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Abstract: We consider the propagation of phonons in the presence of a particle sink with radial flow
in a Bose–Einstein condensate. Because the particle sink can be used to simulate a static acoustic
black hole, the phonon would experience a considerable spacetime curvature at appreciable distance
from the sink. The trajectory of the phonons is bended after passing by the particle sink, which can
be used as a simulation of the gravitational lensing effect in a Bose–Einstein condensate. Possible
experimental implementations are discussed.
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1. Introduction

Analogue gravity has been considered and developed since 1923 [1,2]. However, it
was the discovery of a formal analogy between the dynamics of massless scalar fields in
black hole spacetimes and sound waves in a moving fluid [3] that brought about the dawn
of modern gravitational analogues. The importance of this result relies on the recognition
that Hawking radiation is not related to general relativity itself, instead being is an effect
that must be present whenever we consider quantum field theories in curved spacetimes
with an event horizon. Subsequently, the field has witnessed impressive development
both theoretically and experimentally, expanding beyond sonic waves in classical fluids.
Among these achievements, we can mention phonons in Bose–Einstein condensates [4–16],
surface waves on water flows [17–21], slow light in optical systems [22–29], and magnons
in magnetic systems [30,31]. These analogue systems have become an important testing
ground for certain aspects of curved spacetimes, especially those involving quantum sys-
tems where the superradiance effect [20,32], Hawking radiation [6–8,11], and cosmological
particle production [12–14] are present. Furthermore, analogue gravity can provide in-
sights into the quantum nature of gravity while aiding in understanding the spacetime
back-reaction [33,34] and the cosmological constant problem [35]. Moreover, such models
can be understood in terms of emergent gravity, which may help us in the search for a
quantum theory of gravity [36,37].

Among the phenomena that can be mimicked is gravitational lensing, which is a
general name for light deflection by a gravitational field generated by astrophysical sources
such as stars, black holes, and galaxies [38]. The first observation of this effect was carried
out in 1919, when Eddington’s team confirmed Einstein’s prediction of the deflection of
light by the gravitational field produced by the sun [39]. Since then, many other theoretical
and experimental developments have appeared [40,41].

Considering acoustic propagation around a vortex in a superfluid system, it has been
shown that the phonon trajectories are deflected by an angle determined by the vortex
circulation [42,43]. In this way, the vortex acts as a converging lens for the phonons
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trajectories. Light deflection was observed in [22], where a microstructured waveguide
around a microsphere was employed in order to mimic a curved spacetime. Optical
materials were employed to simulate equatorial Kerr–Newman null geodesics, allowing
the study of light trajectories in a non-static spacetime [23].

Here, we consider optical Bose–Einstein condensates (BEC) to build a simulation
of the gravitational lensing phenomenon. When particles of integer spin accumulate in
the ground state at high density and low temperature, a BEC is formed [44]. However,
in the case of massless particles this is more complicated, as lowering the temperature of
a gas consisting of massless particles does not preserve the number of particles. In fact,
the ground state, or vacuum, has no particles at all. This problem can be circumvented
by considering a dye-filled optical cavity [45], where a photonic BEC can be achieved [46].
The process works because the system effectively provides a mass to the photons, which
can then thermalize to the cavity ground state while conserving the number of particles.
The physical process behind this is the multiple scattering of the trapped photons by dye
molecules, ultimately leading to thermalization.

Specifically, we consider phonons propagating in a photonic BEC using the particle
sink model proposed in [47], which has been used to simulate Schwarzschild black holes
and Hawking radiation. Because such structures create an effective curved spacetime,
we expect to observe its influence on the trajectories of the phonons. We show that the
quasiclassical scattering process of phonons by a particle sink leads to a nonvanishing
scattering angle, deviating the trajectories from a straight line. In other words, we show that
the effect of the effective spacetime curvature on the phonon trajectory, as predicted by the
gravitational lensing effect, is the same as a converging lens. This analogue gravitational
lensing effect may provide direct evidence for the curved nature of the acoustic spacetime.
In addition, we discuss a possible experimental implementation of this effect in a photonic
BEC by considering the angle-resolved photoluminescence spectrum method as a suitable
and available technique. This can be used to track the photon trajectory and measure
the expected deviation angle, which can be compared with the predictions based on the
gravitational lensing effect.

The advantage of this approach is that photonic condensates are formed at room
temperature, contrary to the very low temperatures that are employed in other systems.
Moreover, due to the simplicity of the experimental setup in which such condensates are
implemented, namely, a dye-filled pumped optical cavity, this approach offers a manifold
of possibilities for analogue gravity.

