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Abstract: The transiting planet K2-18 b is one of the best candidates for a relatively nearby world
harboring biological life. The long-term orbital evolution of this planet is investigated using theoretical
and purely numerical techniques for two possible configurations: a single planet orbiting the host
star, and a two-planet system including the proposed inner planet close to the 4:1 mean motion
rationalization. The emphasis is made on the secular changes of eccentricity and orbital inclination,
which are important for the climate stability of the planet. It is demonstrated that the secular orbital
dynamics of planet K2-18 b with an internal companion are accurately represented by the periodic
eccentricity and inclination exchange on the time scales of a few Kyr. A single planet is not expected to
experience fast orbital changes, with the much weaker tidal and rotation-driven perturbations mostly
reflecting in a slow periastron and nodal precession. The tidal decay of the orbit is too insignificant on
the time scale of the stellar age. However, the conditions for the habitability of a single K2-18 b planet
are much improved if, like the Earth, it rotates faster than the mean motion and its rotation angle is
tilted by a hypothetical moon. Milanković’s cycles of the habitable planet’s climate are discussed for
both configurations.

Keywords: planets and satellites; dynamical evolution and stability; numerical methods; celestial
mechanics; planet–star interactions

1. Introduction

K2-18 is an M2.8 main sequence dwarf at a distance of 38.1 pc from the Sun. It harbors
at least one planet (K2-18 b) detected in the photometric light curves of the extended Kepler
mission [1,2]. The orbital period of this planet is 32.94 d [3], and its estimated bulk density of
3300 kg m−3 suggests a terrestrial central body covered with a massive ocean [4]. Observing
the planetary transits with the Hubble Space Telescope, ref. Benneke et al. [5], the presence
of water vapor and clouds in the atmosphere of planet b were detected. Coupled with
the estimated insolation flux, which is only slightly higher than the insolation of Earth [6],
these properties make K2-18 b one of the best candidate habitable worlds with thriving
biological life. Precision radial velocity observations confirmed the presence of planet b,
but also indicated a possible inner companion with a period of 8.962± 0.008 d [4]. The mass
and radius of this proposed planet c are only slightly smaller than the values for planet
b. A downward revision of the projected mass Mc sin i followed a more detailed analysis
of the available radial velocity data from two separate instruments [7]. A novel technique
to process combined spectroscopic data further strengthened the case for an inner planet
and updated the estimated mass to 6.99 M⊕ and the period to 9.2 d [8]. Still, doubts linger
in the reality of the inner planet, and it is listed as a “controversial” entry in the NASA
Exoplanet Archive available online (https://exoplanetarchive.ipac.caltech.edu, accessed
on 27 August 2023). The tentative inner planet is not transiting; thus, its orbital inclination
should differ from that of planet b by at least 2◦. The period ratio is approximately 3.7,
which is close to the potential 4:1 mean motion resonance (MMR). Are such systems stable
long-term?
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Another consideration to be taken into account is the rate of rotation of the host star. The
projected surface velocity from the broadening of the spectral lines is v sin i = 2.0 km s−1 [9],
which yields an upper bound rotation period of 8.8 d for the estimated radius. This is
close to the orbital period of the tentative planet c. Photospheric spots and plages can
cause measurable modulation of the radial velocity curve, which, in most cases, manifests
itself as an enhanced jitter because of the short life-times of these formations and their
small effective area [10]. Magnetically active stars, on the other hand, are known to
have persistent structures (such as spot groups) that can last for multiple rotations and
occupy a sizable portion of the visible disk. They cause quasi-sinusoidal variations of the
Doppler shift, which can be confused with an exoplanet signal. K2-18, however, does not
show significant signs of magnetic activity or binarity in the available data. Persistent
photometric structures are not expected for this star. Precision radial velocity measurements
over extended timescales should resolve this open issue by confirming or rejecting the
persistent phase of the radial velocity modulation.

The goal of this study is to investigate the consequences of both options, the single
planet and two-planet system, for the secular orbital evolution of the possibly habitable
planet b. Variations of the semimajor axis, eccentricity, and inclination are very important
factors for the considerations of habitability and climate modeling. The plan of this paper
is as follows. In Section 2, we investigate the basic secular exchange of eccentricity and
inclination for the two-planet option. Our approach combines high-accuracy and long-term
numerical simulations with the theoretical models derived from the classical Laplace–
Lagrange analysis.

2. Eccentricity and Inclination Exchange in a Two-Planet K2-18 System

In this section, we investigate the fundamental process of the orbital momentum
exchange between two planets and its manifestations in the secular orbital evolution of
planet K2-18 b if the proposed inner planet c is present. A series of numerical simulations
was performed using the symplectic integrator WHFast [11], which is part of the REBOUND
package (https://rebound.readthedocs.io/en/latest/, accessed on 19 October 2023). This
code provides high-speed computation in conservative dynamical systems. Most of the
computations were made for 3× 105 yr with 50 steps per period of the inner planet. The
basic characteristics of the planet system adopted in our integration are listed in Table 1. The
orbital inclination and eccentricity of the two orbits are practically unknown. Specifically,
only a very wide upper limit on eccentricity can be derived from the available transit
and radial velocity data, which is not helpful for the accurate characterization of orbital
dynamics. It is logical to assume that both planets’ eccentricities are “small", while the
mutual inclination is larger than a few degrees (from the fact that the inner planet is not
transiting). We, therefore, investigate a grid of possible initial configurations. The initial
eccentricity of the inner planet is always e1(0) = 0.01, and the accepted values for the
outer planet are e2(0) = 0.01, 0.05, 0.1, 0.2. Each of these configurations are also integrated
on a grid of initial inclinations i2(0) = 5, 10, 20, 40◦, thus making a set of 16 different
configurations. The initial orientation of the inner orbit is set to i1(0) = 0, ω1(0) = 0, and
Ω(0) = 0 by the choice of the fixed non-rotating coordinate frame. We also set ω2(0) = 0
and Ω2(0) = 0. These Euler angles are found to be rapidly varied on the time scale of
∼100 yr, and no loss of generality is expected from this choice.

