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Abstract: In the framework of the Einstein–Dirac-aether theory we consider a phenomenological
model of the spontaneous growth of the fermion number, which is triggered by the dynamic aether.
The trigger version of spinorization of the early Universe is associated with two mechanisms: the first
one is the aetheric regulation of behavior of the spinor field; the second mechanism can be related to a
self-similarity of internal interactions in the spinor field. The dynamic aether is designed to switch on
and switch off the self-similar mechanism of the spinor field evolution; from the mathematical point
of view, the key of such a guidance is made of the scalar of expansion of the aether flow, proportional
to the Hubble function in the isotropic cosmological model. Two phenomenological parameters of the
presented model are shown to be considered as factors predetermining the total number of fermions
born in the early Universe.

Keywords: alternative theories of gravity; Einstein-aether theory; spinor

1. Introduction

The paper is written for the Special Issue of the journal Universe in Honor of Professor
Richard Kerner on the Occasion of His 80th Birthday.

In 1996, Damour and Esposito-Farèse introduced the term “spontaneous scalariza-
tion” [1] in order to describe gravitational analogs of the phase transition of the second
order in ferromagnetic materials. The phenomenological idea about spontaneous scalariza-
tion has been used in different astrophysical and cosmological contexts (see, e.g., [2–13]).
This fruitful idea has been extended and applied to models in other fields, and now we can
find works devoted to the problems of spontaneous vectorization (see, e.g., [14–16]), spon-
taneous tensorization [17], spontaneous spinorization [18,19], as well as to the problems
of spontaneous polarization of the color aether [20,21] and of spontaneous growth of the
gauge fields [22].

The formalism of the spontaneous growth of the mentioned physical fields is mainly
connected with the mechanism of tachyonic instability. We consider the phenomenon of
spontaneous spinorization but propose another mechanism based on the model of self-
similarity of the internal interactions in the fermion systems. Below, we will discuss in
detail this mechanism, but now we would like to focus on a new detail of our approach. We
consider the spinor field in the framework of Einstein–Dirac-aether theory and assume that
the unit time-like vector field U j associated with the velocity four-vector of the dynamic
aether is the key element of this theory. The theory of the dynamic aether (see, e.g., [23–28]
for basic definitions and references) belongs to the category of vector-tensor modifications
of gravity [29,30]. The presence of the unit vector field U j in this theory realizes the idea of
a preferred frame of reference (see, e.g., [31,32]) and indicates the possibility of violation of
the Lorentz invariance [33,34].

Of course, it is hard to dispute the argument that the birth of particles is the field
of quantum theory. However, the quantum version of the aetheric vector field is not

Universe 2023, 9, 481. https://doi.org/10.3390/universe9110481 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe9110481
https://doi.org/10.3390/universe9110481
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0001-7296-2469
https://doi.org/10.3390/universe9110481
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe9110481?type=check_update&version=1


Universe 2023, 9, 481 2 of 19

yet established, and there are no ideas as to what particles could be the carriers of the
corresponding interactions. That is why we restrict ourselves by the phenomenological
theory. In fact, we consider some macroscopic consequences of the interaction between
the spinor and aether vector fields in order to formulate a hypothesis: when and how the
spinorization provoked by the aether could happen in the early Universe.

What new detail does the involvement of the dynamic aether bring to the scheme of
self-interaction of the spinor system? We assume that the aether regulates the dynamics of
the fermion system. What is the instrument of the aetheric influence on the spinor field?
We assume that the key instrument of such guidance is the expansion scalar Θ = ∇kUk.
On the one hand, this true scalar is an intrinsic element of the aether flow. On the other
hand, in the isotropic cosmological models of the Friedmann type Θ = 3H, H(t) = ȧ

a is the
Hubble function. In other words, the scalar 3

Θ = 1
H defines the typical time scale, which

characterizes the rate of the Universe evolution. Such a measure plays in the field theory
the role analogous to the role of temperature when one describes the Universe evolution on
the thermodynamic level. This analogy is consistent with the fact that both quantities, the
effective temperature and the expansion scalar, are decreasing in the expanding Universe.
However, when we consider analogies between the expansion scalar Θ in the field theory
and the temperature T in the Universe thermodynamics, we can try to establish the analogy
between the Curie temperature TC in the theory of phase transitions of the second kind
and some critical value Θ∗. Such an approach allows us to suppose the following: a new
internal interaction in the fermion system is switching on, if Θ < Θ∗ just as when the
phase transition in ferroelectrics takes place, if T becomes less than the Curie temperature
T < TC. To conclude, we suppose that the aetheric guidance is manifested in the fact that
the aether is switching on (and switching off) the specific internal interaction in the fermion
system in the manner of how the decreasing temperature switches on the reconstruction
of ferromagnetic materials below the Curie temperature. Our purpose is to show that
such a mechanism could explain the spontaneous growth of the spinor particle number in
the early Universe.

The paper is organized as follows. In Section 2, we reconstruct the total Lagrangian
of the model and derive the extended master equations for the unit vector, spinor, and
gravitational fields. In Section 3, we consider the application to the isotropic cosmological
model and derive the evolutionary equations for basic spinor invariants. In Section 4, we
present the model function describing the self-similar interaction in the fermion system and
analyze the solutions of the corresponding extended master equations. Section 5 includes
discussion and conclusions.

2. The Formalism
2.1. Lagrangian of the Einstein–Dirac-Aether Theory

The canonic Lagrangian of the Einstein-aether theory

L(EA) = −
1

2κ

[
R+2Λ + λ(gmnUmUn−1)+Kabmn∇aUm∇bUn

]
(1)

contains three principal parts [23]. In the first one, R is the Ricci scalar, Λ is the cosmological
constant, and κ = 8πG includes the Newtonian coupling constant G (c = 1). The second
and third parts of the Lagrangian (1) contain the four-vector Ui, associated with the aether
velocity. The term λ(gmnUmUn−1) is designed to guarantee that the Ui is normalized to
one; respectively, λ is the Lagrange multiplier. The so-called kinetic term Kabmn ∇aUm ∇bUn
is quadratic in the covariant derivative ∇aUm of the vector field Ui, with the tensor Kabmn

to be constructed using the metric tensor gij and the aether velocity four-vector Uk only,

Kabmn=C1gabgmn+C2gamgbn+C3gangbm+C4UaUbgmn. (2)
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The parameters C1, C2, C3, and C4 are the Jacobson coupling constants. The massive
spinor field is described by the following term of the Lagrangian:

L(D) =
i
2
[ψ̄γkDkψ− Dkψ̄γkψ]−mψ̄ψ . (3)

Here, ψ defines the Dirac spinor field, ψ̄ is the Dirac conjugated field, m is the mass
prescribed to the spinor particle, γk are the Dirac matrices, and the covariant (extended)
derivatives of the spinors

Dkψ = ∂kψ− Γkψ , Dkψ̄ = ∂kψ̄ + ψ̄Γk , (4)

are constructed using the Fock–Ivanenko connection matrices Γk [35].
If we intend to construct the action functional of a multi-component system, we have

to obey the following rules. First, the SU(N) symmetric Yang–Mills fields and thus the
U(1) symmetric Maxwell field add the contributions of the form − 1

