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Abstract: Solar radio observation is a method used to study the Sun. It is very important for space
weather early warning and solar physics research to automatically classify solar radio spectrums in
real time and judge whether there is a solar radio burst. As the number of solar radio burst spectrums
is small and uneven, this paper proposes a classification method for solar radio spectrums based on
the Swin transformer. First, the method transfers the parameters of the pretrained model to the Swin
transformer model. Then, the hidden layer weights of the Swin transformer are frozen, and the fully
connected layer of the Swin transformer is trained on the target dataset. Finally, parameter tuning is
performed. The experimental results show that the method can achieve a true positive rate of 100%,
which is more accurate than previous methods. Moreover, the number of our model parameters is
only 20 million, which is 80% lower than that of the traditional VGG16 convolutional neural network
with more than 130 million parameters.

Keywords: solar radio spectrum; deep learning; self-attentional mechanism; transfer learning;
Swin transformer

1. Introduction

The Sun is the closest star to the Earth, and the light and heat it provides are the
source of human survival and activities on the Earth. The Sun’s violent activity and space
weather changes affect human survival. Solar bursts are a sporadic component of solar
radio emission connected with the flare energy release. A solar radio spectrometer can
observe the solar radio emission intensity in the radio band and is the main equipment for
studying a solar burst. If the solar radio spectrum can be processed automatically and solar
burst events can be classified in real time, it is of great value to solar physics research and
space weather early warning.

In the late 1960s and early 1970s, John Paul Wild’s team built and operated the world’s
first solar radio spectrometer and the subsequent Culgoora radio heliograph. Since then,
an increasing number of solar radio spectrometers have been built. In recent years, many
researchers have studied the automatic processing of the observed solar radio spectrum.
Ruizhen Zhao analyzed the features of the NeighShrink thresholding function, and a
new wavelet NeighShrink square root thresholding method was proposed for solar radio
spectrum image denoising [1]. Yihua Yan proposed a nonlinear calibration method to
address the instrument saturation effect. The method adopted a channel normalization
algorithm for image enhancement and finally used a wavelet approach to eliminate the
effect of noise [2]. For the detection of the solar radio spectrum outline, Yan Zhang improved
the level set method to extract the contours of the original image, overcoming the problem
of missing detection associated with this method [3]. Chengming Tan developed a data
analysis system compatible with SSW (Solar Soft Ware). This software can further expand
the connection between data while mining the deep information of data [4]. White S.M.
used data from the Green Bank Solar Radio Burst Spectrometer to describe and illustrate
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the main types of radio bursts [5]. In the study of sunspots, Preminger proposed a new
method for the fast and automatic identification of solar features using the contrast ratio of
images [6]. K. Iwai developed a new metric spectrum observation system for solar radio
bursts. This system allows us to observe solar radio bursts in the frequency range of 150 to
500 MHz [7].

With the rapid development of deep learning, deep learning has achieved good results
in image processing and computer vision [8,9]. Researchers have begun to use deep learning
to study the solar radio spectrum. Vasili V. Lobzin proposed a method for the automatic
identification and classification of type II and type III solar radio spectra. The method
improved the accuracy of detection of solar radio burst types II and III via preprocessing,
spectral intensity transformation, and spectral frequency transformation [10,11]. Junchen
Guo proposed a hybrid network based on convolutional and GRU storage units to classify
the solar radio spectrum [12]. Weidan Zhang proposed a model that combines a conditional
generative adversarial network (CGAN) and a deep convolutional generative adversarial
network (DCGAN) to classify the solar radio spectrum [13].

In previous studies, most researchers adopted convolutional operations as backbone
networks to extract features of the solar radio spectrum. The methods had a large number
of model parameters and consumed many system resources. In this paper, we propose a
method combining a Swin transformer [14] and transfer learning to classify solar radio
spectra. Our method incorporates the advantages of convolutional neural networks, such
as localization, translation invariance and hierarchy. Compared with previous research in
classifying the solar radio spectrum, our method achieves better classification accuracy,
while the number of model parameters is greatly decreased.