Secular gravitational interactions between the planets and the star cause the orbital
elements to vary with time. In the asymptotic limit of small eccentricity and mutual
inclination, this behavior is predicted by the classical Laplace–Lagrange linear perturbation
theory, which was initially developed for the Solar system dynamics, and specifically, for
the Jupiter–Saturn pair [12,13]. Under these conditions, the corresponding model is

ej(t) =
√

A1 + A2 cos(2πt/pe + φe + π j), (1)

ij(t) =
√

B1 + B2 cos(2πt/pi + φi + π j), (2)

https://rebound.readthedocs.io/en/latest/
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where j = 1 designates the inner planet, and j = 2 is for the outer planet. We note that in
the special case e1(0) = 0, the equations for ej(t) become equivalent to the mirrored sine
model with A1 = A2 = A2

e /2 and φe = 0, which was used in ref. (Makarov et al., 2023,
submitted). The phase shift π j assures that the oscillations of both eccentricities (and both
inclinations) are in the opposite direction, so that when one planet reaches its maximum
eccentricity, the other planet reaches the minimum value. When both initial eccentricities
are nonzero, A1 6= A2, and the curve looks like a sinusoid with sharper minima. The
periods of oscillation pe and pi are equal for both planets. The common phase for the tested
configurations is either 0 or π.

Equation (2) provides excellent fits to the osculating orbital elements for all trial initial
eccentricity values and for initial inclinations i2(0) up to 20◦. An example of the output
simulated eccentricities and inclinations for both planets integrated over 30 Kyr is shown
in Figure 1. The initial conditions are: e1(0) = 0.01, e2(0) = 0.05, i1(0) = 0, i2(0) = 5◦,
ω1(0) = ω2(0) = 0, and Ω1(0) = Ω2(0) = 0, and only the first 10 Kyr of the data are
shown with black dots sampled every 10 yr. The fits (shown with red curves) follow the
output data so closely that the black dots are barely seen. The fit for i1(t), with its minima
close to the initial i1(0) = 0, degenerates to i1(t) =

√
2B1| sin(4πt/pi)|, as explained above.

The full amplitudes of eccentricity and inclination variations are significantly smaller for
planet 2 than for planet 1. This is expected from the total angular momentum preservation,
and is true for all configurations. The “observed minus calculated” residuals are smaller
than the oscillation amplitudes by two orders of magnitude in this example, but they reveal
the presence of additional eigenfrequencies that are not captured by the model. These
additional eigenfrequencies, however, are sensitive to the initial mutual inclination of the
orbits, and become obvious at i2(0) = 20◦.
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Figure 1. Secular evolution of K2-18 planets in a two-planet configuration. Numerical integration
of orbital motion was performed for 30 Kyr with the initial conditions: e1(0) = 0.01, e2(0) = 0.05,
i1(0) = 0, i2(0) = 5◦, ω1(0) = ω2(0) = 0, and Ω1(0) = Ω2(0) = 0. The black curves show the
actual output of the numerical simulations. The red curves show the best fits with the theoretical
model (2). Upper left panel: inner planet K2-18 c eccentricity. Upper right panel: inner planet K2-18
c inclination in degrees. Lower left panel: outer planet K2-18 b eccentricity. Lower right panel: outer
planet K2-18 b inclination in degrees.
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Table 1. Assumed and adopted physical parameters of a two-planet K2-18 system.

Object Mass Period, d Radius

K2-18 0.36 Msun 0.46 Rsun
K2-18 b 0.0272 Mjup 32.94 0.233 Rjup
K2-18 c 0.0236 Mjup 8.962 0.22 Rjup

The emerging picture is consistent with previous finds from long-term integrations of
other exoplanet systems with period ratios closer to the 2:1 MMR. The main-mode periods
pe and pi are weakly dependent on the initial e and i, as long as they are close to zero.
The general dependence of pi on i2(0), however, is exponential. For the configuration
in Figure 1, for example, the fitted periods are pe = 4960 yr and pi = 2737 yr. With the
same initial conditions, but with i2(0) set to 20◦ instead of 5◦, the periods become 9050 yr
and 3206 yr, respectively. Furthermore, if the initial inclination is set to 40◦, model (2) is
no longer valid for eccentricity, as shown in Figure 2. Both planets’ eccentricities vary
non-periodically in a wide range. For the inclination of the outer planet, model (2) still
provides an adequate, but imperfect, fit (right panel). The estimated period pi is 4722 yr.
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Figure 2. Secular evolution of K2-18 planets in a two-planet configuration. The numerical integration
of orbital motion was performed for 30 Kyr with the initial conditions: e1(0) = 0.01, e2(0) = 0.05,
i1(0) = 0, i2(0) = 40◦, ω1(0) = ω2(0) = 0, and Ω1(0) = Ω2(0) = 0. The black curves show the
actual output of the numerical simulations. The red curve show the best fits with the theoretical
model (2). Left panel: outer planet K2-18 b eccentricity. Right panel: outer planet K2-18 b inclination
in degrees.

3. Apsidal Precession and Nodal Recession in a Two-Planet K2-18 System

We are not aware of an accurate and tested analytical theory describing the secular and
long-period evolution of the node and periapse position in the three-body non-restricted
problem with nonzero eccentricities and inclinations. In some papers, e.g., [14], the impact
of the inner planet is approximated with an additional quadrupole moment J2 assigned
to the star, and the well-developed Lagrange theory for multipole perturbations is then
employed. Essentially, the inner planet is replaced with a stationary gravitating ring of a
uniform density with a radius of a1. Our numerical experiment for K2-18 with two planets
reveals that this approximation gives an incomplete and distorted picture of the complex
behavior of the two orbits. Specifically, it predicts that the line of apsides precesses for
the outer planet (if mutual inclination is less than arcsin(2/

√
5)), and the line of nodes

recesses. The likely reason for this inadequacy is that the quadrupole approximation does
not capture the exchange of angular momentum between the two planets.

