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Abstract: In this review, we briefly summarize the so-called effective fluid approach, which is a
compact framework that can be used to describe a plethora of different modified gravity models as
general relativity (GR) and a dark energy (DE) fluid. This approach, which is complementary to the
cosmological effective field theory, has several benefits, as it allows for the easier inclusion of most
modified gravity models into the state-of-the-art Boltzmann codes that are typically hard-coded for
GR and DE. Furthermore, it can also provide theoretical insights into their behavior since in linear
perturbation theory it is easy to derive physically motivated quantities such as the DE anisotropic
stress or the DE sound speed. We also present some explicit applications of the effective fluid
approach with f (R), Horndeski and scalar–vector–tensor models, namely, how this approach can be
used to easily solve the perturbation equations and incorporate the aforementioned modified gravity
models into Boltzmann codes so as to obtain cosmological constraints using Monte Carlo analyses.

Keywords: cosmology; dark energy; general relativity; modified gravity; large-scale structure; data
analysis

1. Introduction

At the end of the previous century, statistically significant evidence from observations
of Type Ia supernovae (SnIa) revealed that the universe is currently undergoing a phase
of accelerated expansion [1,2]. This accelerated expansion is typically attributed to a
cosmological constant Λ, which in addition to the standard cold dark matter (CDM)
scenario, can alleviate several deficiencies of the latter [3]. Together, these two components
form the ΛCDM model, which has been found to be in excellent agreement with recent
cosmological measurements [4,5]. Despite that, still the cosmological constant provides a
problem for theoretical physics due to the large discrepancy between the predicted and
observed values of Λ [6,7].

Since then, the ΛCDM model has become the standard cosmological model, as it
provides the best description of the observations on cosmological scales [4,5,8]. As a
consequence, many alternative explanations have emerged, and for the most part, there
are two main approaches. The first one, which is also more concretely based on high-
energy physics, is the one where dark energy (DE) models [9], due to as yet unobserved
scalar fields, dominate the energy budget of the universe at late times, and if their mass is
sufficiently light, they also lead to an accelerated expansion [10,11]. The second approach is
based on the assumption that covariant corrections to the theory of general relativity (GR)
can alter gravity, usually dubbed modified gravity (MG), at sufficiently large scales [12].
However, several cosmological probes in extra-galactic scales are in good agreement with
GR [13,14].

Overall, both approaches with either the DE or MG model provide realistic and plau-
sible explanations for the accelerated expansion of the universe at late times. Furthermore,
both kinds of models can also fit the cosmological observations at the background level
equally well to the ΛCDM model, as they can always go arbitrarily close to the cosmological

Universe 2023, 9, 13. https://doi.org/10.3390/universe9010013 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe9010013
https://doi.org/10.3390/universe9010013
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0002-0567-0324
https://doi.org/10.3390/universe9010013
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe9010013?type=check_update&version=2


Universe 2023, 9, 13 2 of 24

constant. Thus, these models are in principle degenerate at the background level, despite
laborious efforts to break the degeneracies with model independent approaches [15,16].
Fortuitously, the recent discovery of gravitational waves by the LIGO Collaboration [17]
has allowed the community to rule out several MG models [18–27].

One of the main remaining classes of MG models is the so-called f (R) models [28–31].
Additionally, in this case, the background evolution of the universe is degenerated with
DE models with a redshift-dependent equation of state w(z) [32–35]), although the linear
theory perturbations are in general vastly different and have a particular time and scale
dependence [36]. This is particularly important, as in general, the DE perturbations have
a definite effect on the growth rate of matter perturbations and the so-called growth
index γ [37]. However, at this point, current data do not favor any particular model f (R)
model [38,39].

This discussion obviously makes it clear that the perturbations of MG models are of great
importance, and several approaches exist in the literature, for example, see Refs. [33,34,36,40–56].
However, even though many authors consider MG models, they still sometimes fix the
background to that of the flat ΛCDM model, as, for example, was done in Ref. [57], but
model the evolution of the Newtonian potentials via two functions µ(a, k) and γ(a, k) which
take into account possible deviations from GR. These functions have been implemented in
a modified version of the code CAMB [58] called MGCAMB. Even though these parame-
terizations are only valid at late times, also new parameterizations which are valid at all
times have appeared for MGCAMB; see Ref. [59]. A definite flaw of this approach is that
the background expansion is fixed to that of the ΛCDM model, even though it is known
that for f (R) models, it is quite different as is, for example, the case for the Hu–Sawicki
model [40].