4 FmnFmn (see, e.g., [36]).
Second, the scalar field introduces the term 1

2
[
∇mφ∇mφ−m2φ2]. Third, the spinor field

adds the term (3) so that the Ricci scalar R, the invariant 1
4 FmnFmn, the Klein–Gordon

mass term m2φ2, and the spinor mass term mψ̄ψ enter the action functional with the
same sign minus. Taking into account this detail, we use in our work the following total
action functional

−S(EDA) =
∫

d4x
√
−g
{

1
2κ

[
R+2Λ+λ(gmnUmUn−1)+Kabmn∇aUm∇bUn

]
+

+L(matter) + β(Θ, S, P2)−
[

i
2
[ψ̄γkDkψ− Dkψ̄γkψ]−mψ̄ψ

]}
. (5)

The term L(matter) describes the matter of non-spinor (non-fermionic) origin, e.g., the
pseudo-Goldstone bosons attributed to the axionic dark matter. We include the minus
sign into the left-hand side of this formula, keeping in mind that the variation procedure
δS(EDA) = 0 = −δS(EDA) gives the same master equations. In addition, we include into (5)
the cross term β(Θ, S, P2); the arguments of this function are described below.

2.2. Basic Assumptions and Auxiliary Definitions
2.2.1. Fock–Ivanenko Connection, Tetrad Four-Vectors, Spinor Scalar S, and Pseudoscalar P

The Fock–Ivanenko matrices

Γk =
1
4

gmnX(a)
s γsγn∇kXm

(a) (6)

contain four tetrad four-vectors Xm
(a), which satisfy the relationships

gmnXm
(a)X

n
(b) = η(a)(b) , η(a)(b)Xm

(a)X
n
(b) = gmn , (7)

with the Minkowski metric η(a)(b). The convolutions γk = Xk
(a)γ

(a) link the Dirac matrices

γk depending on coordinates with the constant Dirac matrices γ(a). As usual, the Dirac
matrices satisfy the fundamental anti-commutation relations

γ(a)γ(b)+γ(b)γ(a) = 2Eη(a)(b) , γmγn+γnγm = 2Egmn , (8)

where E is the unit matrix. In addition, we keep in mind the formula

εmnpqXm
(a)X

n
(b)X

p
(c)X

q
(d) = ε(a)(b)(c)(d) , (9)
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where εmnpq is the Levi-Civita tensor expressed via the absolutely antisymmetric symbol
Emnpq as follows:

εmnpq =
√
−gEmnpq , E0123 = −1 . (10)

In the Minkowski spacetime
√−g = 1, thus, ε(a)(b)(c)(d) ≡ E(a)(b)(c)(d) with

E(0)(1)(2)(3) = −1. Using (9), we can introduce in the covariant way the link between
the Dirac matrices γ5 and γ(5). Indeed, according to the basic definition

γ5 = − 1
4!

εmnpqγmγnγpγq , (11)

we obtain
γ5 = − 1

4!
εmnpqXm

(a)X
n
(b)X

p
(c)X

q
(d)γ

(a)γ(b)γ(c)γ(d) =

=− 1
4!

ε(a)(b)(c)(d)γ
(a)γ(b)γ(c)γ(d)=γ(0)γ(1)γ(2)γ(3) ≡ γ(5). (12)

In other words, the matrix γ5 defined by (11) does not depend on metric and, in
addition to the unit matrix E, is a constant matrix. This fact allows us to introduce the
scalar S ≡ ψ̄ψ = ψ̄Eψ and the pseudoscalar P ≡ iψ̄γ5ψ = iψ̄γ(5)ψ. The scalar S is usually
associated with the density of the spinor particle number. As for the definition of P, the
multiplier i in front allows the matrix iγ5 to be free of the imaginary unit.

2.2.2. Decomposition of the Covariant Derivative of the Aether Velocity Four-Vector

The tensor ∇iUk has the following standard decomposition into irreducible parts

∇iUk = UiDUk + σik + ωik +
1
3

∆ikΘ . (13)

Here, DUi is the acceleration four-vector, σik is the shear tensor, ωik is the vorticity
tensor, Θ is the expansion scalar, ∆ is the projector, and D is the convective derivative:

DUk ≡ Um∇mUk , σik ≡
1
2

(⊥
∇iUk+

⊥
∇kUi

)
−1

3
∆ikΘ , ωik ≡

1
2

(⊥
∇iUk−

⊥
∇kUi

)
,

Θ ≡ ∇mUm , D ≡ Ui∇i , ∆i
k = δi

k −UiUk ,
⊥
∇i ≡ ∆k

i∇k . (14)

Using the presented decomposition, one can say that there is one fundamental scalar
Θ linear in the derivative and three additional quadratic scalars associated with the
aether flow:

a2 ≡ DUkDUk , σ2 ≡ σikσik , ω2 ≡ ωikωik . (15)

In the model studied below, we use the new function β(Θ, S, P2) of three arguments
only; however, we hope to extend this modeling in the next works.

2.3. Master Equations

The variation procedure with respect to the Lagrange multiplier λ, aether velocity
four-vector Ui, spinor field ψ, and its Dirac conjugate quantity ψ̄, and with respect to the
metric gpq gives us the coupled system of master equations of the model. We start with the
derivation of the aether dynamic equations.
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2.3.1. Master Equations for the Aether Velocity

Variation of the total action functional (5) with respect to the Lagrange multiplier λ
gives the condition gikUiUk = 1. Variation with respect to U j yields

∇a Jaj = I j + λU j − κ∇j
(

∂β

∂Θ

)
, (16)

where the terms J aj and I j are defined as follows:

J aj = Kabjn(∇bUn) , I j = C4(DUm)(∇jUm) , (17)

and the Lagrange multiplier can be obtained as

λ = Uj

[
∇a Jaj − I j

]
+ κD

(
∂β

∂Θ

)
. (18)

2.3.2. Master Equations for the Spinor Field

Variation with respect to ψ̄ and ψ gives, correspondingly

iγnDnψ = Mψ , iDnψ̄γn = −ψ̄M , (19)

M ≡
(

m +
∂β

∂S

)
E +

∂β

∂P
iγ5 . (20)

Based on the matrix M, we can introduce the effective mass of the interacting spinor field

< M >≡ ψ̄Mψ

ψ̄ψ
=

(
m +

∂β

∂S

)
+

(
P
S

)
∂β

∂P
. (21)

2.3.3. Master Equations for the Gravity Field

Variation with respect to metric yields

Rpq−
1
2

gpqR=Λgpq+T(U)
pq +κ

[
T(D)

pq +T(M)
pq +T(C)

pq

]
, (22)

where the following terms reconstruct the total stress–energy tensor

T(U)
pq =

1
2

gpq Kabmn∇aUm∇bUn+λUpUq+

+C1
[
(∇mUp)(∇mUq)−(∇pUm)(∇qUm)

]
+C4DUpDUq+

+∇m
[
U(pJq)m−Jm(pUq)−J(pq)Um

]
, (23)

T(D)
pq = −gpqLD +

i
4
[
ψ̄γpDqψ+ψ̄γqDpψ−(Dpψ̄)γqψ−(Dpψ̄)γqψ

]
. (24)