We proceed as follows. A description of the system under consideration and how it
can be employed to simulate a curved spacetime is presented in Section 2. Section 3 is
devoted to presenting our main result, the analogue gravitational lensing in a photonic
BEC. We close the paper in Section 4 which, in addition to our final conclusions, contains
several open questions and possible routes for future investigation.

2. Analogue Metric

In a dye-filled cavity, photons can reach the equilibrium state at room temperature
due to scattering with the dye molecules. Beyond providing a confining potential to trap
the photons, the cavity additionally leads to a non-vanishing effective mass for the photons,
making them behave as a two-dimensional trapped massive bosonic system [45]. This effect
makes the existence of the photonic condensate possible. The photon chemical potential can
be freely adjusted using the fluorescence-induced thermalization, while the photon density
can be tuned using the pumping light intensity. Upon increasing the photon density, when
the photon number exceeds the critical number, the photonic BEC transition can be induced
in the cavity, with macroscopic photons settling into the lowest energy state [45,46].

Considering Maxwell’s equations in a nonlinear dielectric medium (dye-filled cavity),
the dynamical equation for the wave function describing the condensate photon gas (in-
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cluding incoherent pumping) is, in the mean-field approximation, the effective dissipative
Gross–Pitaevskii equation (GPE) [48]:

ih̄
∂ψ

∂t
=

[
V(r)− h̄2

2m
∇2
⊥ + g|ψ|2 + i(γnet − Γ|ψ|2)

]
ψ. (1)

In this equation, the net dissipation (the difference between the pumping and dissipation
rates of the cavity) is described by γnet, the constant Γ assures stability in the sense that
the last term in the brackets vanishes in the steady state (Γ = γnet/|ψ(0)|2), g denotes the
effective inter-particle interaction strength arising from the Kerr nonlinearity of the system,
and V(r) is the effective potential energy which includes the detuning between the cavity
mode and pumping field. The number of particles in the condensate can be computed in
terms of the photonic wave function ψ as NBEC =

∫
dξ ψ(ξ)|2, where ξ is the considered

set of coordinates.
The effective photon mass m is determined by the relation h̄ω = mc2

L/nL, where ω is
light angular frequency, nL is the refractive index, and cL denotes the speed of light. In the
steady state limit, the decay rate and pumping rate compensate each other; the conden-
sate density is provided by n0 = γnet/Γ. In particular, as demonstrated by Kneer [49],
the condensate can reach a stationary state when the pumping term is beyond a typical
threshold, which can be described by the conventional GPE without the pumping and
dissipation terms. In the same spirit, a stable dissipative vortex structure can be created
in exciton–polariton condensates [50,51]. From here on, we assume that the condensate of
light is in the steady state; hence, the dissipative term in Equation (1) can be safely neglected.
Unlike the exciton polariton BECs, the photonic BECs are in the weak light–matter coupling
limit, and are usually very close to the thermal equilibrium state [45]. The decay processes
in photonic BECs are negligibly small, and the photon number is conserved. Being low
energy excitations in the condensate, the phonons are stable quasiparticles with a very long
lifetime [48], allowing them to be measured, as we discuss latter.

Moreover, the dissipation and pumping effects can have important influences on
the condensate. With localized dissipative perturbations in atomic BEC, the phase and
amplitude of the condensate can be engineered and nonlinear coherent excitations can be
generated [52]. When an atomic BEC is coupled to a sources of uncondensed atoms and
a sink, the dissipative BEC obeys a complex Ginzburg–Landau equation and the density
of the condensate displays nontrivial spacetime correlations [53]. In the photonic BEC
with exciton–polariton quasiparticles pumped in an annular geometry, multiple charged
vortex states can be spontaneously generated during the condensate formation and can be
stabilized by pumping fluxes [54].

Creating a stable analogue black hole structure in a condensate is challenging. For
atomic condensates, any sink-like structure can quickly lead to depletion of the conden-
sate. A solution to this problem is to switch to different metastable quasi-particle systems
with external pumping to compensate for the loss of particles such as polaritons or pho-
tons [46–48,50,55–57]. In order to create a stable analogue Schwarzschild black hole in a
photonic condensate, a particle sink with a velocity singularity in the center (created by
a sink in the cavity trapping the photons) was proposed in [47]. Because of the sink in
the system, the photons leak out of the cavity, inducing a radial flow towards the sink.
Therefore, we expect a particle sink with the velocity profile provided by [47]

v = −ξc
c0

r
r̂, (2)

where c =
√

gn0/m is the sound velocity, r is the radial coordinate, and ξ = h̄/mc stands
for the healing length of the condensate. In addition, c0 > 0 denotes a constant parameter,
which is determined by the rate of particles extracted from the condensate by the sink.
Below, we associate c0

2 with the black hole mass. In contrast to the usual vortex in an
irrotational fluid or BEC, the particle sink is not rotating, and as such its velocity does not
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have any azimuthal component. This static particle sink can be mapped into an effective
metric which is an analogue of a two-dimensional Schwarzschild black hole [47]. We
describe this construction in the following paragraphs. The idea here is to create a quantum
fluid where sound (phonons) can travel. The above velocity profile leads to subsonic and
supersonic regions in the fluid. The transition between them is the analogue of the event
horizon, in the sense that sound cannot leave the supersonic region.