A complimentary approach was carried out in Ref. [60], where the author studied
perturbations of f (R), which are degenerate to the ΛCDM at the background level, by
utilizing the full set of covariant cosmological perturbation equations and modifying the
publicly available code CAMB, in a new version called FRCAMB. Furthermore, an unre-
leased extended version of the aforementioned code with arbitrary background expansion
rates was created by Ref. [61].

A totally different approach to modeling DE and MG models was proposed in the
form of the effective field theory (EFT) [62] and applied to cosmology in Ref. [63] in the
form of a code called EFTCAMB. The main advantage of this approach is that it does not
utilize any approximations, although the mapping of specific MG and DE models into the
EFT formalism is somewhat complicated in most cases. Some of the aforementioned codes,
namely MGCAMB and EFTCAMB, where used by the Planck Collaboration in Ref. [64]
to derive cosmological constraints of the MG and DE models. Overall, no conclusive and
statistically significant evidence for models beyond ΛCDM was found.

Finally, another interesting approach was followed by Ref. [65], where the authors
proposed the so-called equation of state (EOS) approach for perturbations, which maps
f (R) models to a DE fluid at both the background and linear perturbation order [42,49];
see also [66–68]. The EOS approach has been implemented in a modified version of the
code CLASS [69] in Ref. [70], but the problem with this approach is that the interpretation
of the perturbation variables is not clear.

In this work, we will also map the MG models as a DE fluid by utilizing the DE
equation of state w(a), the sound speed c2

s (a, k) and the anisotropic stress π(a, k), as these
variables are enough to describe any MG fluid at the background and linear order of
perturbations [71]. This has the advantage that it makes the comparison with popular DE
models, such as quintessence (w(a) ≥ −1, c2

s = 1, π(a, k) = 0) and K-essence (w(a), c2
s (a),

π(a, k) = 0), straightforward. This is clearly important, as in general, in MG models, the
anisotropic stress is non-zero π(a, k) 6= 0, whereas in standard quintessence, π(a, k) = 0 so
that any statistically significant deviation of the anisotropic stress from zero would be a
smoking gun for MG models [71,72].
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In order to simplify the analysis of the perturbation equations, the quasi-static and
sub-horizon approximations are frequently utilized. The former is based on the observation
that in matter domination, the Newtonian potentials are mostly constant, thus terms in the
linearized Einstein equations with potentials with time derivatives can, for the most part,
be safely neglected. The latter is based on the observation that only perturbations with
wavelengths shorter than the cosmological horizon are important. Some of the previous
codes, i.e., FRCAMB, EFTCAMB, CLASS_EOS_FR, did not, in fact, apply the sub-horizon
approximation to the perturbation equations, although the quasi-static approximation has
been studied extensively and implemented in MGCAMB [45,73].

It has been argued, see, for example, Ref. [73], that the quasi-static approximation
breaks down outside the DE sound-horizon k� k J , where k J(z) ≡ H(z)

(1+z)cs
is the physical

Jeans scale, rather than outside the cosmological horizon. However, in the aforementioned
analysis, the anisotropic stress was neglected, and a constant DE c2

s was utilized, both
assumptions being unrealistic in general.

This approach allows us, in general, to discriminate between traditional DE and MG
models, as they both have vastly different predictions for the equation of state w(a), the
sound speed c2

s (a, k), and the anisotropic stress π(a, k). The last two quantities are particu-
larly important, as they generally may leave observable traces in the large scale structure
(LSS), the cosmic microwave background radiation (CMB) and galaxy counts (GC) [36,74].
Furthermore, an important aspect of the anisotropic stress is that, in general, it can stabilize
the growth of matter perturbations in cases where that would be not possible [72,74–76],
while the sound speed affects the clustering of matter perturbations [77–79]. Both of these
effects are crucial, as they can be used to break the parameter degeneracies between the
models [80,81].

Even though the ΛCDM model seems to be in good overall agreement with the obser-
vations [4,5], this might easily change when forthcoming galaxy surveys, such as Euclid,
DESI and stage IV CMB experiments, arrive. Furthermore, there also seem to remain some
more issues with cosmological data, such as direct Hubble constant measurements, weak
lensing data, and cluster counts, where different aspects of DE models or MG models could
be important [74,82–90]; thus the effective fluid approach would be particularly useful.

