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Abstract: Unimodular gravity (UG) is often deemed comparable to General Relativity (GR) in
many respects, despite the theory exhibiting invariance under a more limited set of diffeomorphic
transformations. The discussion we propose in this work relies on the criteria for establishing the
equivalence between these two formulations, specifically exploring UG’s application to static and
spherically symmetric configurations with the energy-momentum tensor originating from either a
scalar field or an electromagnetic field. We find that the equivalence between UG and GR might be
disrupted when scrutinizing the stability of solutions at a perturbative level.
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1. Introduction

General Relativity (GR) is the modern theory of gravitational interaction. The grav-
itational phenomena are considered as the structure of the space-time itself induced dy-
namically by matter. GR is considered a very successful theory: all local tests confirm the
predictions of GR with high precision. At cosmological scales, it leads to the Standard Cos-
mological Model (SCM) which also addresses consistently all available observations, from
scales of galaxies up to the larger structures of the universe. It accounts also successfully
for the different phases of the evolution of the universe, including the primordial phases at
least to the primordial nucleosynthesis scales. From this point of view, the SCM, based on
GR, is an almost perfect model to describe the entire evolution of the universe.

However, seen from a different perspective, the SCM is at least problematic. To account
for the observations at the different scales, it demands the introduction of two until now
undetected components in the matter/energy content of the universe [1,2]. The dynamics
of galaxies and cluster of galaxies, and even the formation of such structures, asks for an
additional pressureless component, dubbed dark matter, which manifests only indirectly.
Moreover, to explain the present accelerated phase of the universe, the CMB spectrum
and to obtain an age of the universe consistent with the age of globular clusters, the SCM
asks for another component, with negative pressure, which does not agglomerate, dubbed
dark energy.

Dark energy is now frequently associated with vacuum energy as predicted by quan-
tum field theory. However, its observed value seems not consistent with the theoretical
predictions by dozens of orders of magnitude [3–5]. There are many proposals to cope
with this problem. One of them is to replace it with a self-interacting scalar field, called
quintessence [6]. However, it must be explained, in the quintessence program, why the
vacuum energy must be exactly or, at least, nearly zero. Therefore, the vacuum energy must,
somehow, degravitate [7–9]. There are many mechanisms to implement such degravitating
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mechanism, but until now such proposals are, in some sense, in construction. For a general
overview of the dark energy problem, see Ref. [10].

One interesting approach to the cosmological constant problem described above is
through the unimodular gravity (UG) class of theories [11–14] where the determinant of
the metric, g, is fixed. Originally, g = 1, but other possibilities can be explored, see next
section. UG leads to traceless gravitational equations. The energy-momentum tensor does
not conserve necessarily anymore, since UG is not invariant by the full diffeomorphism
group, but by a more restricted structure called transverse diffeomorphism [15]: While the
general diffeomorphism is characterized by a coordinate transformation xµ → xµ + ξµ, xµ

being an arbitrary vector, the transverse diffeomorphism requires that this function satisfies
the condition ξ

µ
;µ = 0, as it will be seen later. If the conservation of the energy-momentum

tensor is imposed, GR is recovered with a cosmological term that appears as an integration
constant. If the conservation of the energy-momentum tensor is not imposed, as we will
prove below, a class of dynamical vacuum theories is obtained, implying an interaction of
the matter sector with the decaying cosmological term.

The present motivation for the UG deviates from the original one, which is closer
to the choice of a coordinate system in GR. From the modern perspective, UG has two
main motivations. The first one is related to the cosmological constant problem: if we
introduce a cosmological constant term in the matter content, it disappears from the UG
gravitational equations. It may reappear if the energy-momentum tensor is supposed to
conserve, but the possible connection with the quantum vacuum energy density is lost
and the usual cosmological constant problem is alleviated since it remains only to explain
the observed value, but without a necessary connection with the vacuum energy. UG may
have some interesting properties at a quantum level related to the volume fixing constraint,
see Ref. [14] and references therein.