We are interested here in the dynamics of small perturbations around a stationary
background characterized by the particle density and the velocity profile. Within the valid
regime of hydrodynamics, the perturbations for the density and the phase obey a set of two
coupled differential equations, called a Bogoliubov system. This system can be transformed
into a single differential equation for the phase perturbation θ [47,58–60]{

∇2 −
(

∂t −
c0

r
r̂ · ∇

)2
}

θ(r, t) = 0 , (3)

where for simplicity we have defined the dimensionless variables r → ξr and t→ ξt/c.
Now, in order to make contact with the physics of curved spacetimes, we introduce an

effective acoustic metric gµν. By doing this, the previous equation can be recast as a wave
equation on a curved spacetime:

1√−g
∂µ(
√
−ggµν∂ν)θ = 0, (4)

with the effective acoustic metric provided by

ds2 = − f (r)dτ2 + f−1(r)dr2 + r2dϕ2. (5)

In this equation, f (r) = 1− c2
0/r2 is the warp factor. To obtain this form of the metric, we

have applied the following coordinate transformation:

dτ = dt− c0

r(1− c2
0

r2 )
dr. (6)

The metric in Equation (5) is written in similar form to the Schwarzschild metric when
restricted to the equatorial plane of the gravitational black hole, with the parameter c2

0
playing the role of the black hole mass. Because the photonic BEC is two-dimensional, we
can only simulate certain properties of Schwarzschild black holes in the equatorial plane,
and the effective acoustic metric is only similar to the Schwarzschild metric, not identical.
Furthermore, in the derivation of the effective acoustic metric, we have dropped a confor-
mal factor. In the analogue gravity scenario, a Schwarzschild black hole usually cannot be
perfectly simulated with the acoustic metric, which is only related to the Schwarzschild
black hole through an extra conformal factor [15,61–63]. However, because the phonon
trajectories are conformal-invariant, these factors have no influence on the phonon trajec-
tories and can be safely neglected [63,64]. Although we cannot perfectly reproduce the
Schwarzschild metric in the photonic BEC, the effective metric is rotationally symmetric
and has a warp factor describing the spacetime curvature, sharing many similarities with
the Schwarzschild metric. An important difference between the acoustic metric and the
Schwarzschild one is that the latter is not a solution of Einstein’s field equation; instead,
it is determined by the hydrodynamical equations of the system. Furthermore, we must
recall that in the absence of a cosmological constant, in a 2 + 1 dimensional spacetime,
the curvature tensor for the vacuum Einstein field equations is zero and the spacetime is
locally flat. Hence, there exists no black hole solution of the vacuum in Einstein’s equation
in a 2 + 1 dimensional spacetime with zero cosmological constant [65]. However, with this
metric we can simulated many kinetic properties of Schwarzschild black holes in the equa-
torial plane, such as the Hawking radiation around the horizon and, as demonstrated here,
the gravitational lensing effect.
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The event horizon associated with the metric in Equation (5) appears when the radial
flow velocity towards the center exceeds the speed of sound, specified by the metric
singularity at

rh = c0. (7)

Inside the event horizon (r < rh), the light fluid moves inwards at supersonic speed,
and any phase fluctuations behind the event horizon are swept into the acoustic black hole
without escaping the event horizon. Therefore, the acoustic event horizon is a surface that
splits the space into two regions, a subsonic (external) and a supersonic (internal) one,
playing the same role in the analogue model as the gravitational horizon in a black hole.

Note that we have a black hole solution in 2 + 1 dimensions, which is not present in
general relativity. This is a consequence of the fact that Einstein’s equations do not play a
role in the analogue system described here. In order to obtain an idea of the curvature of
our effective spacetime, we can compute the Kretschmann scalar, which is provided by

K = RαβγδRαβγδ =
44c2

0
r8 , (8)

with Rαβγδ being the Riemann curvature tensor. Here, K is well behaved at rh, showing
that the singularity at rh is just a breakdown of the employed coordinate system and not a
true singularity. The genuine singularity of this acoustic spacetime lies at r = 0, which is at
the center of the particle sink.