The contribution of the non-spinor matter T(M)
pq is described by the standard formula

T(M)
pq = − 2√−g

δ

δgpq

[√
−gL(matter)

]
. (25)

The cross-term T(C)
pq associated with the function β(Θ, S, P2) is of the form

T(C)
pq = gpq

[
β− (D + Θ)

∂β

∂Θ

]
. (26)
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Using the Dirac Equations (19), one can obtain that

LD = [ψ̄(M−mE)ψ] =
[

S
∂β

∂S
+P

∂β

∂P

]
. (27)

We used the following auxiliary formulas for the variation of tetrad four-vectors with
respect to metric:

δX j
(a) =

1
4

[
Xp(a)δ

j
q + Xq(a)δ

j
p

]
δgpq , (28)

(see, e.g., [37] for details). In addition, we used the rules

δU j = 0 , δγ(5) = 0 = δγ5 , δγ(a) = 0 , δγk = γ(a)δXk
(a) . (29)

3. Cosmological Application
3.1. Geometrical Aspects of the Model

For investigation of the spinorization phenomenon, we consider the spatially isotropic
homogeneous spacetime platform with the FLRW type metric

ds2 = dt2 − a2(t)[dx12
+ dx22

+ dx32
] (30)

with the scale factor a(t). For such a symmetry, the aether velocity four-vector has to be of
the form U j = δ

j
0, and the covariant derivative is simplified essentially:

∇kUm = H(t)
(

δm
1 δ1

k + δm
2 δ2

k + δm
3 δ3

k

)
, (31)

where H(t) ≡ ȧ
a is the Hubble function (here and below the dot symbolizes the derivative

with respect to time). The corresponding acceleration four-vector, shear tensor, and vorticity
tensor vanish, and the expansion scalar Θ = ∇kUk is equal to Θ = 3H.

The sum of the Jacobson coupling constants C1+C3 has been estimated in 2017 as
the result of observation of the binary neutron star merger (the events GW170817 and
GRB 170817A [38]). It was established that the ratio of the velocities of the gravitational
and electromagnetic waves satisfies the inequalities 1− 3× 10−15 <

vgw
c < 1 + 7× 10−16).

According to [24], the square of the velocity of the tensorial aether mode is equal to
S2
(2) =

1
1−(C1+C3)

, thus, the sum of the parameters C1+C3 can be estimated as−6× 10−15 <

C1+C3 < 1.4× 10−15. Clearly, we can consider that with very high precision, C3 =− C1.
The parameter C4 does not enter the key formulas since DU j = 0 for the FLRW model.
As for the parameters C1 and C2, the results of the discussion about their constraints [39–42])
allows us to use the estimation − 2

27 < C2 < 2
21 (see [43]).

Taking into account these details, as well as the facts that for the isotropic homogeneous
model, the acceleration four-vector and the shear and voricity tensors vanish, i.e., DU j = 0,
σmn = 0, and ωmn = 0, we see that the tensor Jaj is symmetric, and its nonzero components
are the following:

Ja
j =(C1+C4)UaDUj+C3UjDUa+(C1+C3)σ

a
j +(C1−C3)ω

a
jC3)+

1
3
(C1+C3)∆

q
j Θ+C2Θδa

j =

= C2Θδa
j . (32)

The equations for the unit vector field (16) convert now into one equation

C2DΘ + κD
(

∂β

∂Θ

)
= λ , (33)
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which gives, in fact, the solution for the Lagrange multiplier λ.
Our supplementary assumption is that the non-spinor matter is a cold dust and its

stress–energy tensor is divergence-free, ∇qT(M)
pq =0, providing that T(M)

pq = ρUpUq (ρ is the
corresponding energy density scalar). Then, the equations for the gravitational field can be
reduced to the following one equation

1
κ

[
3H2Γ−Λ

]
= (ρ + mS) + β−Θ

∂β

∂Θ
. (34)

Here, we introduce a new auxiliary parameter:

Γ = 1 +
3
2

C2 . (35)

Other Einstein’s equations are the differential consequences of the evolutionary equa-
tions for the aether and spinor fields. As a consequence of the separate conservation law
for the non-fermionic matter, we obtain the standard law of its evolution

ρ̇ + 3Hρ = 0 ⇒ ρ(t) = ρ(t0)
a3(t0)

a3(t)
. (36)

For the metric (30), the set of the tetrad four-vectors is

Xi
(0) = Ui = δi

0 , Xi
(α) = δi

α
1

a(t)
, (α = 1, 2, 3) , (37)

and the spinor connection coefficients (6) have the form

Γ0 = 0 , Γα =
1
2

ȧγ(α)γ(0) . (38)

We also use the direct consequence of (38)

γkΓk = −
3
2

Hγ0 = −Γkγk . (39)

3.2. Reduced Evolutionary Equation for the Spinor Field

We assume that the components of the spinor field are the functions of the cosmological
time only; then, the Dirac Equations (19) yield

iγ0
(

∂0 +
3
2

H
)

ψ = Mψ , (40)

i
(

∂0 +
3
2

H
)

ψ̄γ0 = −ψ̄M . (41)

If one uses the replacement

ψ = a−
3
2 Ψ , ψ̄ = a−

3
2 Ψ̄ , (42)

the Dirac equations take the form

iγ(0)Ψ̇ = MΨ , i ˙̄Ψγ(0) = −Ψ̄M . (43)
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3.3. Evolution of the Spinor Invariants

Keeping in mind Equations (43), we can find the rates of evolution of the invariants S
and P. First, we see that

d
dt
(ψ̄ψ) =

d
dt

(
Ψ̄a−3Ψ

)
= −3H(ψ̄ψ)+a−3

[(
d
dt

Ψ̄
)

γ(0)2
Ψ+Ψ̄γ(0)2

(
d
dt

Ψ
)]

=

= −3H(ψ̄ψ)+iψ̄
(

Mγ0−γ0M
)

ψ . (44)

Using (20), we can present the evolutionary equation for the scalar S as follows:

Ṡ + 3HS = −2T
∂β

∂P
. (45)

The evolutionary equation for the pseudoinvariant P is

Ṗ + 3HP = −ψ̄
(

Mγ0γ5−γ5γ0M
)

ψ , (46)

Ṗ + 3HP = 2T
(

∂β

∂S
+ m

)
, (47)

where the following auxiliary function T is introduced:

T ≡ ψ̄γ5γ0ψ . (48)

The auxiliary function T(t) itself satisfies the equation

Ṫ + 3HT = −iψ̄
(

Mγ5 + γ5M
)

ψ , (49)

or equivalently

Ṫ + 3HT = −2P
(

m +
∂β

∂S

)
− 2S

∂β

∂P
. (50)

In other words, the set of functions S(t), P(t), and T(t) forms the closed evolutionary system.
One can explicitly check that the set of Equations (45), (47), and (50) for arbitrary β

admits the so-called first integral. Indeed, the direct differentiation gives

d
dt

(
S2 − P2 − T2

)
+ 6H

(
S2 − P2 − T2

)
= 0 , (51)

providing that

S2 − P2 − T2 =
const

a6 . (52)

For further progress, it is convenient to introduce the variable x = a(t)
a(t0)

, the dimen-
sionless scale factor, where t0 is some fixed moment of the cosmological time. In addition,
we introduce three auxiliary functions of this variable:

X = x3S , Y = x3P , Z = x3T , (53)

so that the first integral (52) takes the form

X2 −Y2 − Z2 = K (54)
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with arbitrary constant of integration K. In these terms, the evolutionary equations for X(x)
and Y(x) take, respectively, the forms:

X′(x) = − 6
xΘ

Z
[

∂β

∂P

]
, (55)

Y′(x) =
6

xΘ
Z
[

m +
∂β

∂S

]
, (56)

where Z has to be extracted from (54), i.e.,

Z = ±
√

X2 −Y2 − K (57)

with positive, negative, or vanishing parameter K.