From our benchmark simulation with the initial parameters e1(0) = 0.01, e2(0) = 0.05,
i1(0) = 0, i2(0) = 5◦, ω1(0) = ω2(0) = 0, and Ω1(0) = Ω2(0) = 0, we find that the inner
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planet’s ω1(t) shows both types of secular perturbation: a linear prograde drift (precession)
and a long-period variation. The rate of precession can be expressed as

ω1(t) = 2π t/Pω1, (3)

where Pω1 is the period of periapse circulation. For the tentative inner planet in this
configuration, we estimate Pω1 = 3790 yr, which is significantly shorter than the eccentricity
exchange period pe = 4960 yr. Overlaid on this drift, there is a long-period (hereafter, LP)
oscillation with a period of about 5000 yr and a full amplitude of∼1.5 rad. The oscillation is
markedly non-sinusoidal. Remarkably, the Ω1(t) curve does not include any LP variations
but shows a steady linear recession with a circulation period PΩ1 = 5500 yr. Perhaps,
the results for the outer planet 2 are more important. The ω2(t) curve includes both the
linear prograde drift and LP components. The estimated periapse circulation period is
Pω1 = 13, 000 yr, which is much slower than the inner planet circulation. Figure 3, on the left
panel, shows the LP component of ω2(t) after the subtraction of the linear precession term.
The variations are vaguely periodic but non-sinusoidal, with uneven extrema and faster
declining slopes than the inclining slopes. Remarkably, the line of nodes’ temporal behavior
depicted in the right panel without any manipulation with the output data displays only a
non-sinusoidal long-period variation. It looks much more regular and of a stable character
than ω2(t), and has the same period as the accurately estimated pi = 2737 yr. Thus, the
librational parts of secular perturbation for the outer planet have the same period for
inclination i, periastron argument ω, and nodal longitude Ω. In stark contradiction to
the general predictions of the quadrupole approximation, there is no discernible nodal
recession of the outer planet in this configuration.
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Figure 3. Temporal behavior of K2-18 planets’ nodes and apsides in a two-planet configuration.
The numerical integration of orbital motion was performed for 30 Kyr with the initial conditions:
e1(0) = 0.01, e2(0) = 0.05, i1(0) = 0, i2(0) = 5◦, ω1(0) = ω2(0) = 0, and Ω1(0) = Ω2(0) = 0. Left
panel: outer planet K2-18 b periastron argument after subtraction of a constant-rate precession of
0.0277◦/yr. Right panel: outer planet K2-18 b longitude of the ascending node. Both angles are
in radians.

4. Transit Time Variations in a Two-Planet K2-18 System

The chronology of planetary transits in front of the stellar disk gives us a rare possibility
to observe the effects of orbital dynamics. K2-18 b is not known to show any variations in
transit times, which are generally more difficult to detect in the extended mission data than
in the main Kepler mission data. We approach this problem from the theoretical side, trying
to predict the magnitude of possible variations and their time scale. In a two-planet system
with the proposed inner companion (planet c, or planet 1 in this paper), the gravitational
interaction between the planets results in the variability of all orbital elements (Section 2).
Our high-accuracy numerical simulations of the orbital motion confirm that the semimajor
axis (a) and, therefore, the mean motion (n), change in a very narrow interval with time. The
exchange of orbital momentum between the planets is mostly seen in the periodic variation
of eccentricity and inclination, and the more complex behavior of the geometric orientation
angles Ω and ω. The former element is the angle between a fixed (inertial) direction of
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the x′ Cartesian axis and the ascending node of the orbit. The periapse argument ω is
the angle in the instantaneous plane of the orbit between the ascending node and the
periapse of the planet. In the classical Lagrange perturbation theory, the variations of each
orbital element are assumed to be separable into three independent categories: short-period
variations, long-period variations, and secular drift. To approximate the latter two, the
complex perturbation equations are averaged over one orbital period. The secular drift
is assumed to be linear in time. Our numerical results for a grid of initial configurations
confirm that there is no secular drift in n, e, or i. The osculating angles Ω and ω, on the
contrary, show both long-period variations, secular drifts, and sudden jumps. To elucidate
the nature of these changes, we consider the behavior of the angular orbital momentum
vector for planet 2.

For small eccentricity, the magnitude of orbital momentum is

h =
√

G(Ms + M2)a2(1− e2
2) '

√
G(Ms + M2)a2(1− e2

2/2). (4)

Therefore, in the first-order approximation, h2 changes periodically with time in a similar
manner to e2 but with the opposite phase. The amplitude of this variation is relatively
small, whereas the tilt variation of the vector h is much more substantial. Our fixed inertial
reference frame is defined by the orbital plane of planet 1 at time t = 0. The axes x′ and y′ of
this frame are in this plane, and the third axis z′ completes the right-hand triad. Thus, axis
z′ is close to the average direction of the planets’ orbital momenta. The direction cosines of
the vector, i.e., the projections of the normalized vector 〈h〉 = h/||h‖| are computed as

〈h〉x = sin i2 sin Ω2

〈h〉y = − sin i2 cos Ω2 (5)

from the osculating elements in the output file. The result for the initial configuration
with e1(0) = 0.01, e2(0) = 0.05, i1(0) = 0, i2(0) = 5◦, ω1(0) = ω2(0) = 0, and
Ω1(0) = Ω2(0) = 0 is shown as a parametric curve for each planet in Figure 4. Both
orbits describe complicated folded loops in this projection. The inner planet 1 (red curve)
acquires significantly greater orbital inclinations than the outer planet. The picture is strik-
ingly different from a regular nodal recession, which has been assumed in many analyses.
A secular recession of the nodes with a constant inclination would show as a concentric
circle on this plot. We note that the trajectory of the inner planet crosses the origin several
times during the simulated interval of 30 Kyr. In these instances, the inclination of planet
1 nullifies, and the osculating ω and Ω jump by π. This could alternatively be represented
by continuous functions allowing the inclination to acquire negative values (which formally
violates the definition of the ascending node). Keeping this technical feature in mind, we
can now compute the observable transit time variations (TTV) of planet 2.