In addition, the Ricci scalar of the metric is straightforward to compute:

Rc = gµνRα
µαν =

2c2
0

r4 . (9)

The Ricci scalar characterizes the curvature of the acoustic spacetime, and is inversely
proportional to the fourth power of the distance from the particle sink. For this case,
the superfluid velocity increase is inversely proportional to the distance from the particle
sink. Due to the pumping effect, the photon density in the stationary limit remains roughly
constant, implying that the speed of sound for the density fluctuations in the fluid is
approximately constant. Hence, in this case, the hydrodynamic approximation can be
safely employed beyond the effective acoustic event horizon. Beyond the acoustic event
horizon, the particle sink can have an important influence on the dynamics of phonons
within a distance of several times the horizon radius.

3. Analogue Gravitational Lensing

As discussed in the previous section, the particle sink creates an effective curved
spacetime for the phonons. The metric in Equation (5) has no explicit dependence on t and
ϕ. This means that the associated spacetime is invariant under time translation and rotation
along the direction defining the angle ϕ, recalling that we only have 2 + 1 dimensions.
Hence, there are two Killing vectors for this metric, one related to the time-translation
invariance (k1)

µ = (1, 0, 0) and the other to the rotational symmetry (k2)
µ = (0, 0, 1). Note

that the phonons follow a linear dispersion relation in the low-energy limit, and as such
travel as massless particles on the effective spacetime created by the particle sink, as is made
clear by Equation (4). Under the eikonal approximation, if we assume that the background
density and the phase vary slowly in space and time at scales of the wavelength and the
period of the perturbation, we expect the phonons to follow null geodesics [64]. Along
these null geodesics, we can define the conserved quantities associated with the Killing
vectors k1 and k2 as

E = −(k1)
µgµν

dxν

dλ
=

(
1−

c2
0

r2

)
dτ

dλ
,

L = (k2)
µgµν

ddxν

dλ
= r2 dϕ

dλ
, (10)
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where E is the energy, L is the angular momentum, and λ denotes an affine parameter for
the null geodesics.

By rewriting these equations we can obtain the dynamical equations for τ and φ with
respect to the affine parameter: λ,

dτ

dλ
=

Er2

r2 − c2
0

,

dϕ

dλ
=

L
r2 . (11)

Because the phonons are travelling along null geodesics, the acoustic metric must
fulfill the equation

gµν
dxµ

dλ

dxν

dλ
= 0 . (12)

Using the expression in Equation (5), we obtain

−
(

1−
c2

0
r2

)(
dτ

dλ

)2
+

(
1−

c2
0

r2

)−1(
dr
dλ

)2
+ r2

(
dϕ

dλ

)2
= 0. (13)

After substituting dτ/dλ and dϕ/dλ into the above equation, we finally obtain the
radial equation (

dr
dλ

)2
= E2 +

c2
0L2

r4 −
L2

r2 . (14)

Hence, through Equations (11) and (14), the path of the phonon is completely specified.
In addition, the radial motion equation can be recast in energy equation form:

1
2

(
dr
dλ

)2
+ V(r) =

1
2

E2, (15)

with an effective potential

V(r) =
L2

2r2 −
c2

0L2

2r4 . (16)

The extreme value of the effective potential is determined by dV(r)/dr = 0, leading to

rm =
√

2c0. (17)

As can be seen, at rmax the potential has a maximum value V(rm) = L2/8c2
0, af-

ter which it decreases quadratically as the distance from the particle sink increases. If the
energy of the incident phonon is lower than the potential barrier E2 < 2V(rm), then
the phonon can be deflected by the potential. In this manner, phonons with energy larger
than the barrier E2 > 2V(rm) can travel through the barrier and be dragged down to
the particle sink. From the critical value E2 = 2V(rm), the corresponding critical impact
parameter can be determined as bm = L/E = 2c0. At this point, the phonon rotates around
the particle sink in an unstable circular orbit.