However, there are many discussions, from the original formulation of UG to its
present applications, if the theory is equivalent to GR with a constant or dynamical cos-
mological term. In previous works we have explored the distinction between GR and UG
mainly at a perturbative level in the cosmological context, see [16] and references therein
(see also [17]). Here we will extend such studies to the static, spherically symmetric config-
urations. In UG, with the imposition of the conservation of the energy-momentum tensor,
the static, spherically symmetric solutions are identical to those of GR but now contain a
cosmological constant. The non-conservation of the energy-momentum tensor, on the other
hand, can be mapped in the GR structure with a dynamical cosmological term. Indeed, the
non-conservation of the energy-momentum tensor is allowed in this context, leading to a
new formulation of the UG theory. It is also worth mentioning that such a non-conservation
mechanism appears in many other situations. For a review, see Ref. [18]. All these aspects
are discussed in the next section. In Section 3 the general equations for a static, spherically
symmetric configuration are settled out. Some examples of interacting models, resulting
from the non-conservation of the energy-momentum tensor, will be shown in Section 4,
both in the presence of an electromagnetic field as well as of a self-interacting scalar field
in Section 5. For the latter case, we perform, in Section 6, a perturbative analysis aiming
to show how the usual results of GR change in the unimodular context. In particular, the
unimodular condition on the determinant of the metric implies vanishing perturbations at
the linear level. The results obtained are discussed in Section 7.

2. Field Equations

The Einstein–Hilbert action, in the presence of the cosmological term and the matter
Lagrangian,

S =
∫

d4x
√
−g
{

R
16πG

+ 2Λ + Lm

}
, (1)

implies in the following field equations:
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Rµν −
1
2

gµνR = 8πGTµν + gµνΛ. (2)

The application of the Bianchi identities leads to the energy-momentum tensor Tµν

conservation:

Tµν
;µ = 0. (3)

The conservation laws related to the energy-momentum tensor can be alternatively deduced
from the invariance of the Einstein–Hilbert Lagrangian by diffeomorphic transformations [19].

In order to obtain the UG equations, we introduce a constraint in the action via a
Lagrange Multiplier χ and an external field ξ [17]:

S =
∫

d4x
{√
−gR− χ(

√
−g− ξ)

}
+
∫

d4x
√
−gLm. (4)

The presence of the external field allows one to use a suitable coordinate system according to
the problem under analysis, for example, the usual spherical coordinates or the quasi-global
coordinates employed in spherical symmetric space-time.

The final field equations for this case are

Rµν −
1
4

gµνR = 8πG
(

Tµν −
1
4

gµνT
)

, (5)

R;ν

4
= 8πG

(
Tµν

;µ −
1
4

T;ν
)

. (6)

The above Equation (6) is obtained by using the Bianchi identities in (5).
As highlighted in Ref. [19], it is important to note that in UG, the conservation of

the energy-momentum tensor cannot be derived through the conventional diffeomor-
phism invariance because the theory only exhibits invariance with respect to a limited set
of diffeomorphisms, referred to as transverse diffeomorphisms. The latter implies that
the energy-momentum divergence tensor is equal to the gradient of a (undetermined)
scalar function:

Tµ
ν ;µ = Θ;ν, (7)

On one hand, it is entirely permissible to set the gradient of Θ to zero. If this is conducted,
we recover (2), with Λ appearing as an integration constant. On the other hand, one can
also choose,

Θ =
R
4
+ 2πGT. (8)

As it will be seen later, if the energy-momentum tensor is not conserved (Θ 6= 0), the final
system of equations is underdetermined, and a supplementary ansatz must be introduced
to close consistently the system. In practice, this means that the functional form of the
relation (8) depends on the ansatz to be adopted. Due to this, from now on, we will identify
Θ ≡ −Λ, in order to keep in contact with the usual notation in the literature for decaying
vacuum models. If Λ is constant, as already stressed, we return to the GR equations in the
presence of a cosmological constant. But, if Λ is a function of the space-time coordinates,
we end up with the following set of equations,

Rµν −
1
4

gµνR = 8πG
{

Tµν −
1
4

gµνT
}

, (9)

Tµ
ν ;µ = −Λ;ν. (10)

To proceed with a dynamical Λ, we must have some guiding physical perspectives.
Equations (9) and (10) represent generally the idea of a decaying vacuum. A decaying
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vacuum may be an effective mechanism to begin with a huge initial value for the vacuum
energy density, reaching later a small value as observed today. To compute this decaying
process, a deep comprehension of the dynamics of quantum fields in a gravitational field
is required. Perhaps this may require a full quantum gravity theory. In the absence of
complete quantum gravity theory, we can only try to guess, by using some reasonable
assumptions, how the vacuum can decay and that is the usual approach in the literature,
for example, the case of running gravitational coupling, for example, Ref. [20–22], or scale
dependent gravity, see Ref. [23].

This is equivalent (up to the restriction in the diffeomorphic class of transformation)
to the GR equations in the presence of a dynamical cosmological term:

Rµν −
1
2

gµνR = 8πGTµν + gµνΛ, (11)

Tµ
ν ;µ = −Λ;ν, (12)

provided that Λ is identified with Θ as given by (8). Hence, the non-conservation of
the energy-momentum tensor allows us to map the UG theory into GR equipped with a
dynamical cosmological term, implying an interacting-like model in the GR context.