1. When K is positive, i.e., K = ν2 > 0, the parametrization of the relationship (54) is

X = ν cosh u(x) , Y = ν sinh u(x) cos v(x) , Z = ν sinh u(x) sin v(x) , (58)

where u(x) and v(x) are real functions.
2. When K is negative, i.e., K =−µ2 < 0, we have the following parametrization of (54):

X = µ sinh u(x) , Y = µ cosh u(x) cos u(x) , Z = µ cosh u(x) sin v(x) . (59)

3. When K = 0, we deal with the parametrization

X = u(x) , Y = u(x) cos v(x) , Z = u(x) sin v(x) . (60)

In the first and second cases, we deal with the hyperbolic laws of evolution of the
function X describing the number density of spinor particles.

4. Modeling of the Interaction Term

We would like to mention that new contributions to the Lagrangian, which have the
form F(S, P2), were already considered in the nonlinear versions of the Einstein–Dirac
models (see, e.g., [44–47]). In addition, the models describing the interaction of the spinor
and scalar fields [48], as well as the spinor and pseudoscalar (axion) fields, ref. [49] have
been studied. We introduce the new element of the Lagrangian β(Θ, S, P2), which depends
on the scalar of expansion of the aether flow Θ = ∇kUk. Our ansatz is that the scalar β as a
function of the expansion scalar Θ is step-like:

β(Θ, S, P2) = η(Θ∗−Θ) η(Θ−Θ∗∗)B(S, P2) , (61)

where η(F ) is the Heaviside function, which is equal to zero if F < 0 and is equal to
one if F > 0. This means that there exists some moment of the cosmological time t∗
when the interaction, described by the function β, switches on. At this moment, we fix
the dimensionless scale factor x(t∗) ≡ x∗ and the corresponding values Θ∗ ≡ Θ(t∗) and
H∗ ≡ H(t∗). Similarly, we introduce the time moment t∗∗ when this interaction switches
out. In other words, the aether flow guides the evolution of the spinor field. From the
mathematical point of view, one has to solve the set of evolutionary equations in three
domains: first, when t0 < t < t∗; second, when t∗ < t < t∗∗; third, when t > t∗∗.
We assume that namely the second time interval relates to the spinorization phenomenon.
At the borders t=t∗ and t=t∗∗, the functions B(t), S(t), P(t), and H(t) are assumed to be
continuous. We use in our assumptions the analogy with ferroelectric materials, which
possess a pair of Curie temperatures TC1 and TC2. Let us start the analysis for the first
indicated interval.
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4.1. Solutions for the First Interval

Let us consider the first interval of the cosmological time t0 < t < t∗ (1 < x < x∗).
When β = 0, we see from (55) that

X′ = 0⇒ S(x) =
S(1)
x3 , (62)

where S(1) ≡ S(x(t0)) is the starting density of a number of the spinor particles. Keeping
in mind (36), we find from Equation (34) the following Hubble function (in terms of x):

H(x) = ±
√

Λ
3Γ

√
1 +

κ

Λx3 [ρ(1) + mS(1)] . (63)

For the description of the expanding Universe, we have to choose the sign plus in (63)
and obtain that the function H(x) is monotonic and is falling, i.e., H′(x) < 0. The prime
symbolizes the derivative with respect to x. We see that H∗ < H(1) and thus Θ∗ < Θ(1).
Keeping in mind the relationship

t− t0 =
∫ a(t)

a(t0)

1

dx
xH(x)

, (64)

we obtain the following result of integration:

a(t)
a(t0)

=

{
cosh

[√
3Λ
4Γ

(t−t0)

]
+

√
1+

κ

Λ
[ρ(t0) + mS(t0)] sinh

[√
3Λ
4Γ

(t−t0)

]} 2
3

. (65)

Respectively, the effective mass coincides with the standard one, < M >= m.

4.2. Solutions for the Second Interval

We consider now the second interval of the cosmological time t∗ < t < t∗∗ (x∗ < x < x∗∗).

4.2.1. Hypothesis of Self-Similarity

In order to clarify the choice of the function B(S, P2), one can mention that the scalar
ψ̄ψ plays the role of the fermion number when we consider a fermion as a realization of the
Dirac field. The quantities P = iψ̄γ5ψ and S = ψ̄ψ themselves depend on the number of
fermions in the Dirac system, however, their scalar ratio P2

S2 does not. Situations in physics,
when the typical behavior of the dense system is similar to the one of the dilute system,
are characterized by the specific term self-similarity. Below, we assume that the function
B(S, P2) has just a self-similar form

B(S, P2) = SF(Q) , Q =
P2

S2 , (66)

and obtain that the effective mass (21) takes the form

< M >= m + F(Q) . (67)

Combining Equations (55) and (56), we obtain

dY
dX

=
Y
X
− X

Y

[
m + F(Q)

2F′(Q)

]
, (68)

or equivalently

X
dQ
dX

= −
[

m + F(Q)

2F′(Q)

]
. (69)
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The solution to this equation is

F(Q) = −m +
const

X
, (70)

providing that

B(S, P2) = SF(Q) = −mS(x) +
const

x3 . (71)

We can find the constant of integration in (71) using the continuity requirements

B(x∗) = 0 , lim
x→x∗−0

S(x) = lim
x→x∗+0

S(x) . (72)

Clearly, we obtain
const = mx3

∗S(x∗) = mS(1) . (73)

This means that the right-hand side of the gravity field in Equation (34)

ρ+mS+SF(Q)−Θδ(Θ−Θ∗)SF(Q) =
ρ(1)
x3 +

mS(1)
x3 (74)

keeps the same form as at t0 < t < t∗. In other words, the solution for the scale factor
coincides by the form with (65), but we have to replace t0 with t∗, describing the starting
point of the arguments of hyperbolic functions in the second time interval.

The function Y2(x) can be now presented as

Y2 = X2F−1
[
−m +

mS(1)
X

]
(75)

in terms of the inverse function F−1. Thus, we need to solve Equation (55) and extract the
fermion density number function S(x) = X(x)

x3 . This task can be solved only numerically,
which is why to have some analytical progress, we consider below the linear function
F(Q)→ −m∗ + h0Q.