2. Solar Radio Spectrum and Preprocessing
2.1. Dataset Introduction

The dataset for this research experiment was obtained from the national astronomical
observatory of the Chinese Academy of Sciences. The data were collected via a solar
broadband spectrometer (SBRS). The sample amounts of the dataset are shown in Table 1,
which are in references [12,13].

Table 1. Solar radio spectrum dataset.

Spectrum Type Burst Nonburst Calibration Total

Spectrum number 579 3335 494 4408

The vertical axis of the solar radio spectrum represents the frequency of the spectrum,
and the horizontal axis represents the time. Each pixel value represents the solar radio flux
at a given time and frequency. If the spectrum images are displayed in grayscale, white
represents a high flux of solar radio emission, and black represents a low flux of solar radio
emission. The whole image represents the solar radio flux at a certain frequency during a
certain time period. The burst, nonburst, and calibrated solar radio spectrum are shown in
Figure 1a–c. Sometimes, the solar radio spectrum can be displayed with pseudocolor to
generate a good visual effect of the solar radio spectrum.

After the solar radio spectrometer receives solar radio emission, the signal is amplified
and filtered and then saved in a certain file format. Horizontal stripes and other noise can
appear in solar radio spectrum images due to internal interference, external interference,
and quantization problems of the instrument. Therefore, it is necessary to preprocess the
solar radio spectrum data.



Universe 2023, 9, 9 3 of 10Universe 2023, 9, x FOR PEER REVIEW 3 of 11 
 

 

  
(a) (b) 

 
(c) 

Figure 1. Solar radio spectrum: (a) “burst” type, (b) “calibrating” type, (c) “nonburst” type. 
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the literature [12] to adjust the channel differences. That is, the pixel points on the hori-
zontal stripes are subtracted from the original image ( , )f x y , and the global average is 
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results are shown in Figure 2a,b. 

  
(a) (b) 

Figure 1. Solar radio spectrum: (a) “burst” type, (b) “calibrating” type, (c) “nonburst” type.

2.2. Normalization of Channels

In a general sense, the nonlinear effect of the instrument is caused by the variation
in the gain of each channel. There should be a deterministic continuous trend in the gain
between channels. Therefore, we adopt the logic of the channel normalization method
in the literature [12] to adjust the channel differences. That is, the pixel points on the
horizontal stripes are subtracted from the original image f (x, y), and the global average is
added. The equation for the channel-normalized image g(x, y) is

g(x, y) = f (x, y)− 1
n

n

∑
x=0

f (x, y) +
1

nm

m

∑
x=0

n

∑
y=0

f (x, y) (1)

where f (x, y) is the pixel value of the original image at (x, y), m is the number of pixel
points on the x-axis, and n is the number of pixel points on the y-axis. The experimental
results are shown in Figure 2a,b.
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Figure 2. Normalized noise reduction results of channels: (a) before normalization of channels,
(b) after normalization of channels.

2.3. Pseudocolor Conversion and Dimensional Transformation of the Solar Radio Spectrum

The Swin transformer network model requires the input format of the image to be a
three-channel color map of 224 × 224 × 3. After channel normalization of the solar radio
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spectrum, pseudocolor conversion of the grayscale image and transformation of the image
size are needed.