The commonly used formula for consecutive transit time tk from [15] in the presence
of periastron precession is

tk ' t0 + Porb k− e Porb
π

cos
(

ω0 +
dω

dk
k
)
+ O(e2), (6)

where ω0 is the argument of the periastron at time t0, and k is the scaled time (orbit counter)
equal to t/Porb. This formula is not valid in our case. First, we note that it is derived as a
first-order approximation specifically for the case i = 0, and the ω appearing there is not
the periastron argument but a compound variable u = Ω + ω, i.e., the true longitude of the
periastron. It also implicitly assumes that the periastron precesses at a constant rate, while
the nodal variation is nil. For a gravitationally perturbed planet, all the orbital elements are
functions of time, and computing transit times are not straightforward. A transit time T
can be defined as the instance when the planet’s trajectory projected on the fixed {x′ y′}
plane, which includes both the vernal equinox and the line of sight, crosses the line of sight.
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Without a loss of generality, the x′ axis can be chosen as the line of sight, and the transit
equation is then

x′(T) ≡ R3(−Ω) R1(−i) R3(−ω) [1, 0, 0]T [[1]] = 0, (7)

where Rj(α) denotes the right-handed Euler rotation matrix around axis j through angle α,
and the time arguments (T) of all the osculating elements are omitted for brevity. In the
traditional trigonometric form, this equation is equivalent to

−
√

1− e2 sin E(cos Ω sin ω + cos i cos ω sin Ω)

+(cos E− e) cos ω cos Ω− cos i sin ω sin Ω) = 0,
(8)

where E is the eccentric anomaly. Using the output states of the simulations files, which
include the values Ω, ω, and i on a regular cadence, the corresponding values E(T) can be
computed by finding the root of this equation by numerical methods. These values can be
converted to the corresponding mean anomaly values by using Kepler’s equation:

M = E− e sin E. (9)

Finally, the transit time T is obtained from M(T) and the corresponding times of the
periastron passage T0 (also given in the numerical integration output) by

T = T0 + M/n. (10)

Equation (8) has two roots for each recorded state, because the planet is aligned with the
line of sight twice during each revolution, when it transits in front of the stellar disk, and
when it is eclipsed behind the star. If the ascending node is defined as the point on the
celestial plane where the planet moves toward the observer, the transit time corresponds to
the root where y′(T) is positive.
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Figure 4. The paths of the orbital axes of K2-18 planets over 30 Kyr in the inertial {x′, y′} plane. The
red curve is for the inner planet 1 (K2-18 c), and the black curve is for the outer planet 2 (K2-18 b).
The same initial conditions are used for numerical integration as in Figure 1.

The resulting curve T(t) is a wavy inclined line. It would be a perfectly straight line
for an unperturbed single planet. To see the effects of secular gravitational perturbations in
the observable intervals between transits, which are called transit time variations (TTV),
the linear trend (which is not observable) can be removed by taking the modulo function of
the T values:

∆T = Mod[T, P′orb], (11)
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where P′orb is the empirically estimated average orbital period in the inertial frame (not to
be confused with the often invoked anomalistic period). Thus, the computed periodic part
of the TTV for the initial configuration e1(0) = 0.01, e2(0) = 0.05, i1(0) = 0, i2(0) = 5◦,
ω1(0) = ω2(0) = 0, and Ω1(0) = Ω2(0) = 0, which has also been used in Figures 1 and 4, is
shown in Figure 5 for the planet of interest (b). The empirically estimated P′orb = 32.940562 d
is slightly longer than the nominal (unperturbed) orbital period 32.94 d listed in Table 1. At
first glance, the result is surprising because we see quasi-sinusoidal variations with a period
of ∼4960 yr and a full amplitude of several days. The secular TTV period equals the period
of eccentricity libration Pe, which is also the period of orbital momentum oscillation. This
huge TTV variation, however, cannot be observed. The time span of currently available
TTV data, mostly from the Kepler missions, is only a few to several years. The character of
secular TTV oscillations is such that the planet spends most of the time on the ascending or
descending segments of the curve, which are almost linear. A linear trend in transit times is
not detectable, because it is automatically nullified by fitting a slightly adjusted P′orb. Only
the epochs of the highest curvature are of interest, because they may be detectable. Still, for
K2-18 c, the TTV measurements should span > 300 yr for the curvature around the extrema
of the transit time curve to become detectable at the current level of measurement precision
(approximately, 20 min).
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Figure 5. Transit time variations in days for planet K2-18 b computed from the same simulation of a
two-planet system as shown in Figure 1.

In terms of measurable effects, which might be useful to confirm the presence of a
perturbing inner planet, the short-period variations of transit times (and the orbital momen-
tum magnitude) are more interesting. These are smaller by a few orders of magnitude than
the LP oscillations, but their time scale is down to ∼10 yr. To elucidate the issue of TTV
detectability, we performed a special integration for 30 Kyr with state dumps every year
and the same initial parameters. The output files allow us to look closer at the character
of short-term variations in transit times. We processed the simulated data in the same
way as described above. The result for a small section of the curve spanning 30 yr is
shown in Figure 6. The linear trend is not measurable, because it would be absorbed in
the fitted average transit period. The remaining variations look non-periodic and have an
amplitude up to 10 min. They should be present in the TTV measurement data, but it is
not easy to recognize them because of the absence of a specific pattern. Most likely, such
variations would be interpreted as excessive observational noise that is not captured by the
formal uncertainties.
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Figure 6. Transit time variations in minutes for planet K2-18 b computed from a special simulation of
a two-planet system with the same initial parameters as in Figure 1 for 30 Kyr with a state dump step
of 1 yr. A small section of the data spanning 30 yr close to a minimum of the secular variation curve
is shown.