Remark. At the end of this paragraph, it is convenient to make the remark concerning the formal
discontinuity, which appears due to the presence of the delta function δ(Θ∗ −Θ), the derivative of
the Heaviside function η(Θ∗ −Θ) (see (61)) with respect to its argument. Clearly, the Lagrange
parameter λ (18), the term λUpUq in (23), and the term (26) contain this delta function. As the
result, the right-hand side of the key gravity field equation (74) also includes the delta function. Why
does this discontinuity disappear when we solve the key equations? According to the continuity
requirement B(x∗) = 0 (see (72)), we obtain that Θ = Θ∗ just when t = t∗ and x = x∗, thus, the
term B(x)δ(Θ∗ −Θ) disappears at t = t∗. The situation with t = t∗∗ is similar.

4.2.2. Linear Function Describing Self-Similarity

Let us consider the function B(S, P2) in the form

B(S, P2) = −m∗S + h0
P2

S
, (76)

where m∗ and h0 are some phenomenological parameters. We obtain now

Q(X) = ξ +
mS(1)

h0X
, (77)

where a new guiding parameter ξ appears

ξ =

(
m∗−m

h0

)
. (78)
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Now, Equation (55) can be rewritten as follows:

dX
dx

= ∓4h0
√

Q
xH

√
X2(1−Q)− K . (79)

Clearly, this equation admits separation of variables
√

XdX√
ξX + mS(1)

h0

√
X
[
(1− ξ)X− mS(1)

h0

]
− K

= ∓4h0dt , (80)

but further analytic progress is possible for specific choice of the guiding parameters ξ and
K. Below, we consider two special submodels: first, when ξ = 0 and K = 0; second, when
ξ = 1

2 and K = 0.

4.2.3. The First Special Submodel

When K = 0, we work with the function Z =±
√

X2−Y2, and when ξ = 0, we see
that m∗ = m. For this choice of the guiding parameters, we obtain the exactly integrable
submodel with

X(t) =
mS(1)

h0

[
1 + 4h2

0(t− t+)
2
]

, (81)

Y(t) =
mS(1)

h0

√
1 + 4h2

0(t− t+)
2 . (82)

Here, we used the new auxiliary quantity

t+ = t∗ +

√
h0 −m
4mh2

0
. (83)

In addition, we used the boundary condition X(t∗) = x3
∗S(x∗) = S(1), we have chosen

the upper sign in (80) so that t+ > t∗, and we have assumed that h0 ≥ m.
The effective mass depends on time as follows:

< M >= h0Q(t) =
h0[

1+4h2
0(t−t+)

2
] . (84)

The function < M > (t) starts with the value m at t = t∗ then reaches the maximal
value < M >(max) = h0 ≥ m at the moment t = tmax = t+, and then it decreases
monotonically. The time moment tmax = t+ is the function of the parameter h0 (see (83));
when h0 = m, tmax = t∗; when m < h0 < 2m, this function grows and reaches the
maximum at h0 = 2m; when h0 > 2m, the parameter tmax decreases and tends to t∗. In
other words, when the guiding parameter h0 monotonically grows, the maximum of the
function < M > (t) drifts to the late time moments then stops and starts to drift to the
initial point t∗. Figure 1 illustrates the behavior of the reduced function <M>

m for the cases
when h0 ≥ 2.

The spinor particle number density is presented as

s(t) ≡ S(t)
S(t∗)

=

(
m
h0

)[
1+4h2

0(t−t+)
2
]

cosh2
[√

3Λ
4Γ (t−t∗)

]{
1+
√

1+ κ
Λ (ρ(t0)+mS(t0)) tanh

[√
3Λ
4Γ (t−t∗)

]}2 . (85)

This function depends on the parameters Λ, Γ, m, h0, and on the initial values ρ(t0),
S(t0), so that the behavior of this function is much more sophisticated than the behavior of
< M >. However, the numerical analysis shows that the corresponding graphs possess
maxima. If we fix Λ, Γ, m, ρ(t0), S(t0) and consider variation of the guiding parameter
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h0 only, we can state the following: first, the height of the maximum increases when the
parameter h0 grows; second, the maximum of the corresponding graph starts to shift to the
late time moments, stops, and then moves towards lower values of time. Figure 2 illustrates
the details of such behavior.

Figure 1. Illustration of the behavior of the ratio µ ≡ <M>
m for the model with ξ = 0 (see (84)) as the

function of time and of the guiding parameter h0. For illustration on all the figures, we set m = 1,

t∗ = 1 and measured the cosmological time in the dimensionless units τ= tH0 (H0 =
√

Λ
3 ). The

maximal values of all functions µ(t, h0) are equal to h0. For h0 > 2m, the values of µ grow with h0

and the maxima of the corresponding graphs shift to the initial moment t∗.

Figure 2. Illustration of the behavior of the dimensionless function s(t) ≡ S(t)
S(t∗)

for the model with
ξ = 0 (see (85)) when the parameters Λ, Γ, m, ρ(t0), S(t0) are fixed and only the guiding parameter
h0 is varying.

4.2.4. The Second Special Submodel

The condition ξ = 1
2 is equivalent to m∗ − m = 1

2 h0. The key Equation (80) for the
function X reads now

dX√
1
4 X2 −

(
mS(1)

h0

)2
= ∓4h0dt . (86)
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The solution, which corresponds to the upper sign in (86) and to the condition h0 >
2m, is

X(t)
X(t∗)

= cosh 2h0(t−t∗)−
√

1−4m2

h2
0

sinh 2h0(t−t∗) , (87)

or equivalently

s(t) =
S(t)
S(t∗)

=

cosh [2h0(t− t∗)]
{

1−
√

1− 4m2

h2
0

tanh [2h0(t−t∗)]
}

cosh2
[√

3Λ
4Γ (t−t∗)

]{
1+
√

1+ κ(ρ(t0)+mS(t0))
Λ tanh

[√
3Λ
4Γ (t−t∗)

]}2 . (88)

The effective mass evolves with respect to the law

< M >=
m

cosh 2h0(t−t∗)−
√

1− 4m2

h2
0

sinh 2h0(t−t∗)
. (89)

At t = t∗, we obtain < M > (t∗) = m. The function < M > (t) reaches the maximal
value < M >(max) =

h0
2 , where tmax is defined as

cosh [2h0(tmax − t∗)] =
h0

2m
, (90)

or equivalently

tmax = t∗ +
1

2h0
log

[
h0

2m

(
1 +

√
1− 4m2

h2
0

)]
. (91)

The quantity tmax as the function of the guiding parameter h0 increases when the
parameter h0 grows, reaches the maximum, and then monotonically tends to t∗. In other
words, when the guiding parameter h0 monotonically grows, the maximum of the function
< M > (t) drifts to the late time moments, then stops and starts to drift to the initial point
t∗, as in the submodel with ξ = 0. Figure 3 illustrates the behavior of the reduced function
<M>

m for the cases when this maximum is passed.

Figure 3. Illustration of the behavior of the ratio µ ≡ <M>
m for the model with ξ = 1

2 (see (89)) as the
function of time and of the guiding parameter h0. The maximal values of all functions µ(t, h0) are
equal to 1

2 h0. For h0 > 2m, the values of µ grow with h0 and the maxima of the corresponding graphs
shift to the initial moment t∗.
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The behavior of the function s(t) (88) is similar to the one for the model with
ξ = 0. Again, the graphs demonstrate the maxima, which move similarly. Figure 4
illustrates this behavior.