We define a grayscale pseudocolor mapping table to map the normalized grayscale
values from the interval [0,1] to the corresponding pseudocolor. Figure 3a shows the
pseudocolor color mapping table. The leftmost part of the color band corresponds to
a grayscale of 0.0, the rightmost part corresponds to a grayscale of 1.0, and the middle
corresponds to a grayscale of 0.5. With this grayscale pseudocolor mapping table, the
channel-normalized Figure 2b can be converted to the pseudocolor image in Figure 3b.
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After obtaining the pseudocolor image of the solar radio spectrum, we used a bilinear
interpolation algorithm [15] to transform it to a size of (224 × 224 × 3). In the image
size transformation, for any target pixel g(x, y) after the transformation, the floating-point
coordinates (i + u, j + v) of the original image are obtained via the coordinate inversion
transformation. Then, this pixel value g(x, y) can be determined using the pixel values
f (i, j), f (i + 1, j), f (i, j + 1), and f (i + 1, j + 1) of the four points around the original image
(i + u, j + v) together. The calculation formula is

g(x, y) = a + b + c + d (2)

where
a = (1− u)(1− v) f (i, j) (3)

b = (1− u)v f (i, j + 1) (4)

c = u(1− v) f (i + 1, j) (5)

d =uv f (i + 1, j + 1) (6)

where i and j are nonnegative integers, and u and v are floating-point numbers in the
interval [0,1). The RGB components of each pixel in the solar radio spectrum are processed
separately using a bilinear interpolation algorithm to obtain the (224 × 224 × 3) solar radio
pseudocolor spectrum.

3. Method
3.1. Transfer Learning

Solar activity depends heavily on the phase of the solar cycle. Solar radio bursts are
low-probability events, and we found that the cumulative duration of solar radio bursts is
less than 0.5% of the total observation duration after our statistics. Therefore, the number
of solar radio burst spectrum samples collected in the last decade is limited. The number
of solar radio bursts used in our experiments is 579, which is insufficient for training the
network model.

To reduce the training cost and improve the training efficiency of the model, we
use a transfer learning strategy. Transfer learning refers to the reuse of a pretrained
model in another task. Usually, these pretrained models consume considerable time
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and computational resources in training, and transfer learning can transfer a pretrained
model with acquired capabilities to a relevant problem. It is focused on finding similarities
between existing knowledge and new knowledge, and transfer learning is achieved through
transferring such similarities. Transfer learning is defined as follows:

Given a source domain Ds, a learning task Ts, a target domain Dt, and a learning task
Tt, the purpose of transfer learning is to acquire knowledge in the source domain Ds and
the learning task Ts to help enhance the learning of the prediction function ft(x) in the
target domain, where Ds 6= Dt or Ts 6= Tt. The model is shown in Figure 4 below:
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At the beginning of training, the weights of the hidden layers of the pretrained Swin
transformer model are first frozen. Then, the fully connected layer of the pretrained Swin
transformer model is trained. After the above operation, the transfer learning process
is completed.

3.2. Solar Radio Spectrum Classification Based on Swin Transformer

The Swin transformer, a deep learning network model proposed by Microsoft 2021,
is a new network model with self-attention as the backbone network. The Swin trans-
former constructs a hierarchical transformer by using the hierarchical construction method
commonly used in convolutional neural networks (CNNs). It also enacts the idea of self-
attentiveness based on sliding windows to solve the problem of too much computational
complexity caused by the transfer of the transformer to computer vision tasks. In addition,
its design philosophy incorporates the essence of the residual network (ResNet) from the
local to the whole, employing the transformer as a tool for progressively expanding the
field of perception.

In contrast to a vision transformer (ViT) [16], a Swin transformer extracts the features
of the image by continuously enlarging the attention window much like the convolution
process of CNN. Its self-attention computation introduces the process of local aggregation,
which is computed in terms of windows; the size of its window sliding step is equal
to the window size to achieve window nonoverlap. When a traditional CNN performs
convolutional operations on each window, each window takes on a value that represents
the features of that window. In contrast to CNNs, Swin transformers calculate the self-
attention of each window and obtains an updated window. Then, these windows are
merged into a large window using a patch merge layer. Finally, in this large window, the
value of self-attention is computed, and the obtained value represents the features of the
entire window. Computing window-based self-attention in the window instead of global
self-attention can greatly reduce the complexity of computation from O(n2) to O(n). The
complexity calculation formula is shown below:

Ω(MSA) = 4hwC2 + 2(hw)2C (7)

Ω(WMSA) = 4hwC2 + 2(hw)2C (8)

where C is the number of channels in the image, h and w are the height and width of
the image, respectively, and M is the window size. Then, according to the self-attention
formula, MSA (global attention) h×w has O(n2) complexity, while WMSA (window-based
attention) has O(n) complexity when M is fixed (window size, set to 7 by default). The
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larger the value of h× w is, the greater the time complexity of the global self-attention
calculation and the more system resources will be consumed.