The mapping described above seems to indicate an equivalence of UG and GR. In fact,
sometimes two or more apparently different theories may describe the same phenomena
(in occurrence, gravity) but in a completely equivalent way. One example, is the so-
called trinity of gravity involving Riemannian geometry, torsion and non-metricity, see
Refs. [24–26]. Are the relations displayed above showing that UG is GR disguised? To
answer this question, we must show that the equivalence is complete. As discussed below,
and also in Ref. [16], there are indications that the equivalence between UG and GR is
broken at the perturbative level.

It is also convenient, for reasons that will become clear later on in the work, to write
down the UG equations in a more compact form such as

Eµν = 8πG τµν, (13)

with the definitions,

Eµν = Rµν −
1
4

gµνR = Gµν +
1
4

gµνR, (14)

τµν = Tµν −
1
4

gµνT. (15)

We will call Eµν the unimodular gravitational tensor and τµν the unimodular energy-
momentum tensor.

3. Equations for a Symmetric and Static Configuration

In this section, we will write down the general expressions for a symmetric and
static configuration. In the Appendix A the corresponding expressions with a time de-
pendence will be derived, which are necessary to perform the perturbative analysis to be
described later.

Let us consider the metric,

ds2 = e2γdt2 − e2αdr2 − e2βdΩ2. (16)

The non-vanishing Christoffel symbols are the following.

Γ0
10 = γ′ , Γ1

00 = e2(γ−α)γ′, (17)

Γ1
11 = α′ , Γ1

22 = −e2(β−α)β′ , Γ1
33 = −e2(β−α)β′ sin2 θ, (18)

Γ2
12 = Γ3

12 = β′, Γ2
33 = − sin θ cos θ , Γ3

23 = cot θ. (19)

Primes denote derivatives with respect to r.
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Also, the non-vanishing components of the Ricci tensor and the Ricci scalar are the
following.

R00 = e2(γ−α)[γ′′ + γ′(γ′ + 2β′ − α′)], (20)

R11 = −γ′′ − 2β′′ + γ′(α′ − γ′) + 2β′(α′ − β′), (21)

R22 = 1− e2(β−α)[β′′ + β′(γ′ + 2β′ − α′)], (22)

R33 = R22 sin2 θ, (23)

R = −2e−2β + 2e−2α[γ′′ + 2β′′ + 3β′2 + γ′(γ′ + 2β′ − α′)− 2α′β′]. (24)

Consequently, the non-vanishing components of the unimodular gravitational tensor
defined in (14) are the following:

E00 = e2(γ−α)

[
γ′′

2
− β′′ − 3

2
β′2 +

γ′

2
(γ′ + 2β′ − α′) + β′α′

]
+

e2(γ−β)

2
, (25)

E11 = −γ′′

2
− β′′ − β′2

2
− γ′

2
(γ′ − α′) + β′(α′ + γ′)− e2(α−β)

2
, (26)

E22 =
1
2
+

e2(β−α)

2
[γ′′ − β′2 + γ′(γ′ − α′)], (27)

E33 = E22 sin2 θ. (28)

The left-hand side of the UG field equations for the symmetric and static configuration
has been set up. The next step is to characterize the source field. In the next couple of
sections, the electromagnetic field and a scalar field will be considered as sources of the
gravitational field.

4. The Electromagnetic Field

In the case of an electromagnetic field as the source of the energy-momentum tensor
one has,

8πGTEM
µν = −2

{
FµρFρ

ν −
1
4

gµνFρσFρσ

}
. (29)

It is worth mentioning that it has zero trace:

TEM = 0. (30)

Equations (5) and (6) become,

Rµν −
1
4

gµνR = −2
{

FµρFν
ρ − 1

4
gµνFρσFρσ

}
, (31)

Fµρ
;µFνρ = −R;ν

8
. (32)

Remark that, contrary to GR, the traceless character of the energy-momentum tensor does
not imply R = 0, unless the Maxwell equations are obeyed.