Figure 4. Illustration of the behavior of the dimensionless function s(t) ≡ S(t)
S(t∗)

for the model with

ξ = 1
2 (see (88)) when the parameters Λ, Γ, m, ρ(t0), S(t0) are fixed and only the guiding parameter h0

is varying. According to the legend, when h0 grows, the maximum of the graph shifts to the late time
moments then stops and starts to drift towards the initial time moment. The heights of the maxima of
the graphs increase on the first stage and decrease on the second one.

4.3. On the Solutions for the Third Interval

During the third stage of the Universe evolution (t > t∗∗), we deal with β = 0, the
value of the scalar S on the boundary t = t∗∗ is predetermined by the formulas already
found for the interval t0 < t < t∗. The process of spinorization is finished.

5. Discussion and Conclusions
5.1. The Role of Guiding Model Parameters

We presented an exactly integrable phenomenological model according to which the
dynamic aether coupled to the spinor field opens a window for the spontaneous growth of
the fermion number in the early Universe. We have to emphasize that this spontaneous
growth is the result of internal self-interaction in the spinor system, which we indicated
as a mechanism of self-similar coupling. As for the dynamic aether, it plays the role of
regulator for this process. Our purpose was to show explicitly that the function S(t) = ψ̄ψ,
which is usually associated with the number density of the spinor particle, can grow, can
reach some maximal value, and then can monotonically decrease under the influence of the
Universe expansion. The formula (85) describes this statement for the first model with the
guiding model parameter ξ = 0, and the formula (88) confirms this statement for the model
with ξ = 1

2 . It is required to say a few words about the parameters of the whole model.
First, we use the cosmological constant Λ; second, only one Jacobson coupling constant
C2 appears in the master equations reduced for the chosen spacetime symmetry. Final

formulas contain the unified parameter H∞ =
√

Λ
3(1+ 3

2 C2)
, which gives the asymptotic

value of the Hubble function H∞, different from the de Sitter parameter H0 =
√

Λ
3 . The

model of self-similar interaction includes additional parameters ξ (78) and h0. It turned
out that the parameter h0 predetermines the maximal value of the effective spinor mass
< M > (21). In addition, we introduced phenomenologically two time moments t∗ and
t∗∗, which restrict the interval inside of which the dynamic aether “allows” the spinor
field to switch on the self-similar interaction; we consider the corresponding values of the
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expansion scalar Θ∗ ≡ Θ(t∗) and Θ∗∗ ≡ Θ(t∗∗) as the analogs of the first and second Curie
temperatures in ferroelectrics. The last guiding parameter of the model is the so-called
“seed mass” m. This value of the spinor mass is not fixed in the model. there are several
ideas about this quantity. For instance, the collision of pairs of photons could produce the
electron–positron pairs when the photon energy was sufficient to overcome the barrier
of the electron rest energy 2me. In this case, the electron mass me could be the seed mass
m→ me. The corresponding initial fermion number density was indicated as S(t0).

5.2. The Role of the Effective Spinor Mass

In the thermodynamics of the hot Universe, there exists a hypothesis that when the
thermal energy kBT is equal to the sum of the rest energies of pairs of particles, kBT = 2Mc2,
these particles can emerge as the individual ones (particles drop out from the equilibrium
fluid). We put forward a hypothesis that in analogy with the thermodynamic approach, the
specific spinor particles can appear as the individual ones when their masses (predicted by
the quantum theory) coincide with the effective mass < M >. Is it possible on the basis of
our hypothesis to explain the birth of spinors of all known types?

In the standard units, we have to replace m → mc
h̄ . For the special units with c = 1

and h̄ = 1, this mass parameter is presented as usual in MeV. From the standard catalog of
fermion masses, we know the following: first, the masses of the quarks are in the range
between 174,340 ± 790 MeV (for the t-quark) and 1.5←→ 5 MeV (for the u-quark); second,
the masses of protons and neutrons are 938.272 MeV and 939.565 MeV, respectively; third,
the masses of leptons are in the range between 1776.99 MeV (for the τ-lepton) and 0.511 MeV
(for the electron); fourth, the masses of the neutrinos are estimated to be in the range
between <15.5 MeV (for the τ-neutrino) and <0.0000022 MeV (for the electron neutrino).
(The masses of the anti-particles coincide with the ones of the corresponding particles.)

Based on the solutions obtained for two exactly integrable models, we can notice that
the effective spinor mass < M > as the function of cosmological time starts from the value
m at t = t∗, reaches the maximal value (h0 if ξ = 0 and 1

2 h0 if ξ = 1
2 , and then tends to zero.

In fact, we can estimate the parameter h0 associated with the maximal value of the effective
mass as h0 > 174,340 ± 790 MeV for the model with ξ = 0 and as h0 > 348,681 ± 580
for the model with ξ = 1

2 . The mass of the electron neutrino, the minimal mass from this
catalog, points to the moment of time t∗∗ when the self-similar interaction was switched off
by the dynamic aether.

5.3. On the Maximal Spinor Particle Number Density

The idea of spontaneous spinorization assumes that during the interval of the cos-
mological time t∗ < t < t∗∗, a significant growth of the spinor number density S takes
place. This idea is confirmed by the exact solutions (85) (for ξ = 0) and (88) (for ξ = 1

2 ).
Illustrations presented in Figures 2 and 4 visualize the growth of the function S(t). It is
important to notice that the maximal value Smax is predetermined by the model guiding
parameter h0. If we suppose that the model with ξ = 0 is appropriate, the estimation gives
that Smax ∝ S(t∗)4mh0(tmax−t+)2; for the hypothetical value h0 > 174,340 ± 790 MeV, it
is a rather big quantity. If the model with ξ = 1

2 is more appropriate, the estimations give
Smax ∝ S(t∗) cosh 2h0(tmax−t∗).

5.4. What Is the Energy Source for the Spontaneous Spinorization?

We think that the energy required to increase the number of fermions is drawn from the
energy reserve of the gravitational field. The presence of the term mS+β in the right-hand
side of the Equation (34) hints to us that the energy can be effectively redistributed between
the gravitational and spinor fields when the aether opens a window for this process.
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5.5. What Do We Think about the Problem of the Lorentz Symmetry Violation in the Context of the
Presented Theory?

When the theory of the dynamic aether [23] has been established, the discussions about
the so-called Lorentz symmetry violation appeared. There are several levels of meaning
in this context. Since we work with the general relativistic approach to the Dirac theory,
and thus all the master equations are covariant, we, clearly, do not mean the breaking of
invariance with respect to the Lorentz transformations. When we deal with the dynamic
aether, we work, in fact, with the Lagrangian, which contains the privileged velocity, the
velocity of the aether, thus contradicting with the requirement of the special relativity
that all the frames of reference, moving with constant velocities relative to each other,
are equivalent. Another item of the mentioned problem is connected with the velocity of
photons in the aetheric vacuum: this velocity is not equal now to the constant speed of light
in vacuum, it can depend on the photon energy. In other words, the infra-red, optical, and
gamma photons can move around the Universe with different velocities.