5. Tidal Orbital Damping in a Single-Planet K2-18 System

If the inner planet c (planet 1 in this paper) is a false positive, and K2-18 is a single-
planet system, the possible effects of the orbital perturbation scale down in magnitude and
variety. A Keplerian orbit with fixed orbital elements is then a very good approximation,
and the secular effects are caused by the finite size of the gravitating bodies and their
rotation. The prevalence of low eccentricity orbits for detected exoplanets is in stark
disparity with the statistics for binary stars, where a flat distribution of eccentricity is
determined. It is widely assumed that the tidal dissipation mechanisms are responsible [16].
As the planet revolves around the star, the local gradient of the gravitational potential
within the planet’s body creates a transient distortion (asphericity) of its shape, which is
called the tidal bulge. A stationary tidal bulge is realized when the perturber (the star in
this case) is motionless with respect to the planet’s surface. In a more realistic dynamical
model, the bulge moves across the surface because of the combined effect of the perturber’s
orbital motion and the planet’s rotation. The internal tidal friction is a nonlinear function
of the relative angular velocity, and the resulting polar torque on the planet can be formally
represented with an infinite series of Fourier harmonics in the more advanced Maxwell and
Andrade rheological models [17–19]. As a mathematical abstraction, this can be viewed as
a number of “waves" running around the circumference with diminishing amplitudes and
harmonics of the main tidal frequency. The physical reality is a single tidal deformation,
which is mostly an ellipsoidal shape, with overlaid periodically-changing higher-order
spherical harmonics.

For simplicity, the perturber is considered to be a point mass, and the tidal torque
acting on the planet is reciprocated by an orbital torque acting on the perturber. To complete
the model, the tides raised by the planet on the star should be considered, in which case
the planet is assumed to be a point mass. The total orbital action is the sum of the torques
generated by the planetary and stellar tidal bulges. The differential equations of orbital
evolution are derived in the framework of the Lagrange perturbation theory by averaging
out the disturbing function over one orbital period. Thus, only the secular and long-period
can be obtained in principle, but an additional averaging over one circulation period of the
periastron leaves only the secular drifts. With these caveats and limitations, the resulting
equations for the tides raised by the star on the planet are [20]:
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da
dt
' −n

Ms

M2

R5
2

a4

[
3(1− 5e2 +

63
8

e4)K2(2n− 2 f2) (12)

+
3
8

e2(1− 1
4

e2)K2(n− 2 f2) +
9
4

e2(1 +
9
4

e2)K2(n)

+
81
8

e4K2(2n) +
441

8
e2(1− 123

28
e2)K2(3n− 2 f2)

+
867

2
e4K2(4n− 2 f2)

]
,

de
dt
' −n e

Ms

M2

R5
2

a5

[
− 3

16
(1− 1

4
e2)K2(n− 2 f2) (13)

−3
4
(1− 21

4
e2)K2(2n− 2 f2) +

9
8
(1 +

5
4

e2)K2(n)

+
81
16

e2K2(2n) +
147
16

(1− 179
28

e2)K2(3n− 2 f2)

+
867

8
e2K2(4n− 2 f2)

]
,

where f2 is the rotational frequency of planet 2, R2 is its radius, K2 is its frequency-
dependent tidal quality function (kvalitet), n is the orbital mean motion, Ms is the mass
of the star, and the other parameters are as previously defined. The contributions from
the tides raised by the planet on the star can be obtained by swapping the subscripts 2
and s everywhere. These are approximate equations that ignore all terms O(ε2), O(e6),
and higher orders of obliquity ε and eccentricity, also taking into account only the main
(quadrupole) term of the perturbing potential. Even with these simplifying approximations,
the resulting secular trend is quite uncertain in general, because the parameters e, f , and
K(ν) are practically unknown. It is safe, however, to neglect the contribution from the
star, because the kvalitet values for old M-dwarfs are expected to be very low. For gas
giant planets, these values can be as high as 10−5–10−4, and even larger for semi-molten
terrestrial compositions [21].

The existing models for K2(ν) suggest complex functions with anti-symmetric kinks at
the main spin–orbit resonances 1:1, 3:2, etc. In the better theoretically developed Maxwell
rheological model, the amplitude of the kinks and their position depends on the so-called
Maxwell time, which is the ratio of the effective viscosity and the unrelaxed shear mod-
ulus [22,23]. The driving parameter is the viscosity of the energy-dissipating layer of the
planet. While this parameter is estimated to be in the range of 10−4–10−2 Pa s for warm,
pressurized water in the interiors of icy giants [24], pressurized ice has values of the order
1015 Pa s. The steep dependence of the effective viscosity on temperature for silicates also
defines a great dynamical range of Maxwell times, and, therefore, of tidal qualities, for
planets of a terrestrial composition. Planet K2-18 b is presumed to have an Earth-like
core covered by a massive water ocean. The ocean is unlikely to be of significance in
dissipating the tidal energy, and most of the action should be allocated to the terrestrial core.
Given these prerequisites, we can consider three distinct options for the tidal spin–orbit
interaction.