Imposing the spherical symmetry, the only non-vanishing component is F01 = E ≡
E(r). Then, the equations are:

γ′′

2
− β′′ − 3

2
β′2 +

γ′

2
(γ′ + 2β′ − α′) + β′α′ +

e2(α−β)

2
= e2γ+4αE2, (33)

−γ′′

2
− β′′ − β′2

2
+

γ′

2
(α′ + 2β′ − γ′) + β′α′ − e2(α−β)

2
= −e2γ+4αE2, (34)

1
2

[
γ′′ − β′2 + γ′(γ′ − α′)

]
+

e2(α−β)

2
= e2γ+4αE2, (35)

(E2)′ + 2(α′ + γ′ + 2β′)E2 =
e−2(α+γ)

4
R′, (36)
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with R given by (24).
Until now, no coordinate condition has been imposed. Adding (33) and (34), we obtain,

β′(α′ + γ′)− β′′ − β′2 = 0. (37)

The use of the quasi-global coordinates, with α = −γ, leads to,

β = log r. (38)

As in the usual Reissner–Nordström (RN) solution in GR, there is a center at r = 0.
Equation (8), with T = 0 and with the identification of Θ with −Λ implies in R = −4Λ.
The equations of motion reduce to,

γ′′ + 2γ′2 − 1
r2 +

e−2γ

r2 = 2e−2γE2, (39)

(E2)′ + 4
E2

r
= −Λ′, (40)

In order to proceed further, we must impose a condition. This is a crucial step in
working with UG as already stressed in [16]. One possibility is to fix the R = −4Λ ≡
constant. This leads to the Reisnner–Nordström–de Sitter (RNdS) solution. In fact, this
implies to recover the conservation law Fµν

;µ = 0. If Λ = 0, we re-obtain the RN solution.
If Λ > 0, the RNdS solution is obtained, and if Λ < 0, the Reisnner–Nordström-(Anti) de
Sitter (RNAdS) solution is recovered, as it will be seen below. On the other hand, there are
also also other possibilities that are to be explored since Λ can be nonconstant, covering the
possibility of a dynamical cosmological term.

Three cases will be considered, namely a constant and two dynamical cosmological
terms, corresponding to either the usual or the modified conservation laws.

4.1. Constant Cosmological Term

If Λ = constant,

E =
Q
r2 , (41)

after identifying an integration constant with the total charge Q. The Coulomb law is
recovered, as in the RN solution.

Using the quasi-global coordinate condition and the solution for the electric field E,
Equation (33) becomes:

e2γ(γ′′ + 2γ′2)− e2γ

r2 =
1
r2 + 2

Q2

r4 . (42)

Defining A = e2γ, the equation takes the form,

A′′ − 2
A
r2 =

2
r2 + 4

Q2

r4 (43)

This is a second-order, linear, non-homogeneous differential equation whose solution is

A = 1 +
C1

r
+

Q2

r2 +
C2

3
r2, (44)

C1,2 being integration constants. Inserting this solution into the condition R = −Λ, it
is satisfied provided C2 = −Λ, while C1 remains arbitrary, being fixed by using the
Newtonian limit.

The final solution is given by,

A = 1− 2
GM

r
+

Q2

r2 −
Λ
3

r2. (45)
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This is the RNdS solution. It coincides with the static and spherically symmetric solution
in GR with an electromagnetic field and a cosmological constant. This could be expected
from the beginning since UG (satisfying the usual conservation laws) leads to the same
field equations as GR with a cosmological term, with the only (but important, as we will
see later) difference that UG is restricted to transverse diffeomorphism instead of the
full diffeomorphism.

4.2. Varying Cosmological Term

For a varying cosmological term, it is necessary to impose an ansatz on the behavior
of the function Λ. This is also true in GR when the cosmological term is dynamical. Since a
static and spherically symmetric configuration is considered, the cosmological term must
be a function on the coordinate r only: Λ ≡ Λ(r).

Let us restrict ourselves again to the condition R = −4Λ. Using the previous results
and also identifying β = ln r, α = −γ and A = e2γ, then:

A′′ + 4
A′

r
+ 2

A
r2 =

2
r2 − 4Λ(r). (46)

The solution for the homogenous equation is,

Ah =
C1

r
+

C2

r2 . (47)

To obtain the inhomogeneous solution, we write,

A =
f

r2 , (48)

obtaining,

f ′′ = 2− 4r2Λ(r). (49)

with a solution that depends on r:

f = r2 − 4
∫ [ ∫ r

r′2Λ(r′)dr′
]

dr. (50)

We will consider two different configurations for the function Λ(r), corresponding to
two distinct behaviors both asymptotically as well as at the center (r = 0).

4.2.1. Case A

First, it imposes a power law behavior for Λ(r),

Λ(r) = Λ0 + Λ1rp, (51)

with Λ0,1 constants.
The final solution is given by the following expressions.