5.6. Outlook

We hope to apply the presented results to the realistic cosmological model; however,
this work is outside the scope of this article. We hope to organize the detailed analysis in
the next paper.

Author Contributions: Conceptualization, A.B.; methodology, A.B.; software, A.E.; validation, A.E.;
formal analysis, A.E.; investigation, A.B.; resources, A.E.; data curation, A.E.; writing—original draft
preparation, A.B.; writing—review and editing, A.B.; visualization, A.E.; supervision, A.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Russian Science Foundation (Grant No 21-12-00130).

Data Availability Statement: Data are contained within the article.

Acknowledgments: A.B. is grateful to Richard Kerner for fruitful discussions, bright ideas and for
support that lasts twenty-seven years.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Damour, T.; Esposito-Far‘ese, G. Tensor-scalar gravity and binary-pulsars experiments. Phys. Rev. D 1996, 54, 1474. [CrossRef]
2. Salgado, M.; Sudarsky, D.; Nucamendi, U. On spontaneous scalarization. Phys. Rev. D 1998, 58, 124003. [CrossRef]
3. Chen, P.; Suyama, T.; Yokoyama, J. Spontaneous scalarization: Asymmetron as dark matter. Phys. Rev. D 2015, 92, 124016.

[CrossRef]
4. Ramazanoglu, F.M.; Pretorius, F. Spontaneous scalarization with massive fields. Phys. Rev. D 2016, 93, 064005. [CrossRef]
5. Ikeda, T.; Nakamura, T.; Minamitsuji, M. Spontaneous scalarization of charged black holes in the scalar-vector-tensor theory.

Phys. Rev. D 2019, 100, 104014. [CrossRef]
6. Ventagli, G.; Lehebel. A.; Sotiriou, T.P. The onset of spontaneous scalarization in generalised scalar-tensor theories. Phys. Rev. D

2020, 102, 024050. [CrossRef]
7. Brihaye, Y.; Capobianco, R.; Hartmann, B. Spontaneous scalarization of self-gravitating magnetic fields. Phys. Rev. D 2021,

103, 124020. [CrossRef]
8. Zhao, J.; Freire, P.C.C.; Kramer, M.; Shao, L.; Wex, N. Closing a spontaneous-scalarization window with binary pulsars.

Class. Quantum Grav. 2022, 39, 11LT01. [CrossRef]
9. Wong, L.K.; Herdeiro, C.A.R.; Radu, E. Constraining spontaneous black hole scalarization in scalar-tensor-Gauss-Bonnet theories

with current gravitational-wave data. Phys. Rev. D 2022, 106, 024008. [CrossRef]
10. Lai, M.Y.; Myung, Y.S.; Yue, R.H.; Zou, D.C. Spin-charge induced spontaneous scalarization of Kerr-Newman black holes.

Phys. Rev. D 2022, 106, 8 084043. [CrossRef]
11. Nakarachinda, R.; Panpanich, S.; Tsujikawa, S.; Wongjun, P. Cosmology in theories with spontaneous scalarization of neutron

stars. Phys. Rev. D 2023, 107, 043512. [CrossRef]
12. Zhang, S.J.; Wang, B.; Papantonopoulos, E.; Wang, A. Magnetic-induced spontaneous scalarization in dynamcial Chern-Simons

gravity. Eur. Phys. J. C 2023, 83, 97. [CrossRef]
13. Annulli, L.; Herdeiro, C.A.R. Non-linear tides and Gauss-Bonnet scalarization. Phys. Lett. B 2023, 845, 138137. [CrossRef]
14. Ramazanoglu, F.M. Spontaneous growth of vector fields in gravity. Phys. Rev. D 2017, 96, 064009. [CrossRef]

http://doi.org/10.1103/PhysRevD.54.1474
http://dx.doi.org/10.1103/PhysRevD.58.124003
http://dx.doi.org/10.1103/PhysRevD.92.124016
http://dx.doi.org/10.1103/PhysRevD.93.064005
http://dx.doi.org/10.1103/PhysRevD.100.104014
http://dx.doi.org/10.1103/PhysRevD.102.024050
http://dx.doi.org/10.1103/PhysRevD.103.124020
http://dx.doi.org/10.1088/1361-6382/ac69a3
http://dx.doi.org/10.1103/PhysRevD.106.024008
http://dx.doi.org/10.1103/PhysRevD.106.084043
http://dx.doi.org/10.1103/PhysRevD.107.043512
http://dx.doi.org/10.1140/epjc/s10052-023-11254-y
http://dx.doi.org/10.1016/j.physletb.2023.138137
http://dx.doi.org/10.1103/PhysRevD.96.064009


Universe 2023, 9, 481 18 of 19

15. Annulli, L.; Cardoso, V.; Gualtieri, L. Electromagnetism and hidden vector fields in modified gravity theories: Spontaneous and
induced vectorization. Phys. Rev. D 2019, 99, 044038. [CrossRef]

16. Minamitsuji, M. Spontaneous vectorization in the presence of vector field coupling to matter. Phys. Rev. D 2020, 101, 104044.
[CrossRef]

17. Ramazanoglu, F.M. Spontaneous tensorization from curvature coupling and beyond. Phys. Rev. D 2019, 99, 084015. [CrossRef]
18. Ramazanoglu, F.M. Spontaneous growth of spinor fields in gravity. Phys. Rev. D 2018, 98, 044011. [CrossRef]
19. Minamitsuji, M. Stealth spontaneous spinorization of relativistic stars. Phys. Rev. D 2020, 102, 044048. [CrossRef]
20. Balakin, A.B.; Kiselev, G.B. Spontaneous color polarization as a modus originis of the dynamic aether. Universe 2020, 6, 95.

[CrossRef]
21. Balakin, A.B.; Kiselev, G.B. Einstein-Yang-Mills-aether theory with nonlinear axion field: Decay of color aether and the axionic

dark matter production. Symmetry 2022, 14, 1621. [CrossRef]
22. Ramazanoglu, F.M. Spontaneous growth of gauge fields in gravity through the Higgs mechanism. Phys. Rev. D 2018, 98, 044013.

[CrossRef]
23. Jacobson, T.; Mattingly, D. Gravity with a dynamical preferred frame. Phys. Rev. D 2001, 64, 024028. [CrossRef]
24. Jacobson, T.; Mattingly, D. Einstein-aether waves. Phys. Rev. D 2004, 70, 024003. [CrossRef]
25. Heinicke, C.; Baekler, P.; Hehl, F.W. Einstein-aether theory, violation of Lorentz invariance, and metric-affine gravity. Phys. Rev. D

2005, 72, 025012. [CrossRef]
26. Jacobson, T. Einstein-aether gravity: A status report. In Proceedings of the Workshop on from Quantum to Emergent Gravity:

Theory and Phenomenology (QG-Ph), Trieste, Italy, 11–15 June 2007; p. 20.
27. Eling, C.; Jacobson, T.; Miller, M.C. Neutron stars in Einstein-aether theory. Phys. Rev. D 2007, 76, 042003. [CrossRef]
28. Barausse, E.; Jacobson, T.; Sotiriou, T.P. Black holes in Einstein-aether and Horava-Lifshitz gravity. Phys. Rev. D 2011, 83, 124043.