This review is organized as follows: In Section 2, we present the theoretical framework
of the effective fluid approach and its application to f (R), Horndeski and scalar–vector–
tensor models. Then, in Section 3, we present several concrete applications of our approach,
namely, designer Horndeski models, the numerical solutions of the perturbation equations,
and the necessary modifications to Boltzmann codes so that comparison with the CMB data
and Monte Carlo analyses can be made. Finally, in Section 4, we summarize our effective
fluid approach and present our conclusions.

2. Theoretical Framework

Here, we now describe the theoretical framework necessary to illustrate the effective
fluid approach, especially related to the linear order of perturbation theory. On large scales,
the universe is homogeneous and isotropic, and thus it can be described at the background
level by a Friedmann–Lemaître–Robertson–Walker (FLRW) metric. In order to describe
the large scale structure of the Universe, we need to consider the perturbed FLRW metric,
which in the conformal Newtonian gauge is given by

ds2 = a(τ)2
[
−(1 + 2Ψ(~x, τ))dτ2 + (1− 2Φ(~x, τ))d~x2

]
, (1)

given in terms of the conformal time τ defined via dτ = dt/a(t) and we also follow the
notation of Ref. [91].1

On large cosmological scales, where the average density of the matter particle species
is very low with respect to terrestrial ones, namely on the order of ρ ∼ ρcr = 1.8788×
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10−26 h2 kg m−3, this means that we can assume the matter species can be described as ideal
fluids with an energy momentum tensor

Tµ
ν = Pδ

µ
ν + (ρ + P)UµUν, (2)

where ρ and P are the fluid density and pressure, while Uµ = dxµ
√
−ds2 is its velocity four

vector, given to first order by Uµ = 1
a(τ) (1−Ψ,~u), which satisfies UµUµ = −1, and we

defined ~u = ~̇x and ḟ ≡ d f
dτ .

Then, the elements of the energy momentum tensor are given to the linear order of
perturbations by

T0
0 = −(ρ̄ + δρ), (3)

T0
i = (ρ̄ + P̄)ui, (4)

Ti
j = (P̄ + δP)δi

j + Σi
j, (5)

where ρ̄, P̄ are background quantities, functions of time only. On the other hand, the
perturbations of the fluid’s density and pressure are given by δρ, δP and are functions of
(~x, τ). Finally, Σi

j ≡ Ti
j − δi

jT
k
k /3 is an anisotropic stress tensor.

In the context of GR, we find that the perturbed Einstein equations are given in the
conformal Newtonian gauge by [91]

k2Φ + 3
ȧ
a

(
Φ̇ +

ȧ
a

Ψ
)
= 4πGNa2δT0

0 , (6)

k2
(

Φ̇ +
ȧ
a

Ψ
)
= 4πGNa2(ρ̄ + P̄)θ, (7)

Φ̈ +
ȧ
a
(Ψ̇ + 2Φ̇) +

(
2

ä
a
− ȧ2

a2

)
Ψ +

k2

3
(Φ−Ψ) =

4π

3
GNa2δTi

i , (8)

k2(Φ−Ψ) = 12πGNa2(ρ̄ + P̄)σ, (9)

where the velocity is given by θ ≡ ikjuj and the anisotropic stress by (ρ̄ + P̄)σ ≡ −(k̂i k̂ j −
1
3 δij)Σij, which, as mentioned, is related to the traceless part of the energy momentum
tensor via Σi

j ≡ Ti
j − δi

jT
k
k /3 and where kj and k̂j are the wavenumbers and unit vectors in

Fourier/k-space of the perturbations.
To find the evolution equations for the perturbation variables, we use the energy–

momentum conservation Tµν
;ν = 0 conservation given by the Bianchi identities in GR as

δ̇ = −(1 + w)(θ − 3Φ̇)− 3
ȧ
a

(
c2

s − w
)

δ, (10)

θ̇ = − ȧ
a
(1− 3w)θ − ẇ

1 + w
θ +

c2
s

1 + w
k2δ− k2σ + k2Ψ, (11)

where we have defined the rest-frame sound speed of the fluid c2
s ≡ δP

δρ and its equation

of state parameter w ≡ P̄
ρ̄ . After eliminating θ from Equations (10) and (11), we find a

second-order equation for δ [74]:

δ̈ + (. . .)δ̇ + (. . .)δ = −k2
(
(1 + w)Ψ + c2

s δ− (1 + w)σ
)
+ . . .