• p 6= −4:

A = 1− 2GM
r

+
Q2

r2 −
Λ0

3
r2 − 4Λ1

(p + 3)(p + 4)
rp+2, (52)

E2 =
Q2

r4 −
p

p + 4
Λ1rp; (53)

• p = −4:

A = 1− 2GM
r

+
Q2

r2 −
Λ0

3
r2 − 16Λ1

9r

{
3(ln r)2 + ln r

}
, (54)

E2 =
Q2

r4 + 4
Λ1

r4 ln r. (55)
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The case p = −4 is clearly pathological since the electric field becomes imaginary near
r = 0 when Λ1 > 0 or for large r if Λ1 < 0. For p 6= −4 a change of sign of E2 can be
avoided by choosing Λ1 > 0 for −4 < p < 0, or Λ1 < 0 for p < −4 or p > 0. The
values p = 0,−3 correspond to the cases already included in the constants C1 and C2 of the
homogenous solution.

The solution p 6= 0, with the required conditions to avoid an imaginary electric
field, contains either multiple horizon black holes, with a singularity at r = 0, or naked
singularities similar to the de Sitter–Reissner–Nordström (dSRN) solution in GR but the
metric functions, in the UG case, may present a different shape but without change the
general properties. These solutions are asymptotically non-flat except if Λ0 = 0 and p > −2.
The corresponding equations in GR equipped with a cosmological term with the same
functional dependence, using the same symmetries, lead to the same solution as it can be
explicitly verified.

4.2.2. Case B

We will exploit now the functional form,

Λ(r) = Λ0 +
Λ1

(r2 + a2)2 . (56)

If Λ0 = 0, this functional form represents an asymptotically constant cosmological term
near the origin, which becomes zero at infinity. Following the same steps as the previous
case, the final form of the metric function is:

A = 1− 2GM
r

+
Q2

r2 −
Λ0

3
r2

− 2
Λ1

r2

[
r
a

arctan
r
a
− ln

(
1 +

r2

a2

)]
, (57)

E2 =
Q2

r4 + Λ1

{
− 1

(r2 + a2)2 + 2
[

1
r2a2 −

1
r4 ln

(
1 +

r2

a2

)]}
. (58)

Again, the same solution is obtained in the GR with a varying cosmological term given
by (56). There are multiple horizons and naked singularities, as in the previous case. No
change of sign in the E2 term can be assured by imposing Λ1 > 0.

In all the cases discussed above, the presence of the cosmological term, constant or
not, introduces new features in the solutions with respect to the usual Reissner–Nordström
(RN) solution but does not remove the singularity at r = 0. The behavior of this class of
solution is depicted in Figure 1 for some parameter values.

0 1 2 3 4

-3

-2

-1

0

1

2

r

A(
r)

Figure 1. Solution of the case B using Λ0 = 0, Λ1 = 1/2, with m = 1, Q = 0.5 (Dashed), and Q = 1.5
(Dotted). The continuous line is the RN solution with Λ0 = 0, Λ1 = 0, with m = 1 and Q = 0.5.
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5. Scalar Field

The energy-momentum tensor for a self-interacting scalar field is,

Tµν = ε

(
φ;µφ;ν −

1
2

gµνφ;ρφ;ρ
)
+gµνV(φ). (59)

The ordinary scalar field is denoted by ε = +1 and the phantom scalar field by ε = −1. In
GR, in four dimensions, black holes exist only for the phantom case [27,28].

Inserting the expression for the energy-momentum tensor (59) in the UG equations
one obtains,

Rµν −
1
4

gµνR = ε

(
φ;µφ;ν −

1
4

gµνφ;ρφ;ρ
)

, (60)

R;ν

4
= ε

(
φ;ν�φ +

φ;ρφ;ν;ρ

2

)
. (61)

One distinguishing feature of the above equations is the absence of the potential (or,
as before, the cosmological term, which is the particular case of a constant potential): it
naturally disappears due to the traceless structure of the UG equations. Equation (61) can
be written as, (

R
4
− ε

4
φρφ;ρ

)
;ν

= εφ;ν�φ. (62)

Identifying,

R
4
− ε

4
φρφ;ρ = −V(φ), (63)

Equations (60) and (61) take the following form,

Rµν −
1
2

gµνR = ε

(
φ;µφ;ν −

1
2

gµνφ;ρφ;ρ
)
+gµνV(φ), (64)

�φ = −εVφ(φ). (65)

In this way, we recover the GR equations equipped with a self-interacting scalar field.
In a static and spherically symmetric configuration, the UG field Equation (60) read,

γ′′

2
− β′′ − 3

2
β′2 +

γ′

2
(γ′ + 2β′ − α′) + β′α′ +

e2(α−β)

2
= ε

φ′2

4
, (66)