When a phonon is deflected by the particle sink, the turning point is determined by
the condition dr/dϕ = 0, resulting in

rt = b

√√√√1
2
+

√
(b2 − 4c2

0)

2b
, (18)
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where we have used the impact factor b = L/E. If the phonon is directed towards the
particle sink with a large impact factor such that c0/b is a small parameter, it is possible to
expand rt in series of c0/b up to second order:

rt = |b|
[

1− 1
2

( c0

b

)2
+O

{( c0

b

)4
}]

. (19)

The general deflection angle of the phonon passing by the acoustic black hole is
obtained by the integral

∆ϕ = 2
∫ ∞

rt

dϕ

dr
= 2

∫ ∞

rt

b√
r4 + b2(c2

0 − r2)
dr . (20)

In order to solve this integral, we expand the integrand in powers of the parameter
c0/b up to second order, obtaining the following relation for the deflection angle:

∆ϕ = πsign(b)

(
3c2

0
4b2

)
+O

{( c0

b

)3
}

. (21)

As a consequence, in the absence of the particle sink the phonon follows a straight line.
The presence of the particle sink leads to an extra deflection angle. This result is similar for
the deflection of the phonon in the acoustic vortex spacetime [42]. However, these have
different origins. In Equation (21), the deflection angle is determined by the dissipation
parameter c0, while in the rotational case it is provided by the vortex winding number [42].
In our case, the deflections of phonons around the sink resemble the light deflection around
a black hole, where the deflection angle is determined by the dissipation parameter c0. In
general relativity, the light deflection angle around the black hole is determined by the
black-hole mass; thus, in our analogue system we can define the effective mass of the
acoustic black hole as c2

0, as already mentioned. In the case of an irrotational vortex with
only an azimuthal flow and no radial flow, no acoustic horizon can be created; however,
when the azimuthal flow becomes supersonic, the phonons can be deflected around the
irrotational vortex and the deflection angle is related to its winding number.

Moreover, wave scattering around a draining bathtub vortex has been extensively
studied [66–70]. Under the influence of the effective acoustic metric from the draining
bathtub vortex, the waves can display the analogue Aharonov–Bohm effect, superradiance
effect, and orbiting oscillations in the scattering length [66,68,70]. Furthermore, the null
geodesics incident from spatial infinity can be deflected by the draining bathtub vortex,
with the deflection angle determined by the circulation and draining rate of the vortex [68].
In contrast to our particle sink model, the draining bathtub vortex is rotating and resem-
bles a rotating acoustic black hole. Although the draining bathtub vortex model with
zero circulation can reduce to the particle sink model, this last model can nonetheless
serve as a different approach for analogue gravitational systems [47]. As an analogue
of a Schwarzschild black hole, many properties of its properties can be simulated using
the particle sink model [47,64]. In our work, we have proposed the simulation of the
gravitational lensing effect around a static acoustic black hole employing the particle sink
model, which is different from the draining bathtub vortex results [68].

The phonon deflection phenomenon induced by the particle sink can lead to an
interesting convergence effect. After travelling along opposite paths with respect to the
particle sink center, two initially parallel phonon beams with impact parameter b intersect
at a distance l = 2 f from the sink. From the deflection angle in Equation (21), the focal
length f can be obtained as follows:

f =
2

3π

b3

c2
0
=

2
3π

b3

r2
h

. (22)
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Therefore, the particle sink plays the role of an effective phonon lens.
In addition to the phonon convergence effect, similar effects for the phonons can

be realized in the case of a particle sink in photonic BECs in a paradigmatic analogue of
gravitational lensing in general relativity. As depicted in Figure 1, if the source and observer
are far away from the particle sink, where rh � dL, ds, the phonon beams travel along
straight lines and all of the phonon deflections occur around the particle sink. Considering
that the angles θs and θE are very small, we obtain

dLθE = (ds − dL)θs = b . (23)

In addition, as can be seen in Figure 1, the deflection angle is equal to

∆φ = θs + θE, (24)

where ∆φ = 3πc2
0/4b2 is the deflection angle.

By combining Equations (23) and (24), we obtain the Einstein angle as

θE =

(
3πc2

0(ds − dL)

4dsd2
L

)1/3

. (25)

In the proposed scenario of photonic BECs, the sink size is much smaller than the
distance between the source, the particle sink, and the observer, which leads the particle
sink to behave as a thin analogue gravitational lens for the phonons. From Equation (25), it
can be seen that, for a certain dL satisfying dL � ds, the Einstein angle θE depends only on
the dissipating parameter c0. Comparing this to the case of a Schwarzschild black hole, the
parameter c2

0 clearly plays the same role as the black hole mass [38].

Source Sink Observer

Image source

b

dL

ds

θs θE

∆φ

Figure 1. The source is on the left, the particle sink in the middle acts as a lens, and the observer on
the right receives the deflected phonon signal.