[CrossRef]
29. Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rept.

2011, 505, 59. [CrossRef]
30. Nojiri, S.; Odintsov S.D.; Oikonomou, V.K. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution.

Phys. Rept. 2017, 692, 1. [CrossRef]
31. Will, C.M.; Nordtvedt, K. Conservation laws and preferred frames in relativistic gravity. I. Preferred-frame theories and an

extended PPN formalism. Astrophys. J. 1972, 177, 757. [CrossRef]
32. Nordtvedt, K.; Will, C.M. Conservation laws and preferred frames in relativistic gravity. II. Experimental evidence to rule out

preferred-frame theories of gravity. Astrophys. J. 1972, 177, 775–792. [CrossRef]
33. Liberati, S. Lorentz breaking effective field theory and observational tests. Lect. Notes Phys. 2013, 870, 297.
34. Kostelecky, A.; Mewes, M. Electrodynamics with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2009, 80, 015020.

[CrossRef]
35. Fock, V.; Iwanenko, D. Geometrie quantique lineaire et deplacement parallele. Compt. Rend. Acad. Sci. 1929, 188, 1470.
36. Volkov, M.S.; Gal’tsov, D.V. Gravitating non-Abelian solitons and black holes with Yang-Mills fields. Phys. Rept. 1999, 319, 1.

[CrossRef]
37. Balakin, A.B. Extended Einstein-Maxwell model. Gravit. Cosmol. 2007, 13, 163.
38. Abbott, B.P. et.al. [LIGO Scientific Collaboration; Virgo Collaboration; Fermi Gamma-Ray Burst Monitor; INTEGRAL]. Grav-

itational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. APJ Lett. 2017, 848, L13.
[CrossRef]

39. Elliott, J.W.; Moore, G.D.; Stoica, H. Constraining the new aether: Gravitational Cherenkov radiation. J. High Energy Phys. 2005,
0508, 066. [CrossRef]

40. Kostelecky, A.; Tasson, J.D. Constraints on Lorentz violation from gravitational Cherenkov radiation. Phys. Lett. B 2015 749, 551.
[CrossRef]

41. Oost, J.; Mukohyama, S.; Wang, A. Constraints on Einstein-aether theory after GW170817. Phys. Rev. D 2018, 97, 124023.
[CrossRef]

42. Trinh, D.; Pace, F.; Battye, R.A.; Bolliet, B. Cosmologically viable generalized Einstein-Aether theories. Phys. Rev. D 2019,
99, 043515.

43. Balakin, A.B.; Shakirzyanov, A.F. Axionic extension of the Einstein-aether theory: How does dynamic aether regulate the state of
axionic dark matter? Phys. Dark Univ. 2019, 24, 100283. [CrossRef]

44. Saha, B.; Shikin, G.N. Nonlinear spinor field in Bianchi type-I universe filled with perfect fluid: Exact self-consistent solutions.
J. Math. Phys. 1997, 38, 5305. [CrossRef]

45. Saha, B. Spinor field in Bianchi type-I universe: regular solutions. Phys. Rev. D 2001, 64, 123501. [CrossRef]
46. Saha, B. Nonlinear spinor field in cosmology. Phys. Rev. D 2004, 69, 124006. [CrossRef]
47. Bronnikov, K.A.; Rybakov, Yu, P.; Saha, B. Spinor fields in spherical symmetry. Einstein-Dirac and other space-times. Eur. Phys. J.

Plus 2020, 135, 124. [CrossRef]

http://dx.doi.org/10.1103/PhysRevD.99.044038
http://dx.doi.org/10.1103/PhysRevD.101.104044
http://dx.doi.org/10.1103/PhysRevD.99.084015
http://dx.doi.org/10.1103/PhysRevD.98.044011
http://dx.doi.org/10.1103/PhysRevD.102.044048
http://dx.doi.org/10.3390/universe6070095
http://dx.doi.org/10.3390/sym14081621
http://dx.doi.org/10.1103/PhysRevD.98.044013
http://dx.doi.org/10.1103/PhysRevD.64.024028
http://dx.doi.org/10.1103/PhysRevD.70.024003
http://dx.doi.org/10.1103/PhysRevD.72.025012
http://dx.doi.org/10.1103/PhysRevD.76.042003
http://dx.doi.org/10.1103/PhysRevD.83.124043
http://dx.doi.org/10.1016/j.physrep.2011.04.001
http://dx.doi.org/10.1016/j.physrep.2017.06.001
http://dx.doi.org/10.1086/151754
http://dx.doi.org/10.1086/151755
http://dx.doi.org/10.1103/PhysRevD.80.015020
http://dx.doi.org/10.1016/S0370-1573(99)00010-1
http://dx.doi.org/10.3847/2041-8213/aa920c
http://dx.doi.org/10.1088/1126-6708/2005/08/066
http://dx.doi.org/10.1016/j.physletb.2015.08.060
http://dx.doi.org/10.1103/PhysRevD.97.124023
http://dx.doi.org/10.1016/j.dark.2019.100283
http://dx.doi.org/10.1063/1.531944
http://dx.doi.org/10.1103/PhysRevD.64.123501
http://dx.doi.org/10.1103/PhysRevD.69.124006
http://dx.doi.org/10.1140/epjp/s13360-020-00150-z


Universe 2023, 9, 481 19 of 19

48. Saha, B.; Boyadjiev, T. Bianchi type I cosmology with scalar and spinor fields. Phys. Rev. D 2004, 69, 124010. [CrossRef]
49. Balakin, A.B.; Efremova, A.O. Interaction of the axionic dark matter, dynamic aether, spinor and gravity fields as an origin of

oscillations of the fermion effective mass. Eur. Phys. J. C 2021, 81, 674. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRevD.69.124010
http://dx.doi.org/10.1140/epjc/s10052-021-09341-z

	Introduction
	The Formalism
	Lagrangian of the Einstein–Dirac-Aether Theory
	Basic Assumptions and Auxiliary Definitions
	Fock–Ivanenko Connection, Tetrad Four-Vectors, Spinor Scalar S, and Pseudoscalar P
	Decomposition of the Covariant Derivative of the Aether Velocity Four-Vector

	Master Equations
	Master Equations for the Aether Velocity
	Master Equations for the Spinor Field
	Master Equations for the Gravity Field


	Cosmological Application
	Geometrical Aspects of the Model
	Reduced Evolutionary Equation for the Spinor Field
	Evolution of the Spinor Invariants

	Modeling of the Interaction Term 
	Solutions for the First Interval
	Solutions for the Second Interval
	Hypothesis of Self-Similarity 
	Linear Function Describing Self-Similarity
	The First Special Submodel
	The Second Special Submodel

	On the Solutions for the Third Interval

	Discussion and Conclusions
	The Role of Guiding Model Parameters
	The Role of the Effective Spinor Mass
	On the Maximal Spinor Particle Number Density
	What Is the Energy Source for the Spontaneous Spinorization?
	What Do We Think about the Problem of the Lorentz Symmetry Violation in the Context of the Presented Theory?
	Outlook

	References