The first option is for a rapidly rotating planet’s core of terrestrial rheology. If the
solid body of K2-18 b rotates as fast as the Earth, f2 >> n, we can omit the multiples of n
in the tidal mode arguments of K2, which obtains, also omitting the relatively small term
proportional to K2(2n):
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da
dt

(fast)
' n

Ms

M2

R5
2

a4

[3
8
(8 + 108e2 + 573e4)K2(2 f2) (14)

−9
4

e2(1 +
9
4

e2)K2(n)
]
,

de
dt

(fast)
' n e

Ms

M2

R5
2

a5

[3
4
(11 + 505e2)K2(2 f2) (15)

−9
8
(1 +

5
4

e2)K2(n)
]
.

Even the sign of these derivatives is uncertain, because for sufficiently cold and inviscid
planets, K2(n) > K2(2 f2). The closest analogy of such systems is the Earth–Moon system,
which is expanding both in a and e. This is not, however, always the case, even for such
cold and inviscid planets as Earth. When both frequencies n and 2 f2 are far from the main
resonances and the tidal quality peaks, K2(ν) is approximately inversely proportional to
frequency. In this case,

K2(n)/K2(2 f2) ≈ 2 f2/n. (16)

A simple calculation reveals that if the rotational period of K2-18 b equals 1 d, for example,
da/dt becomes negative for e > 0.165. Orbital decay for such rapidly rotating planets is
precluded for any eccentricity only if f2 . 15 n. The relative contribution of the two terms
in Equation (14) is of the same order of maginitude, because they both are O(e0), and we
find that the planet’s orbit can circularize (de/dt < 0) at small eccentricities if f2 & 4 n.

The Maxwell time and kvalitet values are quite uncertain for K2-18 b. We are using
the K2(n) = 10−4 value as a benchmark, which is the upper envelope for astrometrically
estimated values for Saturn and Jupiter. The computed derivatives are then, with the other
parameters listed in Table 1, (da/dt)(fast) ' 3× 10−7 m d−1 and (de/dt)(fast) ' 0 for e = 0,
and (da/dt)(fast) ' 3× 10−7 m d−1 and (de/dt)(fast) ' −3× 10−18 m d−1 for e = 0.1. Thus,
a secular expansion of the orbit and a slow circularization are possible at low eccentricity
values, but the rates are marginally low, and it is therefore unlikely that the tidal torques
play any role in the habitability conditions of the single K2-18 planet.

The second option considered in this paper is a 3:2 spin–orbit resonance. For planets of
terrestrial compositions that are close to their host stars and have a finite orbital eccentricity,
this is the more probable equilibrium state than the synchronous rotation (1:1 resonance).
The closest example of a planet in a 3:2 spin–orbit resonance is Mercury [25], although
temporary captures into other resonances are possible over the course of Mercury’s tumul-
tuous dynamical history [26]. Higher chances of capture into the higher-order resonances
are associated with larger orbital eccentricities, but the triaxial elongation of the permanent
shape is also an important factor [27,28]. The differential equations of orbital evolution for
the 3:2 resonance, without any additional omissions, become

da
dt

(3:2)
' n

Ms

M2

R5
2

a4

[
(3− 69

4
e2 − 6639

16
e4)K2(n) (17)

+
3

32
e2(4− 109e2)K2(2n)

]
,

de
dt

(3:2)
' −n e

Ms

M2

R5
2

a5

[ 3
32

(20 + 1129e2)K2(n) (18)

+
3

64
(4 + 107e2)K2(2n)

]
.

The orbit decays (da/dt is negative) for e & 0.26 and expands for a smaller eccentricity.
The orbital eccentricity always decreases, irrespective of its current value. The estimated
rates for a cold terrestrial planet with K2(n) = 10−4 are too low to be of consequence. We
estimate (da/dt)(3:2) ' 4.5× 10−6 m d−1 and (de/dt)(3:2) ' −2.3× 10−17 d−1 for e = 0.1,
and (da/dt)(3:2) ' 2.7× 10−6 m d−1 and (de/dt)(3:2) ' −9.6× 10−17 m d−1 for e = 0.2.
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Finally, the third option is a synchronous rotation, i.e., the 1:1 spin–orbit resonance.
This equilibrium state is often assumed in the literature for habitable exoplanets. However,
this equilibrium state corresponding to the global minimum of potential energy should not
be taken for granted for planets of terrestrial composition with significant triaxiality of the
inertia tensors [27]. In particular, it has been shown that higher-order spin–orbit resonances
are more probable for specific two-planet systems with habitable planets [29]. Still, for the
sake of consistency, we provide the approximate equations for this case:

da
dt

(1:1)
' n

Ms

M2

R5
2

a4

[
3e2(−19 + 79e2)K2(n) (19)

−3549
8

e4K2(2n)
]
,

de
dt

(1:1)
' n e

Ms

M2

R5
2

a5

[3
8
(−28 + 153e2)K2(n) (20)

−1815
16

e2K2(2n)
]
.

Note that the largest terms for da(1:1)/dt are O(e2), which almost nullifies the orbit size
evolution at a small or moderate eccentricity. The sign of de(1:1)/dt changes from minus to
plus at e ≈ 0.4, but our formulae become inaccurate at such eccentricity values, and the 1:1
synchronization is hardly possible for terrestrial planets anyway. The estimated rates of
eccentricity decay are still vanishingly low, amounting to ∼10−16 d−1.

More complicated scenarios of tidal evolution are possible if planet K2-18 b is covered
with a deep global water ocean. The liquid outer layer does not have a permanent figure,
and it is likely to be rotating pseudosynchronously [23], if it is mechanically decoupled
from the rocky bottom. The rocky body, on the other hand, is either synchronized or rotates
faster than the ocean. Depending on the coefficient of friction between the ocean and the
rocky core, a significant additional mechanism of energy dissipation can emerge. Similar
models, but with a reversed structure, including a molten core and a solid outer shell, have
been investigated for Mercury [30].