In the above discussion, the analysis of the phonon trajectory deflection is based on
the semiclassical approximation; thus, the phonon wavelength should be larger than the
healing length. Hence, the maximum values of the deflection angle (up to second order)
induced by the particle sink are determined by

∆ϕ =
3π

4
c2

0
λ2 , (26)

where λ is the wave length of the phonons. For the typical values of the photonic BEC,
the effective mass is m = 6.7 × 10−36 kg, the dimensionless interaction strength is of
order g = (mg)/h̄2 ≈ 7× 10−4, and the particle density is of order n = 1012∼1013 m−2 [46].
Restricting ourselves to the case in which the phonon wave length is in the linear dispersion
region with λ = 2ξ, we obtain the deflection angle as follows:

dφ =
3π

4
(

c0h̄
mcλ

)2 ≈ 0.59◦, (27)



Universe 2023, 9, 443 9 of 13

while the focal length is approximated as

f =
2
3

λ3m2c2

c2
0h̄2 ≈ 20.3 µm . (28)

In the above estimations, we have restored the physical quantities that we made
dimensionless before. Because the value of the parameter c0 is of order O(1) [47,50], we
set c0 = 1. In our calculations, we have used the quasiclassical phonon scattering theory.
Because the transverse size of a phonon beam is limited by its wavelength, in order to make
this approach works the wavelength has to be less than or equal to the impact factor b of
the phonons [42]. Hence, the minimum focal length is bounded by the smallest available
phonon wavelength. For the dye-based experiments, the cavity size is about 1.46 µm,
which is too small for observing these effects [46]. However, a bigger system or a stronger
interaction could be achieved with suitable improvements. According to our calculations,
if the condensed particle density and the inter-particle interaction strength can be increased
by one order of magnitude, the deflection angle can preserve the same value, while the
focal length can be reduced to around 2 µm. Therefore, we expect that in the near future
our proposal may become feasible for testing the discussed phonon deflection effects in
the lab.

From the experimental perspective, the analogue gravitational lensing can be im-
plemented in different quantum fluid systems, such as atomic BEC, photonic BEC, and
exciton–polariton condensate systems. The atomic BEC can be relatively easy to manipulate
and control experimentally at ultra-cold temperature [5,60]. This makes the atomic BEC
very suitable for analogue gravity, while the ultra-cold temperature condition makes it
suitable for the study of many quantum effects as well. Until now, analogue phonon Hawk-
ing radiation and the related particle entanglement have been realized and observed in
atomic BECs [8–11]. As discussed before, to implement the analogue gravitational lensing
we need the system to have pumping and dissipation effects in order to compensate each
other and create a stable particle sink structure. However, because the atomic BEC does not
have intrinsic pumping and dissipation effects, extra experimental techniques are needed
to induce pumping and dissipation effects in atomic BEC. In this case, the dissipation can
be induced by an electron beam shining on the condensate, which can create an effective
localized dissipative potential for the condensate [71]. The pumping effects can be real-
ized by coherent transferring of atoms from a different hyperfine ground state into the
condensate [72], although this would require the atomic BEC to include multiple hyperfine
components, which would complicate the problem. Hence, the atomic BEC is not an ideal
platform for analogue gravitational lensing research. Therefore, we concentrate on the
quantum fluid system with intrinsic pumping and dissipation effects, such as photonic
BECs and exciton–polariton condensates. For the photonic BEC, its intrinsic pumping and
dissipation effects make it feasible to create the stable particle sink structure, and analogue
gravitational lensing can be realized in such a system [47]. However, due to the weak
inter-particle interaction, as mentioned before, the resulting focal length can be very long,
which constitute a challenge for current experimental setups. Exciton–polariton conden-
sates can have intrinsic pumping and dissipation effects, and their wave function can be
engineered with a versatile all-optical control [50,55]. Because the condensed polaritons
have small effective masses and strong inter-particle interactions, the exciton–polariton
condensate can have a large coherence length [73], and can be controlled with optical
potential engineering [74]. These characteristics make exciton–polariton condensates very
suitable for analogue gravitational lensing research.