The architecture of the Swin transformer is very similar to that of the CNN. A Swin
transformer contains four stages, each of which is a similar repetitive unit. First, the patch
partition layer and the linear embedding layer divide h× w× 3 inputs into a collection of
nonoverlapping patches, where the size of each patch is 4× 4; then, the number of patches
is h

4 ×
w
4 . The classification process of the solar radio spectrum is shown in Figure 5.
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In Figure 5, the solar radio spectrum is size 28× 28 after image preprocessing, and
the input image is transformed into patches that are composed of four adjacent pixel
blocks by the patch partition layer and then fed into Stage 1. In Stage 1, the feature
dimension of patches is changed to 96 by the linear embedding layer and then sent to the
Swin transformer block. The input comes out of Stage 1 and enters the patch merging
layer, where the input patches are merged with adjacent patches according to the rules of
2× 2. The number of patches becomes 28× 28, and the feature dimension becomes 192,
which is equivalent to the image upsampling process. The dimension of the feature map
decreases by half when passing through a stage, and the number of channels increases as
the dimension decreases. Stages 2 to 4 follow the same principle, and the Swin transformer
block in Stage 3 is cycled 6 times. The training process is similar to the convolution and
pooling process in convolutional neural networks.

4. Experimentation and Discussion

We randomly selected a number of samples from the dataset in equal proportions for
model pretraining, validation, and testing. The number of datasets for the training process
is shown in Table 2 below:

Table 2. Experimental dataset division.

Dataset Burst Nonburst Calibration Total

Training set 200 1200 200 1600

Validation set 179 935 94 1208

Test set 200 1200 200 1600

4.1. Experimental Evaluation Metrics

We evaluated the model using true positive rate (TPR) and false positive rate (FPR)
as experimental metrics, which can reflect the effectiveness of experimental classification.
Among them, TPR is defined as the proportion of correctly detected positive samples to
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all positive samples; FPR is defined as the proportion of incorrectly detected false-positive
samples to all negative samples. TPR and FPR are calculated as follows:

TPR =
TP

(TP + FN)
(9)

FPR =
FP

(FP + TN)
(10)

The predicted and the labeled values of the images are used as parameters of the
confusion matrix algorithm to obtain TP (true-positive), TN (true-negative), FP (false-
positive), and FN (false-negative). In this experiment, we expect that the higher the TPR,
the better, and the lower the FPR, the better.

4.2. Experimental Results and Analysis

This research used the TensorFlow 2.7 deep learning framework on Python 3.8 to
complete the experiment, with 32 GB of memory, a 2080 Ti graphics card, a 14,000 MHz
memory frequency, an 11 GB memory capacity, a 352-bit memory bit width, a 0.001 learning
rate, a cross-entropy loss function, and the activation function softmax. In this research,
we froze the weights of the hidden layer of the pretrained model Swin transformer and
then trained the fully connected layer of the Swin transformer on the target dataset. Finally,
we saved the best parameters of the model for the following data testing. To ensure that
the proposed model is efficient in the training of the entire solar radio spectrum and is not
affected by the target dataset, we randomly upset all the training datasets at the beginning
of each training session. The obtained experimental results are shown in Figure 6a,b and
Table 3 below:
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Table 3. Experimental results of Swin transformer.