= −k2
(
(1 + w)Ψ + c2

s δ− 2
3

π

)
+ . . . , (12)

where the dots (. . .) stand for a complicated expression, while the anisotropic stress of the
fluid is defined as π ≡ 3

2 (1 + w)σ. As can be seen, the k2 term behaves as a source driving
the perturbations of the fluid but as the potential scales as Ψ ∼ 1/k2 in relevant scales (due
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to the Poisson equation), the dominant terms are only the sound speed and the anisotropic
stress. Thus, we can define a parameter, namely an effective sound speed which controls
the stability of the perturbations, as [74]

c2
s,eff = c2

s −
2
3

π/δ. (13)

Clearly, c2
s,eff not only characterizes the propagation of perturbations, but it also defines

the clustering properties of the fluid on sub-horizon scales; see Ref. [74]. In general, the
sound speed c2

s can be both time- and scale-dependent, i.e., c2
s = c2

s (τ, k), for example, as
noted in Ref. [92], the sound speed in small scales for a scalar field φ (in the conformal
Newtonian gauge) is given by c2

s,Œ '
k2

4a2m2
φ

, where mφ is the mass of the scalar field.

However, the sound speed is equal to unity only in the scalar field’s rest-frame. See,
for example, Section 11.2 of Ref. [92]. In f (R) theories, as they in fact can be viewed as a
non-minimally coupled scalar field in the Einstein frame, see for example Refs. [73,93], the
sound speed is also scale-dependent, when we are not in the rest frame of the equivalent
DE fluid.

In the end, it is common to use the scalar velocity perturbation V ≡ ik jT
j
0/ρ = (1+w)θ,

instead of the fluid velocity θ, as the former can remain finite when the equation of state
−1, see for example Ref. [94]. Then, Equations (10) and (11) become

δ′ = 3(1 + w)Φ′ − V
a2H
− 3

a

(
δP
ρ̄
− wδ

)
, (14)

V′ = −(1− 3w)
V
a
+

k2

a2H
δP
ρ̄

+ (1 + w)
k2

a2H
Ψ− 2

3
k2

a2H
π, (15)

where a prime ′ means a derivative with respect to the scale factor a, while H(t) = da/dt
a is

the cosmic-time Hubble parameter.

2.1. f (R) Models

The simplest application of the effective fluid approach in theories beyond GR, is, of
course, in the context of f (R) models. These can of course be studied directly, as was done
in Ref. [36] or as an the effective DE fluid [65]. Specifically, the modified Einstein–Hilbert
action is given by

S =
∫

d4x
√
−g
[

1
2κ

f (R) + Lm

]
, (16)

where Lm is the matter Lagrangian and κ ≡ 8πGN. Varying the action of Equation (16)
with respect to the metric, we obtain the field equations [36]:

FGµν −
1
2
( f (R)− R F)gµν +

(
gµν�−∇µ∇ν

)
F = κ T(m)

µν , (17)

where we have defined F ≡ f ′(R), Gµν as the usual Einstein tensor and T(m)
µν is the energy–

momentum tensor of the matter fields.
However, moving all the modified gravity contributions to the right hand side, we can

rewrite the field equations as the Einstein equations being equal to the sum of the energy
momentum tensors of the matter fields and that of an effective DE fluid [49]:

Gµν = κ
(

T(m)
µν + T(DE)

µν

)
, (18)

where we have defined

κT(DE)
µν ≡ (1− F)Gµν +

1
2
( f (R)− R F)gµν −

(
gµν�−∇µ∇ν

)
F. (19)
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As f (R) theories are also diffeomorphism-invariant, one can show that the effective
energy momentum tensor given by Equation (19) also satisfies a conservation equation:

∇µT(DE)
µν = 0. (20)

Writing the theory in this way implies that the Friedmann equations are the same as
in GR [91]:

H2 =
κ

3
a2(ρ̄m + ρ̄DE), (21)

Ḣ = −κ

6
a2[(ρ̄m + 3P̄m) + (ρ̄DE + 3P̄DE)

]
, (22)

albeit with the addition of an effective DE term on the right-hand side described by density
and pressure:

κP̄DE =
f
2
−H2/a2 − 2FH2/a2 +HḞ/a2 − Ḣ/a2 − FḢ/a2 + F̈/a2, (23)

κρ̄DE = − f
2
+ 3H2/a2 − 3HḞ/a2 + 3FḢ/a2, (24)

where H = ȧ
a is the conformal Hubble parameter. From Equations (23) and (24), we can

define an effective DE equation of state for the f (R) models as

wDE =
−a2 f + 2

(
(1 + 2F)H2 −HḞ + (2 + F)Ḣ − F̈

)
a2 f − 6(H2 −HḞ + FḢ)