Our conclusion is that, irrespective of the rotational state of the planet, tidal dissipation
can hardly be significant in shaping the orbit in the long term. If the eccentricity is indeed
very small, there should be other reasons for that. The dynamically cool population orbiting
M-dwarfs with small eccentricities [31] can be primordial, i.e., inherited from the early
stages of migration in the protoplanetary disk. This result may change if the inner planet in
K2-18 is real. Because of the explicit n(R/a)5 ∝ R5/a13/2 dependence of secular rates in
Equation (12), the rates can be higher by 2–3 orders of magnitude for the inner companion.
This makes the inner planets relatively efficient sinks of the orbital energy and angular
momentum. The eccentricity exchange mechanism (Section 2) prevents circularization of
the inner planet as long as the outer planet remains eccentric. Therefore, the tidal damping
of the inner planet is effectively transferred to the outer planet as well. This makes the
characteristic e-folding times somewhat longer, but they may be comparable with the
lifetimes of M-dwarfs.

6. Secular Perturbations Caused by Stellar Rotation

The equilibrium shape of a rotating star is an axially symmetric oblate figure. The
gravitational potential outside the stellar surface is formally represented by an expansion
in spherical harmonics, where the lowest-order zonal (quadrupole) term is by far the
greatest. The disturbing function generated by this deviation from spherical symmetry is
proportional to the corresponding coefficient J2, which is the quadrupole moment. Ignoring
the small difference between the total mass Ms + M2 and Ms, the equation is

J2 =
ks

3

(
fs

n

)2(Rs

a

)3
, (21)
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where ks is the corresponding Love number and fs is the frequency of the stellar rotation.
Using the nominal values in Table 1 and assuming Prot = 8.8 d, J2 ≈ 1.6 × 10−5 ks is
estimated for the star K2-18. The Love number is quite uncertain, but we can assume it to
be of the order of 0.1, which would bring J2 to approximately 1.6× 10−6, which is almost
eight times the time-average J2 value of the Sun [32].

The expansions for the disturbing functions and Lagrange planetary equations have
been worked out up to O(e4) and the J6 zonal harmonics for the significantly more per-
turbed geopotential [33,34]. As usual, the orbital effects are supposed to be separable into
long-period and secular terms. For the latter, limiting our consideration only to the leading
terms, the equations are:

dΩ
dt

(sec)
' − 3n

2p2 cos ε J2 (22)

dω

dt

(sec)
' 3n

p2

(
1− 5

4
sin2 ε

)
J2

dM
dt

(sec)
' n +

3n
2p2

√
1− e2

(
1− 3

2
sin2 ε

)
J2,

where ε is the obliquity of the planet’s orbit on the equator of the star, and p = (1− e2) a/Rs.
Note that at obliquity values below 63.43◦, the sign of (dω/dt)(sec) is positive, which
signifies a constant-rate precession of the line of apsides. The sign of (dΩ/dt)(sec), however,
is always negative. Thus, stellar rotation causes a nodal recession. The perturbation of the
mean anomaly rate is a constant offset reflecting the additional gravitational acceleration of
the planet in the radial direction, which is positive (faster mean motion) for ε < 54.74◦. As
we will see in the following, the equation for (dω/dt)(sec) is of special importance, which,
after substituting the formula for J2, becomes

dω

dt

(sec)
' ksn

(1− e2)2

(
fs

n

)2(Rs

a

)5
(1− 5

4
sin2 ε). (23)

This equation differs by a factor of two from the analogous formulae given in [35,36]. In
these papers, the marginal case of ε = 0 is considered, and the quoted equations are given
not for the periastron argument ω but for the compound variable u = Ω + ω. This subtle
detail is crucially important for the general consideration with ε 6= 0. There are no secular
drifts of other orbital elements.

Long-period variations emerge for all the orbital elements. The approximate equations
are obtained by the integration of periodic terms of the corresponding derivatives over time.
All these relations are proportional to e J2 except the two most important elements in the
context of habitability conditions, eccentricity, and the periastron argument. Limiting the
expansion to the dominant (for small e) main harmonics in ω, the appropriate equations are:

∆ω(LP) ' J2

8 e p2

(
(−12− 25e2) + 8(1 + 4e2)I

)
sin ω (24)

∆e(LP) ' J2

8p2

(
3(4 + e2)− 8(1− e2)I

)
cos ω,

where I = sin2 ε. In the right-hand parts of these equations, ω includes only the secular
motion term. Note that the amplitude of ω oscillations can be much larger than the constant-
rate precession over one precession period for e < 0.5. At a very small e and ε, the LP
variation becomes the dominant term. Its amplitude can be arbitrarily large for e→ 0. This,
however, does not make the LP perturbation more detectable, because the observable TTV
effect is proportional to e.

Assuming J2 = 1.6 × 10−6 for the star K2-18, we estimate the period of periapse
precession driven by the rotational deformation to be approximately equal to 84 Myr. Such
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small effects cannot be measured today. The amplitude of LP oscillation of ω is a meager
5.4× 10−7 rad for e2 = 0.001, and 1.1× 10−7 rad for e2 = 0.005. The amplitude of the
eccentricity oscillations is also negligibly small. We conclude that the orbit of planet K2-18 b
should be extremely stable and nearly constant, if it is the only planet in the system.