We next concentrate on how to implement and detect an analogue gravitational lens-
ing experiment in photonic BEC and exciton–polariton condensate. The implementation
of the analogue gravitational lensing experiment first demands the creation of a stable
particle sink structure in the condensate. The particle sink employed here to simulated the
black hole can be created in the photonic BEC and exciton–polariton condensate by etching
a hole or placing a scatter in the center of the cavity [47,51]. With such an experimental
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setup, it would be possible to implement particle pumping with suitable laser beams to
create a stationary condensate with a stable particle sink structure. In order to ensure that
the system reaches a stationary state and the particle sink structure becomes stabilized,
the initial pumping should be beyond the stable threshold [49]. When the experiment is ini-
tialized, the system can be allowed to evolve to a stationary state and a stable particle sink
structure can be created in the center of the system [50,51]. When the stationary condensate
and the stable particle sink are created, the corresponding dissipating parameter c0 can be
extracted by measuring the particle decay rate in the particle sink. With the stable particle
sink structure, it becomes possible to implement and detect the analogue gravitational
lensing effect by generating phonons in the condensate and tracking the phonon dynamics
around the particle sink. In order to create and detect phonons in the condensate, we
consider Bragg spectroscopy and angle-resolved photoluminescence spectroscopy to be
the most suitable methods. For Bragg spectroscopy with a two-photon Bragg transition,
a well-defined momentum can be imparted to the condensate [75,76]. For the photonic
BEC and exciton–polariton condensate, they are usually contained in microcavities, and the
microcavities can provide an effective trapping potential for the condensates [45,46,55].
Under the influence of the trapping potential, the imparted momentum cannot be the eigen-
state of the condensate, and will disturb the condensate and create phonon excitations [75].
Then, by measuring the response of the condensate to Bragg spectroscopy, it is possible
to track the phonon dynamics around the particle sink; the response of the condensate
to Bragg transitions of different frequencies provides a spectroscopic measurement of the
phonon excitations [76]. For angle-resolved photoluminescence spectroscopy, phonons can
be created in the condensate by applying a weak probe laser beam to the condensate [77,78].
Then, by measuring the response of the condensate to the probe laser beam, the phonon
dynamics around the particle sink can be tracked to determine their trajectories. Moreover,
the phonon spectrum can be extracted from the response of the condensate to the probe
laser beam [78]. Therefore, by using Bragg spectroscopy and angle-resolved photolumines-
cence spectroscopy, the phonon dynamics can be tracked and their trajectories around the
particle sink can be determined. By analyzing the phonon trajectories, we can obtain the
corresponding deflection angles and focal lengths of the phonons. Through comparison
with the theoretical results, the analogue gravitational lensing effect can then be tested
and verified.

4. Conclusions

Using a particle sink in photonic BEC as a Schwarzschild black-hole analogue, we have
studied the deflection of the phonon trajectories induced by the particle sink at the center of
the BEC. This is similar to the light bending effect around a black hole in general relativity.
In the acoustic spacetime approach, the quasiclassical scattering process of phonons by the
particle sink leads to a scattering angle which is quadratic in the dissipating parameter c0.
We expect that the initially parallel phonon beams, after being scattered along opposite
side of the particle sink, will converge at a given distance from the particle sink. This
implies that the particle sink can be considered as an effective phonon lens. Analogous
to the observation of light bending effects in general relativity, we have discussed the
possible thin phonon lens effects induced by the particle sink. Here, the image photon
source location perceived by the observer deviates from the actual source by the Einstein
angle θE. In addition, in the 2 + 1 dimensional system there are two image sources.

We have assumed the hydrodynamic approximation throughout this paper. Con-
sequently, throughout the process the system should be kept in a steady state without
small-scaled perturbations below the healing length, which is consistent with the require-
ments of the analogue gravity model [64]. For possible experimental implementations,
the photonic BEC in a semiconductor microcavity or dye-based setups might be used,
in particular due to the fact that the semiconductor microcavity setup can have stronger
interactions [79].
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61. Bilić, N. Analog Schwarzschild-like geometry in fluids with external pressure. Phys. Rev. D 2022, 105, 064052. [CrossRef]
62. de Oliveira, C.C.; Mosna, R.A.; Pitelli, J.P.M.; Richartz, M. Analogue models for Schwarzschild and Reissner-Nordström

spacetimes. Phys. Rev. D 2021, 104, 024036. [CrossRef]
63. Visser, M. Acoustic black holes: Horizons, ergospheres and Hawking radiation. Class. Quantum Grav. 1998, 15, 1767–1791.

[CrossRef]
64. Barceló, C.; Liberati, S.; Visser, M. Analogue gravity. Living Rev. Relativ. 2011, 14, 3. [CrossRef] [PubMed]
65. Padmanabhan, T. Gravitation: Foundations and Frontiers; Cambridge University Press: Cambridge, UK, 2010; ISBN 978-0-511-80778-7.
66. Dolan, S.R.; Oliveira, E.S.; Crispino, L.C.B. Aharonov–Bohm effect in a draining bathtub vortex. Phys. Lett. B 2011, 701, 485–489.

[CrossRef]
67. Torres, T.; Patrick, S.; Richartz, M.; Weinfurtner, S. Analogue black hole spectroscopy; or, how to listen to dumb holes. Class.

Quantum Grav. 2019, 36, 194002. [CrossRef]
68. Dolan, S.R.; Oliveira, E.S. Scattering by a draining bathtub vortex. Phys. Rev. D 2013, 87, 124038. [CrossRef]
69. Dempsey, D.; Dolan, S.R. Waves and null congruences in a draining bathtub. Int. J. Mod. Phys. D 2016, 25, 1641004. [CrossRef]
70. Torres, T.; Coutant, A.; Dolan, S.; Weinfurtner, S. Waves on a vortex: Rays, rings and resonances. J. Fluid Mech. 2018, 857, 291–311.