, (25)

which agrees with the one given in Ref. [36].
Using the effective energy momentum tensor of Equation (19), we can define the

effective DE pressure, density and velocity perturbations as

δPDE

ρ̄DE
= (...)δR + (...) ˙δR + (...) ¨δR + (...)Ψ + (...)Ψ̇ + (...)Φ + (...)Φ̇, (26)

δDE = (...)δR + (...) ˙δR + (...)Ψ + (...)Φ + (...)Φ̇, (27)

VDE ≡ (1 + wDE)θDE

= (...)δR + (...) ˙δR + (...)Ψ + (...)Φ + (...)Φ̇, (28)

while the difference of the two Newtonian potentials Φ and Ψ is given by

Φ−Ψ =
F,R

F
δR. (29)

Thus, the anisotropic stress is given by [91]

ρ̄DEπDE = −3
2
(k̂i k̂ j −

1
3

δij)Σij

=
1
κ

k2

a2 (F,RδR + (1− F)(Φ−Ψ)). (30)

The Quasi-Static and Sub-Horizon Approximations

As can been seen, the expressions for the DE perturbations given by Equations (26)–(30)
are somewhat cumbersome and can be significantly simplified, without much loss of accu-
racy, by using the sub-horizon and quasi-static approximations. The former implies that
only the modes deep in the Hubble radius (k2 � a2H2) are important, while with the latter,
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we neglect terms with time derivatives. As an example, we find that the perturbation of the
Ricci scalar is

δR = −12(H2 + Ḣ)

a2 Ψ− 4k2

a2 Φ +
2k2

a2 Ψ− 18H
a2 Φ̇− 6H

a2 Ψ̇− 6Φ̈
a2 , (31)

' −4k2

a2 Φ +
2k2

a2 Ψ, (32)

where in the last line we applied the two approximations. Then, from the perturbed Einstein
equations, we find the modified Poisson equations [36]:

Ψ = −4πGN
a2

k2
Geff
GN

ρ̄mδm, (33)

Φ = −4πGN
a2

k2 Qeffρ̄mδm, (34)

where Geff and Qeff are both equal to unity in GR and are given by [36]:

Geff/GN =
1
F

1 + 4 k2

a2
F,R
F

1 + 3 k2

a2
F,R
F

, (35)

Qeff =
1
F

1 + 2 k2

a2
F,R
F

1 + 3 k2

a2
F,R
F

, (36)

where we have set F = d f (R)
dR , F,R = d2 f (R)

dR2 . Alternatively, we can also write the Poisson
equation for Φ in the effective fluid approach, where we can introduce the DE density ρDE
and obtain

− k2

a2 Φ = 4πGN(ρ̄mδm + ρ̄DEδDE)

= 4πGNQeffρ̄mδm, (37)

which implies that

ρ̄mδm =
1

Qeff − 1
ρ̄DEδDE. (38)

which allows us to determine the evolution of the DE density perturbation directly.
With these approximations, we can also directly derive a second-order differential

equation, when ignoring neutrinos, for the time evolution of the matter density contrast [36]:

δ′′m(a) +
(

3
a
+

H′(a)
H(a)

)
δ′m(a)− 3

2
Ωm0Geff/GN

a5H(a)2/H2
0

δm(a) = 0, (39)

where derivatives with respect to the scale factor a are denoted by a prime ′. Finally, we
can also define the DE anisotropic parameters

η ≡ Ψ−Φ
Φ

'
2 k2

a2
F,R
F

1 + 2 k2

a2
F,R
F

, (40)

γ ≡ Φ
Ψ
'

1 + 2 k2

a2
F,R
F

1 + 4 k2

a2
F,R
F

. (41)

Applying the sub-horizon and quasi-static approximations, and using the Poisson
equations, we can estimate the effective density, pressure and velocity perturbations of the
DE fluid as
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δPDE

ρ̄DE
' 1

3F
2 k2

a2
F,R
F + 3(1 + 5 k2

a2
F,R
F )F̈k−2

1 + 3 k2

a2
F,R
F

ρ̄m

ρ̄DE
δm, (42)

δDE ' 1
F

1− F + k2

a2 (2− 3F) F,R
F

1 + 3 k2

a2
F,R
F

ρ̄m

ρ̄DE
δm, (43)