7. Milanković Cycles of Habitable Exoplanets

Gravitational and tidal interactions of Earth with the Sun, the Moon, and other planets
produce cyclic and secular perturbations of the orbit and the rotation axis, which modulate
the climate (https://climate.nasa.gov/news/2948/milankovitch-orbital-cycles-and-their-
role-in-earths-climate/, accessed on 6 October 2023). The fastest cycle with a period of
∼26 Kyr is related to the nodal precession caused by the gravitational pull of the Sun and
the Moon on the oblate shape of Earth with a significant J2 coefficient. The climate impact
is limited to the time of the perihelion passage in the year. It combines with the much
slower apsidal precession dω/dt(sec) to produce a constant drift of the seasons within the
year with a period of ∼21 Kyr, as well as the modulation of the relative duration of the
seasons. The cold and warm seasons are equal in duration when ω = 0 or π. Perhaps of
greater importance are the secular changes in the obliquity of the Earth’s equator on the
ecliptic in the range 2.4◦. A larger obliquity causes greater seasonal variations of insolation
and temperature. The period of this oscillation is ∼41 Kyr. Finally, as the Earth’s orbit
interacts with the other planets’ orbits, the true inclination with respect to the invariable
plane oscillates with a period of approximately 100 Kyr. The climate impact is similar to
the long-period variation of the obliquity. Although this effect is believed to be relatively
small, the timescale is conspicuously close to the main cycle of glaciation periods [37].
The original Milanković model includes the oscillations of orbital eccentricity (of similar
periods), and indeed, both numerical integrations and the Laplace–Lagrange theory show
that Earth’s eccentricity varies between 0 and 0.06 and its inclination varies between 0 and
2.5◦ in a quasi-cyclic manner with characteristic periods close to 100 Kyr [38]. The shape of
each cycle is remarkably similar to the curves in our Figure 1 for the inner planet K2-18
c, indicating that the same basic dynamics are at work. Empirically, these relatively small
variations of orbital inclination and eccentricity emerge as the most important factors
driving the ice ages on Earth.

Similar processes take place in systems with two or more exoplanets [39]. As far as
the system K2-18 is concerned, the options with Milanković-like cycles are quite different
for the single-planet and two-planet configurations. If planet b is a lone planet, both the
tidal perturbation of the planet and the secular perturbations caused by the rotation of
the star are too slow and too small to be of significance (Sections 5 and 6). The remaining
important parameters, which are also the most uncertain, are the rate of the rotation of the
planet and its obliquity on the orbital plane. The planet may be covered by a deep global
water ocean, which is most likely to rotate pseudosynchronously, i.e., slightly faster than
the mean orbital motion. The rocky core may be dynamically decoupled from the ocean,
and its rotation may initially be different, including a finite obliquity. The force of friction
at the bottom of the ocean is probably sufficient to equalize this differential rotation over
the age of the system. However, the core has a permanent figure with triaxial elongation,
which precludes the pseudosynchronous equilibrium. It can remain captured in a 3:2 or 1:1
spin–orbit synchronicity. The emerging picture is a constant circulation of the global ocean
superimposed with periodic flows caused by the forced librations of the solid core. In the
context of climate changes, a water-world planet is unlikely to have seasons, and it would
probably have permanent surface ice covering the polar caps, but the insolation flux and
temperature is more uniformly distributed around the equatorial zone by the slow residual
rotation of the ocean with respect to the direction to the star.

Possible scenarios of Milanković-like cycles in a two-planet K2-18 systems are rich
and diverse. Apart from the secular nodal recession and apsidal precession, relatively fast
periodic variations of the habitable planet b are predicted in eccentricity and inclination.
Their characteristic periods are a few thousand years. The tidal damping of eccentricity is

https://climate.nasa.gov/news/2948/milankovitch-orbital-cycles-and-their-role-in-earths-climate/
https://climate.nasa.gov/news/2948/milankovitch-orbital-cycles-and-their-role-in-earths-climate/
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somewhat more efficient because of the constant eccentricity exchange between the planets,
and the much higher dissipation rate for the inner planet 1. The constantly changing
inclination precludes an equilibrium state with zero obliquity, which results in rapidly
changing seasons, smaller ice caps around the poles, and a climate that is more temperate
and amenable to life. If the amplitude of the eccentricity cycles is significant, the outer
planet’s ocean will be warmed up and cooled down every 5000 yr. Furthermore, since the
rate of pseudosynchronous rotation is defined by eccentricity, the long-term oscillation of
the global ocean rotation and the current patterns should be expected.

8. Summary

We have investigated the dynamical evolution of the K2-18 exoplanet system using
numerical and analytical methods in two possible configurations: a single planet b (detected
via transits in front of the stellar disk), and a two-planet system including the suggested
RV-detected planet c. Our main conclusions are:

1. In the two-planet option, a relatively rapid exchange of angular momentum, eccen-
tricity, and inclination between the planet is found with a characteristic cycle period
of a few Kyr. The integrated trajectories are in excellent agreement with the first-order
Lagrange perturbation theory developed for the Solar system planets.

2. In the two-planet option, the lines of apsides of both planets are subject to both
precession and long-period variations. The periods of the periodic components are
non-commensurate. The line of nodes of the outer (habitable) planet undergoes
long-period oscillations, but no significant secular drift.

3. In the two-planet option, the vectors of orbital momenta describe complicated trajecto-
ries in the inertial frame because of the simultaneously varying inclination and nodes.
The resulting secular TTV changes are large in amplitude (several days peak-to-peak)
but so slow that they cannot be detected. The short-term TTV effects on the time scale
of 1 year are marginally detectable, but they lack a specific pattern.

4. In the single planet option, the tidal damping of the eccentricity and orbit size is
found to be negligibly slow for three possible rotational states: viz., a synchronous
rotation—a 3:2 spin–orbit resonance—and a fast or retrograde rotation. The estimated
characteristic e-folding times are longer than the stellar age.

5. The main J2 moment of the star K2-18 due to its sidereal rotation is estimated at
∼ 1.6× 10−6. It turns out to be too small to excite a secular nodal recession or perias-
tron precession that could be measurable. The amplitude of long-period variations is
very small too.

6. Milancović-like variations of planet b’s climate are not expected in the single planet
mode, but habitability conditions can be harsh, unless a significant obliquity is main-
tained. A rich variety of climatic changes emerges in the two-planet option with a
rapid succession of seasons, constant circulation of the global ocean, a more temperate
equatorial zone, and a long-period partial glaciation.
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