[CrossRef]
71. Barontini, G.; Labouvie, R.; Stubenrauch, F.; Vogler, A.; Guarrera, V.; Ott, H. Controlling the dynamics of an open many-body

quantum system with localized dissipation. Phys. Rev. Lett. 2013, 110, 035302. [CrossRef]
72. Döring, D.; Dennis, G.R.; Robins, N.P.; Jeppesen, M.; Figl, C.; Hope, J.J.; Close, J.D. Pulsed pumping of a Bose-Einstein condensate.

Phys. Rev. A 2009, 79, 063630. [CrossRef]
73. Wertz, E.; Ferrier, L.; Solnyshkov, D.D.; Johne, R.; Sanvitto, D.; Lemaître, A.; Sagnes, I.; Grousson, R.; Kavokin, A.V.; Senellart, P.;

et al. Spontaneous formation and optical manipulation of extended polariton condensates. Nat. Phys. 2010, 6, 860–864. [CrossRef]
74. Sanvitto, D.; Pigeon, S.; Amo, A.; Ballarini, D.; De Giorgi, M.; Carusotto, I.; Hivet, R.; Pisanello, F.; Sala, V.G.; Guimaraes, P.S.S.; et

al. All-optical control of the quantum flow of a polariton condensate. Nat. Photon. 2011, 5, 610. [CrossRef]
75. Ozeri, R.; Katz, N.; Steinhauer, J.; Davidson, N. Colloquium: Bulk Bogoliubov excitations in a Bose-Einstein condensate. Rev. Mod.

Phys. 2005, 77, 187–205. [CrossRef]
76. Piekarski, C.; Liu, W.; Steinhauer, J.; Giacobino, E.; Bramati, A.; Glorieux, Q. Measurement of the static structure factor in a

paraxial fluid of light using Bragg-like spectroscopy. Phys. Rev. Lett. 2021, 127, 023401. [CrossRef]
77. Claude, F.; Jacquet, M.J.; Usciati, R.; Carusotto, I.; Giacobino, E.; Bramati, A.; Glorieux, Q. High-resolution coherent probe

spectroscopy of a polariton quantum fluid. Phys. Rev. Lett. 2022, 129, 103601. [CrossRef]
78. Claude, F.; Jacquet, M.J.; Carusotto, I.; Glorieux, Q.; Giacobino, E.; Bramati, A. Spectrum of collective excitations of a quantum

fluid of polaritons. Phys. Rev. B 2023, 107, 174507. [CrossRef]
79. de Leeuw, A.-W.; van der Wurff, E.C.I.; Duine, R.A.; van Oosten, D.; Stoof, H.T.C. Theory for Bose-Einstein condensation of light

in nanofabricated semiconductor microcavities. Phys. Rev. A 2016, 94, 013615. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s00340-011-4734-6
http://dx.doi.org/10.1038/s41567-018-0270-1
http://dx.doi.org/10.1007/BF02731494
http://dx.doi.org/10.1103/PhysRevA.63.023611
http://dx.doi.org/10.1103/PhysRevD.105.064052
http://dx.doi.org/10.1103/PhysRevD.104.024036
http://dx.doi.org/10.1088/0264-9381/15/6/024
http://dx.doi.org/10.12942/lrr-2011-3
http://www.ncbi.nlm.nih.gov/pubmed/28179830
http://dx.doi.org/10.1016/j.physletb.2011.06.013
http://dx.doi.org/10.1088/1361-6382/ab3d48
http://dx.doi.org/10.1103/PhysRevD.87.124038
http://dx.doi.org/10.1142/S0218271816410042
http://dx.doi.org/10.1017/jfm.2018.752
http://dx.doi.org/10.1103/PhysRevLett.110.035302
http://dx.doi.org/10.1103/PhysRevA.79.063630
http://dx.doi.org/10.1038/nphys1750
http://dx.doi.org/10.1038/nphoton.2011.211
http://dx.doi.org/10.1103/RevModPhys.77.187
http://dx.doi.org/10.1103/PhysRevLett.127.023401
http://dx.doi.org/10.1103/PhysRevLett.129.103601
http://dx.doi.org/10.1103/PhysRevB.107.174507
http://dx.doi.org/10.1103/PhysRevA.94.013615

	Introduction
	Analogue Metric
	Analogue Gravitational Lensing
	Conclusions
	References