VDE ≡ (1 + wDE)θDE

' Ḟ
2F

1 + 6 k2

a2
F,R
F

1 + 3 k2

a2
F,R
F

ρ̄m

ρ̄DE
δm, (44)

while the DE anisotropic stress parameter πDE is given by

πDE =
k2

a2 (Φ−Ψ)

κ ρ̄DE

' 1
F

k2

a2
F,R
F

1 + 3 k2

a2
F,R
F

ρ̄m

ρ̄DE
δm

'
k2

a2
F,R
F

1− F + k2

a2 (2− 3F) F,R
F

δDE. (45)

As can be seen, the DE anisotropic stress can also be written in the more general form
as

πDE(a) =
k2

a2 f1(a)

1 + k2

a2 f2(a)
δDE(a), (46)

where we have defined the functions f1(a) =
F,R

F(1−F) and f2(a) =
(2−3F)F,R

F(1−F) , which are
reminiscent of Model 2 in Ref. [74].

Now using Equations (42) and (43), we find that effective DE sound speed of the fluid
is given at this level of the approximation by

c2
s,DE '

1
3

2 k2

a2
F,R
F + 3(1 + 5 k2

a2
F,R
F )F̈k−2

1− F + k2

a2 (2− 3F) F,R
F

, (47)

and the DE effective sound speed is

c2
s,eff ≡ c2

s,DE −
2
3

πDE/δDE

'
(1 + 5 k2

a2
F,R
F )F̈k−2

1− F + k2

a2 (2− 3F) F,R
F

. (48)

As can be seen from the previous expressions, for the ΛCDM model ( f (R) = R− 2Λ),
we have F = 1 and F,R = 0 implying wDE = −1 and (δPDE, δρDE, πDE) = (0, 0, 0) as
it should.

In the case of f (R) models, such as the Hu and Sawicki (HS, hereafter), where the
DE equation of state wDE crosses wDE(a) = −1, one would expect singularities to appear
because of the 1 + w term in the denominator in Equation (11) [95]. However, we can
absorb the 1 + w term by introducing VDE = (1 + wDE)θDE, as this combination remains
finite for well-behaved f (R) models, as seen by inspecting Equation (44).

As a final remark, it should be noted that the effect DE fluid described here and in
Equation (19), in fact, violates the energy conditions of GR [96], which can be expressed via
the DE density and pressure:
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NEC =⇒ ρ̄DE + P̄DE ≥ 0,

WEC =⇒ ρ̄DE ≥ 0 and ρ̄DE + P̄DE ≥ 0,

DEC =⇒ ρ̄DE ≥ 0 and ρ̄DE ≥ |P̄DE|,
SEC =⇒ ρ̄DE + 3P̄DE ≥ 0 and ρ̄DE + P̄DE ≥ 0,

where NEC, WEC, DEC and SEC stand for the null, weak, dominant and strong energy
conditions. As the inequality ρ̄DE ≥ 0 still holds, then the NEC, WEC and DEC conditions
can be mapped equivalently to the constraint wDE ≥ −1. However, as can be seen in
Figure 1, in the case of the HS model, the NEC, WEC and DEC are violated for redshifts
z & 1.65.

b=0

b=0.005

b=0.020

b=0.050

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.02

-1.01

-1.00

-0.99

-0.98

z

w
D
E
(z
)

(HS)

Figure 1. The evolution of the effective DE equation of state wDE(z) for the HS model for Ωm0 = 0.3,
n = 1 and various values of the b parameter which controls the deviations from the ΛCDM model
(see Ref. [97]), with b ∈ [0, 0.05]. The equation of state crosses wDE = −1 at z ∼ 1.65, while at early
times, we have 1 + wDE < 0, thus violating the SEC. Image from Ref. [97].

2.2. Horndeski Models

The most general Lorentz-invariant extension of GR in four dimensions with a non-
minimally coupled scalar field and second-order equations of motion is the so-called
Horndeski theory [98]. This theory contains several free functions that, in appropriate
limits, reduce to several well-known DE and MG models. However, the recent observation
of a binary neutron star and its accompanying optical counterpart, has produced an
amazingly tight constraint on the speed of propagation of gravitational waves (GWs) [99]:

−3 · 10−15 ≤ cg/c− 1 ≤ 7 · 10−16. (49)

This constraint implies that the functional forms of two of the free Horndeski functions
are then limited to be [20]

G4X ≈ 0, G5 ≈ const., (50)

as seen from the formula for the GW speed of propagation [100]

c2
T =

G4 − XG5φ − XG5X φ̈

G4 − 2XG4X − X
(
G5X φ̇H − G5φ

) . (51)
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Thus, in the case of the effective fluid approach, we will only focus on the remaining
parts of the Horndeski Lagrangian, in particular