−γ′′

2
− β′′ − β′2

2
− γ′

2
(γ′ − α′) + β′(α′ + γ′)− e2(α−β)

2
= ε

3
4

φ′2, (67)

1
2
[γ′′ − β′2 + γ′(γ′ − α′)] +

e2(α−β)

2
= −ε

φ′2

4
. (68)

Combining these equations, we have the following relations:

γ′′ − β′′ − 2β′2 + γ′(γ′ + β′ − α′) + α′β′ + e2(α−β) = 0, (69)

−β′′ − β′ + β′(γ′ + α′) =
φ′2

2
. (70)

Remark that in the UG equations, there is no potential, even if it appears in the energy-
momentum tensor. Moreover, there are three metric functions (which can be reduced to
two functions by gauging the radial coordinate) and the scalar field to be determined, and
just two independent equations, (69) and (70). Hence an ansatz must be introduced. From
the conservation law, we have the relation,
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R + e−αφ′2 = −4V(φ), (71)

where V(φ) is a function to be determined. We have slightly changed the notation (V
instead of Λ) to identify the unknown function with the potential. With this identification,
the UG equations become identical to the GR equations with a potential. In GR, the
potential must be chosen. In UG a functional form for the scalar field (or for one of the
metric functions) must be chosen. There is a correspondence between the choice of the
functional form of the scalar field and the choice of the potential in GR.

Two possible examples are the following.

1. If the scalar field is chosen such that,

φ = −ε
C
2k

P, (72)

P = 1− 2
k
ρ

, (73)

we find,

ds2 = Padt2 − P−adρ2 − P1−aρ2dΩ2, (74)

a2 = 1− ε
C2

k2 . (75)

Here, ρ denotes the radial coordinate in the quasi-global coordinate system.
Using (71) we find V = 0. This solution represents a black hole only if ε = −1. This
solution has been determined in the GR context in Ref. [29].

2. The regular black hole determined in Ref. [28], is also the solution in the UG case,
without a potential. Imposing that the scalar field is given by,

ψ =
φ√
2
= arctan

ρ

b
, (76)

the metric is then given, in the quasi-global coordinates, by,

ds2 = Adt2 − dρ2

A
− r2(ρ)dΩ2, (77)

A = 1 +
c
b2 r2 +

ρ0

b3

(
bρ + r2 arctan

ρ

b

)
. (78)

In these expressions b, c and ρ0 are constants. Using relation (71) the potential in GR
context is given by,

V − c
b3

(
3− 2 cos2 ψ

)
−ρ0

b3

[
3 sin ψ cos ψ + ψ

(
3− 2 cos2 ψ

)]
, (79)

the same used in the GR context.

6. Remarks on the Birkhoff Theorem and the Stability of the Solutions

Initially, we present a straightforward argument to demonstrate that, in the cases of
both electromagnetism and scalar fields, the Birkhoff theorem holds the same significance
as it does in GR. For electric-charged static solutions in GR, the Birkhoff theorem is valid.
The same occurs for the corresponding solution in the UG. This can be seen by supposing
radial time-dependent configurations. The argumentation follows the same reasoning
used in GR, see for example [30]. From the expression presented in the Appendix, and
considering only a radial electric field, the 0− 1 component of the field equations, using the
Schwarzschild coordinate system, with β = ln r, implies that α must be time-independent
since the right-hand side of the equation is zero for a pure radial electric field. Combining



Universe 2023, 9, 515 11 of 15

equations 0 − 0 and 1 − 1, it comes out that α = −γ. Hence, all metric functions are
time-independent.

For the scalar field case, the Birkhoff theorem is not valid because the right-hand side
contains a term of the time φ̇φ′ which forbids considering the metric function α as time
independent, as it happens in the GR case. The Birkhoff theorem is verified only if the
scalar field is static [31].

In the two examples discussed in the previous section, having the scalar field as the
source of the geometry, and considering the GR context, the solutions are unstable, except
for the regular solution in the very special case where the minimum of the areal function
coincides with the horizon [32,33]. However, this result can change in the UG context since
the unimodular condition implies new relations for the perturbed functions that are absent
in GR.

We will illustrate the special features of the perturbative analysis considering the case
of black holes with a scalar field. Only radial perturbations will be considered. In the GR
context, this is enough to conclude about the instability of the solution [32]. We will show
that in the UG, if we try to follow the same procedure as in GR, the perturbations at first
order are strictly zero due to the unimodular condition.

