.794× 10−4 0.217 1.069× 10−3

fluctuating 0.169 6.995× 10−3 0.215 1.070× 10−2

1000 smooth 0.174 5.576× 10−4 0.213 4.839× 10−4

fluctuating 0.170 7.396× 10−3 0.209 9.398× 10−3
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Figure 2. The probability distributions of triangular flow extracted for events of smoothed (black
filled dotted) and event-by-event fluctuating (red empty squares) initial conditions generated with
N = 10. The calculations are carried out by considering different event multiplicities M = 20 (top
row) and M = 100 (bottom row).

We now proceed to analyze the above flow fluctuations from an analytic perspective.
In particular, we reassess Equations (16) and (17) with the presence of initial eccentricity
fluctuations. We will restrain ourselves with the point-source model discussed in Section 2
for the present study. In this case, Equation (16) is replaced by

E
[
2̂{2,−2}

]
= C2

vE
[
|ε2|2

]
=

2C2
v

N
, (23)

where one assumes Equation (21).
Similarly, the variance Equation (17) gives
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Var
[
2̂{2,−2}

]
=

1 + C2
vE
[
|ε2|2

]
M(M− 1)

+ 2
M− 2

M(M− 1)

(
C2

vE
[
|ε2|2

]
+ C3

vE
[
|ε2|2|ε4|

])
+

(M− 2)(M− 3)
M(M− 1)

C4
vE
[
|ε2|4

]
− C4

vE
[
|ε2|2

]2

=
1 + 2C2

v
N

M(M− 1)
+ 2

M− 2
M(M− 1)

(
2C2

v
N

+ C3
vE
[
|ε2|2|ε4|

])
+

(M− 2)(M− 3)
M(M− 1)

8C4
v

2N + N2 −
4C4

v
N2 . (24)

At the limit of infinite multiplicity, the above result gives

lim
M→∞

Var
[
2̂{2,−2}

]
=

8C4
v

2N + N2 −
4C4

v
N2 , (25)

which does not vanish as long as N remains finite. Regarding the numerical simulations,
the asymptotical value Equation (25) corresponds to the flow variance entirely due to event-
by-event fluctuations. It becomes dominant when the event multiplicity M becomes rather
significant so that the statistical uncertainties estimated by Equation (17) vanishes. On the
other hand, flow fluctuations are completely governed by the statistical uncertainty for the
events generated by smooth initial conditions. Compared with the results presented above
in Figures 1 and 2, the deviations of flow harmonics due to initial geometric fluctuations
and statistical uncertainties are observed to be in accordance with the analytic results.

5. Concluding Remarks

From a statistical viewpoint, we scrutinize the fluctuations in flow harmonics in this
work. In particular, we explore two different types of averages. For the first one, one
assumes finite multiplicity per event but considers an infinite number of events. For the
second case, the average is taken for a given event, where one considers an infinite number
of particles at the hydrodynamic limit. Even if one assumes that the elliptic flow v2 is
well-defined in Equation (1) without any fluctuation, in the case of events with finite
multiplicity, it inevitably gives rise to a finite variance. In this context, we pointed out that
one has to adopt a specific scheme to estimate flow harmonics, which is, by definition,
a statistical estimator. Due to finite statistics, it is inevitably subject to a finite variance.
From the physical perspective, it is argued that for realistic events, the flow fluctuations,
demonstrated in terms of the variance of flow harmonics, carry crucial information on both
initial-state geometrical and final-state statistical fluctuations. In practice, the two types
of variance will be mixed and possibly indistinguishable from that due to the initial state
fluctuations, where the latter is understood to carry essential information on the underlying
microscopic physical system. A fraction of the event-by-event flow fluctuations are of pure
statistical nature. Theoretically, it will only vanish, for instance, as one generates an infinite
number of particles in a hydrodynamic simulation.

In terms of experimental observables, notably collective flow and particle correlations,
one of the motivations for the extensive numerical simulations for heavy-ion collisions is
to distinguish the underlying microscopic mechanisms for the initial conditions. From a
hydrodynamic perspective, these distinctions may demonstrate themselves in terms of
fluctuations and long-range correlations, which, in turn, might be encoded in the initial
conditions by the eccentricities and their fluctuations. In this regard, it is generally under-
stood that hydrodynamics transform the eccentricities mostly linearly into final state flow
fluctuations. As discussed above, we argued that the fluctuations in the final flow consist
of two components. As a result, if one attempts to extract information on the fluctuations
in the initial conditions via flow harmonics and their fluctuations due to finite statistics,
finite multiplicity might interfere with such an effort. Event-by-event fluctuations have
long become an essential subject in the studies of relativistic heavy-ion collisions. The
present study was mainly focused on the aspect of statistical fluctuations, particularly their
interplay with those originating from the finite quanta of the relevant system. Moreover, as
pointed out in the main text, eccentricities might emerge from the geometrical fluctuations
in the initial condition where the continuum limit is taken. Much effort has been devoted
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to the latter scenarios [11,57–59]. Systematically assessing or distinguishing the flow fluctu-
ations associated with different causes is a potentially interesting topic, which might lead
to further implications. As shown in Figure 2, the difference in flow variance between the
smooth and event-by-event fluctuating initial conditions becomes more significant as the
event multiplicity increases, as a result of suppression in statistical uncertainty due to large
multiplicity. This result might be physically interesting due to its observable implications.
Moreover, given experimental data, the possibility of extracting flow harmonics using a
statistical estimator with less variance is also a worthy topic to explore further.
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