S[gµν, φ] =
∫

d4x
√
−g

[
4

∑
i=2
Li
[
gµν, φ

]
+ Lm

]
, (52)

where we defined

L2 = G2(φ, X) ≡ K(φ, X), (53)

L3 = −G3(φ, X)�φ, (54)

L4 = G4(φ)R, (55)

and φ is a scalar field, X ≡ − 1
2 ∂µφ∂µφ is its kinetic term, and �φ ≡ gµν∇µ∇νφ; K, G3 and

G4 are free functions of φ and X.2 Finally, we also assume Lm includes the matter fields.
These specific terms correspond to different dynamics, for example K(φ, X) contains

the k-essence and quintessence theory but does not contribute to the perturbations [24].
On the other hand, the term G3(φ, X) contains the so-called kinetic gravity braiding (KGB)
models, with G3X 6= 0 corresponding to mixing of the kinetic term of the scalar and the
metric, with G3(φ) only modifying the background as a dynamical DE. The last term,
namely G4, in fact, the one that contains the non-minimal coupling of the scalar to the
Ricci curvature and contains the most scalar-tensor type theories. To give some concrete
examples, action (52) can easily be seen to reduce to the following subclasses:

• f(R) theories: These are equivalent to a non-minimally coupled scalar field written
as [101]

K = −R f,R − f
2κ

, (56)

G4 =
φ

2
√

κ
, (57)

where φ ≡ f,R√
κ

has units of mass and we have set f,R ≡
d f
dR

.

• Brans–Dicke theories: These are the archetype of a scalar–tensor theory, with

K =
ωBDX
φ
√

κ
−V(φ), (58)

G4 =
φ

2
√

κ
, (59)

where V(φ) is the potential and ωBD is the well-known Brans–Dicke parameter [102].
• Kinetic gravity braiding: These models contain a mixing of the scalar and tensor

kinetic terms [103] and are given by

K = K(X), (60)

G3 = G3(X), (61)

G4 =
1

2κ
. (62)

• The non-minimal coupling model: This is given in terms of a coupling constant ζ
as [104]

K = ω(φ)X−V(φ), (63)

G4 =

(
1

2κ
− ζφ2

2

)
, (64)

G3 = 0. (65)
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In the case of inflation, the Higgs-like inflation model is given by ω(φ) = 1 and
V(φ) = λ

(
φ2 − ν2)2/4.

• Cubic Galileon: The well-known models are given by [104]

K = −X, (66)

G3 ∝ X, (67)

G4 =
1

2κ
, (68)

Then, varying the action of Equation (52) with respect to the metric and the scalar field
φ, we can obtain the equations of motion. First, performing a variation, we find [100]

δ

(√
−g

4

∑
i=2
Li

)
=
√
−g

[
4

∑
i=2
G i

µνδgµν +
4

∑
i=2

(
Pi

φ −∇µ Ji
µ

)
δφ

]
+ total deriv., (69)

from which the field equations follow. The gravitational field equations are

4

∑
i=2
G i

µν =
1
2

T(m)
µν , (70)

where we have set

G2
µν ≡ −1

2
KX∇µφ∇νφ− 1

2
Kgµν, (71)

G3
µν ≡ 1

2
G3X�φ∇µφ∇νφ +∇(µG3∇ν)φ−

1
2

gµν∇λG3∇λφ, (72)

G4
µν ≡ G4Gµν + gµν

(
G4φ�φ− 2XG4φφ

)
− G4φ∇µ∇νφ− G4φφ∇µφ∇νφ, (73)

and T(m)
µν is the energy–momentum tensor of matter. When K = G3 = 0 and G4 = 1

2κ , we
can see that the Equations (70) reduce to those of GR. Similarly, the equations of motion of
the scalar field are given by

∇µ

(
4

∑
i=2

Ji
µ

)
=

4

∑
i=2

Pi
φ, (74)

where again, we have set

P2
φ ≡ Kφ (75)

P3
φ ≡ ∇µG3φ∇µφ, (76)

P4
φ ≡ G4φR, (77)

J2
µ ≡ −L2X∇µφ (78)

J3
µ ≡ −L3X∇µφ + G3X∇µX + 2G3φ∇µφ, (79)

J4
µ ≡ 0. (80)