The unimodular condition implies,

g = detgµν = eα+γ+2β = ξ. (80)

Since the function ξ is fixed, the unimodular condition leads, at linear perturbative order,

δα + δγ + 2δβ = 0. (81)

There is still the freedom to impose a coordinate condition due to the diffeomorphic (even if
transverse) invariance. The choice δβ = 0 is related to the gauge-invariant variables [32]. In
fact, in GR this choice is equivalent to the full employment of gauge invariant variables and
we will suppose that this property is also valid in UG. Hence, we end up with the conditions,

δα = −δγ, δβ = 0. (82)

We write down the perturbations in a generic way as

δ f (x, t) = f (x)e−iωt. (83)

The perturbed equations, under the conditions above, are the following:

δγ′′ + 4γ′δγ′−
{

ω2.e−4γ + 2e−2(γ+β)

}
δγ = φ′δφ′, (84)

δγ′′ + 4γ′δγ′−
{

ω2.e−4γ + 2e−2(γ+β)

}
δγ = −3φ′δφ′, (85)

δγ′′ + 4γ′δγ′−
{

ω2.e−4γ + 2e−2(γ+β)

}
δγ = −φ′δφ′, (86)

−2β′δγ = φ′δφ. (87)

It is clear that the equations are consistent only in the trivial case: δφ = δγ = 0. Hence, it is
not possible to obtain information on the stability of the solution, at least at the linear level
and follow a procedure close to that used in GR. This indicates a distinguishing feature of
unimodular gravity in comparison with GR.

However, some cautions are necessary. In cosmology, the Newtonian gauge is equiv-
alent to the gauge-invariant formalism in GR, in the sense that, at least in the absence of
anisotropic stress, the final equations are the same [34]. In Ref. [17] it has been argued
that, in cosmology and in the UG context, the gauge-invariant formalism can be applied
while the Newtonian gauge is not. Does the same happen here, when static, spherically
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symmetric perturbations are considered? In our point of view, this asks for a separate
analysis, especially if we take into account the point of view presented in Ref. [35]. We
must remember, on the other hand, that the same solution may appear in different theories,
but with different perturbative behavior, see an example in Ref. [36] where the same worm-
hole solution has been analyzed at background and perturbative levels in three different
theoretical contexts.

7. Conclusions

Unimodular gravity (UG) is one of the first alternatives to General Relativity (GR).
It is a geometric theory that is invariant with respect to a restricted diffeomorphic class
of transformations, the transverse diffeomorphism, due to the imposition of a constraint
on the determinant of the metric. In UG the usual conservation of the energy-momentum
tensor is not assured: The conservation of the energy-momentum tensor is a choice. If it is
imposed, UG becomes in principle equivalent to GR with a cosmological term. However,
the restriction on the determinant of the metric may lead to some important new features at
the perturbative level. We have shown here that if the conservation of the energy-moment
tensor is relaxed, UG becomes equivalent to GR with a dynamical cosmological term, with
still the same important difference due to the UG constraint which can manifested at the
perturbative level.

We have discussed, in this context, the static and spherically symmetric solutions in
UG. For the vacuum configuration, the Schwarzschild solution is also verified in UG. The
same occurs with the Reissner–Nordström solution, but only if the energy-momentum
tensor is conserved. If not, the dynamical cosmological term induces new features, but
it does not prevent the appearance of the singularity at r = 0. Similar features appear in
the case when a scalar field appears as the main source. In this case, the potential term,
representing the self-interaction of the scalar field, disappears in the UG context and an
ansatz must be imposed in order to close the set of equations. This mounts, in the GR
context, to choose a given potential for the scalar field. For a discussion of the UG in static,
spherical configurations but focusing on compact objects, see Ref. [37].

We have shown that the Birkhoff theorem follows the same features as in GR, being
satisfied for a charged solution, being possibly violated for a dynamical scalar field. The
linear radial perturbations have been analyzed when a scalar field is present. Once more,
GR black hole solutions are generically unstable in the latter case. In UG, using the gauge
invariant approach employed in GR and restricting to radial perturbations, the condition on
the determinant of the metric leads to vanishing perturbations at linear order, and possibly
also for higher order. As already discussed in the cosmological context, this result seems to
point out a breaking of the equivalence of UG and GR at the perturbative level. There are
other viewpoints on the implementation of the UG constraints in performing a perturbative
analysis, see for example Ref. [35]. However, the results reported here indicate that a direct
application of the procedures used in GR combined with the unimodular constraint may
lead to conclusions different from those obtained in GR.