Model Swin Transformer Swin Transformer+
Transfer Learning

TPR (%) FPR (%) TPR (%) FPR (%)
Burst 98.9 0 100 0
Nonburst 100 0.5 100 0
Calibration 99.5 0.1 100 0

As seen from Figure 6a, the proposed method combining a Swin transformer and
transfer learning has a loss value of 0 at the beginning of the third training round, and it
remains at 0 in each subsequent training round, which fully demonstrates the superiority
of our proposed algorithm.

As shown in Table 3, Swin transformer transfer learning can improve the classification
efficiency of the model with the same proportion of dataset segmentation. Compared
with experiments without transfer learning, the TPR of burst improves by 1.1%; the TPR
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of calibration improves by 0.5%; the FPR of nonburst decreases by 0.5%; and the FPR of
calibration decreases by 0.1%. We find that using a transfer learning strategy can improve
the classification effect of the model well.

In terms of model training parameters, this design was compared with the previous
large model VGG16. We find that the training parameters of the Swin transformer decreased
by approximately 80% compared to the VGG16 convolutional neural network without
reducing the TPR and FPR. The results are shown in Table 4.

Table 4. Swin transformer vs. VGG16.

Model Swin Transformer+
Transfer Learning

VGG16+
Transfer Learning

TPR (%) FPR (%) TPR (%) FPR (%)
Burst 100 0 96.8 1.4
Nonburst 100 0 97.1 1.3
Calibration 100 0 99.6 1.8
Parameters 27, 550, 473 139, 357, 544

To demonstrate the advantages of our proposed method, we compare the model
parameters of the vision transformer, which extracts image features similarly to the Swin
transformer. Without reducing the TPR and FPR, the number of parameters of the Swin
transformer decreases by approximately 60% compared to the vision transformer. The
results are shown in Table 5.

Table 5. Swin transformer vs. vision transformer.

Method Swin Transformer+
Transfer Learning Vision Transformer

TPR (%) FPR (%) TPR (%) FPR (%)
Burst 100 0 99.5 0
Nonburst 100 0 100 0
Calibration 100 0 100 0.1
Parameters 27, 550, 473 85, 800, 963

To demonstrate the advantage of our proposed method when training the model, we
also compared the training time of the VGG16 model, the vision transformer model, and
the Swin transformer model. The results are shown in Figure 7 below.
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Experimental comparison demonstrates that the proposed method combining the Swin
transformer and transfer learning obtains excellent results for the classification of solar radio
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spectrum. Not only does the model training converge more stably, but the training time is
also shorter. Finally, we compared the experimental results of references [12,13,17,18] and
the current method, as shown in Table 6.

Table 6. Comparison results of all experiments.

Model Burst Nonburst Calibration

Swin transformer
TPR (%) 100 100 100
FPR (%) 0 0 0

Vision transformer
TPR (%) 99.5 100 100
FPR (%) 0 0 0.1

CGRU
TPR (%) 96.8 99.5 99.9
FPR (%) 0 1.5 0.3

VGG16
TPR (%) 96.8 97.1 99.6
FPR (%) 1.4 1.3 1.8

CNN
TPR (%) 84.6 90 99
FPR (%) 9.7 8.7 0.7

Multimodel
TPR (%) 70.9 80.9 96.8
FPR (%) 15.6 13.9 3.2

DBN
TPR (%) 67.4 86.4 95.7
FPR (%) 3.2 14.1 0.4

PCA+SVM
TPR (%) 52.7 0.1 68.3
FPR (%) 2.6 16.6 72.2

According to Table 6, all of our experimental results show a significant improvement
over those of previous researchers. This gain can be attributed to the advantages of the
Swin transformer in image processing, which draws on the features of Resnet for extracting
image features and employs the transformer as a tool to gradually extend the perceptual
domain from local to global.

5. Conclusions

In this paper, we propose a solar radio spectrum classification method combining a
Swin transformer and transfer learning. Experiments show that the self-attentive mech-
anism can extract the global features of images well, which gives the model a strong
generalization ability and greatly improves model classification. This paper can provide
reference for other astronomical image classification.
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