In fact, the main open problem related to the results obtained above refers to the
perturbative analysis. As pointed out in previous works (see Ref. [16] and references
therein) the main difference between GR and UG is related to the perturbative analysis.
While the UG gravity can be mapped into GR with a cosmological constant, when the
energy-momentum tensor is conserved, or in a dynamical vacuum model, when the energy-
momentum tensor is not conserved, previous investigations indicate that such mapping
seems not to be complete when perturbations are considered even at the perturbative
level. We have given an example here, applying directly the relations coming from the
unimodular constraints besides the usual coordinate condition. However, there are claims
(for example, [35]) that this issue is not closed and, for example, all coordinate conditions
can be used in UG in spite of the unimodular constraint in the determinant of the metric.
We intend to present in the future a more concrete and detailed analysis of this problem.
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Appendix A. The Spherically Symmetric Non Static Metric

A dynamical spherically symmetric metric, admitting radial oscillations, is given by,

ds2 = e2γ(t,r)dt2 − e2α(t,r)dr2 − e2β(t,r)dΩ2. (A1)

The non-vanishing Christoffel symbols are the following.

Γ0
00 = γ̇, Γ0

10 = γ′, Γ0
11 = e2(α−γ)α̇, (A2)

Γ0
22 = e2(β−γ) β̇, Γ0

33 = Γ0
22 sin2 θ, (A3)

Γ1
00 = e2(γ−α)γ′, Γ1

01 = α̇, Γ1
11 = α′, (A4)

Γ1
22 = −e2(β−α)β′, Γ1

33 = Γ1
22 sin2 θ, (A5)

Γ2
02 = Γ3

03 = β̇, Γ2
12 = Γ3

12 = β′, (A6)

Γ2
33 = − sin θ cos θ , Γ3

23 = cot θ. (A7)

The dots mean derivatives with respect to t and the primes with respect to r.
The non-vanishing components of the Ricci tensor and the Ricci scalar are the following.

R00 = −α̈− 2β̈ + γ̇(α̇ + 2β̇)− α̇2 − 2β̇2

+ e2(γ−α)[γ′′ + γ′(γ′ + 2β′ − α′)], (A8)

R11 = e2(α−γ)

{
α̈ + α̇(α̇− γ̇ + 2β̇)

}
− γ′′ − 2β′′ + γ′(α′ − γ′) + 2β′(α′ − β′), (A9)

R22 = 1 + e2(β−γ)[β̈ + β̇(α̇ + 2β̇− γ̇)]

− e2(β−α)[β′′ + β′(γ′ + 2β′ − α′)], (A10)

R33 = R22 sin2 θ, (A11)

R01 = 2
{

β̇′ + β̇(γ′ − β′) + α̇β′
}

, (A12)

R = −2e−2β + 2e−2α[γ′′ + 2β′′ + 3β′2 + γ′(γ′ + 2β′ − α′)− 2α′β′]

− 2e−2γ[α̈ + 2β̈ + 3β̇2 + α̇(α̇ + 2β̇− γ̇)− 2γ̇β̇] (A13)

The non-vanishing components of the unimodular gravitational tensor,

Eµν = Rµν −
1
4

gµνR, (A14)

are the following:
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E00 = − α̈

2
− β̈ +

γ̇

2
(α̇ + 2β̇)− α̇2

2
− β̇2

2
+ α̇β̇

+ e2(γ−α)

[
γ′′

2
− β′′ − 3

2
β′2 +

γ′

2
(γ′ + 2β′ − α′) + β′α′

]
+

e2(γ−β)

2
, (A15)

E11 = e2(α−γ)

[
α̈

2
− β̈− 3

2
β̇2 +

α̇

2
(α̇ + 2β̇− γ̇) + γ̇β̇

]
− γ′′

2
− β′′ − β′2

2
− γ′

2
(γ′ − α′) + β′(α′ + γ′)− e2(α−β)

2
, (A16)

E22 =
1
2
− e2(β−γ)

2
[α̈− β̇2 + α̇(α̇− γ̇)]

+
e2(β−α)

2
[γ′′ − β′2 + γ′(γ′ − α′)], (A17)

E01 = 2[β̇′ + β̇(γ′ − β′) + α̇β′], (A18)

E33 = E22 sin2 θ. (A19)

For the static case, the above expressions reduce to,

E00 = e2(γ−α)

[
γ′′

2
− β′′ − 3

2
β′2 +

γ′

2
(γ′ + 2β′ − α′) + β′α′

]
+

e2(γ−β)

2
, (A20)

E11 = −γ′′

2
− β′′ − β′2

2
− γ′

2
(γ′ − α′) + β′(α′ + γ′)− e2(α−β)

2
, (A21)

E22 =
1
2
+

e2(β−α)

2
[γ′′ − β′2 + γ′(γ′ − α′)], (A22)

E33 = E22 sin2 θ. (A23)
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