Here, it should be noted that while it would seem that the term ∇µ Ji
µ leads to higher

than second-order derivatives, in fact it does not as was first noted in Ref. [100]. In fact, this
is due to the fact that the commutations of higher derivatives can be shown to cancel out as

∇µ(�φ∇µφ +∇µX) = (�φ)2 −
(
∇α∇βφ

)2 − Rµν∇µφ∇νφ. (81)

Performing some algebra, it is possible to show that the scalar field Equation (74) can
be reduced to [97]
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−∇µKX∇µφ− KX�φ− Kφ + 2G3φ�φ +∇µG3φ∇µφ

+∇µG3X�φ∇µφ +∇µG3X∇µX + G3X

[
(�φ)2−(

∇α∇βφ
)2 − Rµν∇µφ∇νφ

]
− G4φR = 0. (82)

For the sake or brevity, in what follows, we will denote by X the kinetic term of the
scalar field evaluated at the background and by δX, its linear order perturbation.

2.2.1. Background Expansion

At the background level, assuming an unperturbed flat FRLW metric, it is easy to
show that the modified Friedmann equations are given by

E ≡
4

∑
i=2
Ei = −ρm, (83)

P ≡
4

∑
i=2
Pi = 0, (84)

where we have defined the quantities

E2 ≡ 2XKX − K, (85)

E3 ≡ 6Xφ̇HG3X − 2XG3φ, (86)

E4 ≡ −6H2G4 − 6Hφ̇G4φ, (87)

P2 ≡ K, (88)

P3 ≡ −2X
(
G3φ + φ̈G3X

)
, (89)

P4 ≡ 2
(

3H2 + 2Ḣ
)

G4 + 2(φ̈ + 2Hφ̇)G4φ + 2φ̇2G4φφ. (90)

Gathering all the terms, we can write down the explicit equations as

2XKX − K + 6Xφ̇HG3X − 2XG3φ − 6H2G4 − 6Hφ̇G4φ + ρm = 0, (91)

K− 2X
(
G3φ + φ̈G3X

)
+ 2
(

3H2 + 2Ḣ
)

G4 + 2(φ̈ + 2Hφ̇)G4φ + 2φ̇2G4φφ = 0. (92)

Again, in the limit of K = G3 = 0 and G4 = 1
2κ , these are reduced to the standard Fried-

mann equations as expected. By rearranging and collecting the terms in Equations (91) and (92),
we can define the density parameter of an effective DE fluid

ρ̄DE = φ̇2KX − K + 3φ̇3HG3X − φ̇2G3φ + 3H2
(

1
κ
− 2G4

)
− 6Hφ̇G4φ, (93)

and its effective pressure:

P̄DE = K− φ̇2(G3φ + φ̈G3X
)
+ 2φ̇2G4φφ + 2(φ̈ + 2Hφ̇)G4φ −

(
3H2 + 2Ḣ

)(1
κ
− 2G4

)
, (94)

thus reducing the modified Friedmann Equations (91) and (92) to their traditional GR form:

3H2 = κ(ρ̄DE + ρm), (95)

−
(

2Ḣ + 3H2
)
= κP̄DE, (96)

Using Equations (93) and (94) then allows us to also define the effective DE equation
of state as
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wDE =
K− φ̇2(G3φ + φ̈G3X

)
−
(
3H2 + 2Ḣ

)( 1
κ − 2G4

)
+ 2(φ̈ + 2Hφ̇)G4φ + 2φ̇2G4φφ

φ̇2KX − K + 3φ̇3HG3X − φ̇2G3φ + 3H2
(

1
κ − 2G4

)
− 6Hφ̇G4φ

. (97)

We can also write down the explicit scalar field Equation (82) as [105]

Kφ −
(
KX − 2G3φ

)
(φ̈ + 3Hφ̇)− KφX φ̇2 − KXX φ̈φ̇2 + G3φφφ̇2 + G3φX φ̇2(φ̈− 3Hφ̇)−

3G3X

(
2Hφ̇φ̈ + 3H2φ̇2 + Ḣφ̇2

)
− 3G3XX Hφ̇3φ̈ + 6G4φ

(
2H2 + Ḣ

)
= 0, (98)

and by setting

Jµ ≡
4

∑
i=2

Ji
µ, (99)

Pφ ≡
4

∑
i=2

Pi
φ (100)

it is possible to rewrite the scalar field Equation (74) as a conservation equation

∇µ Jµ = Pφ, (101)

from which it is easy to deduce the existence of a Noether symmetry under constant shifts
of the field φ→ φ + c, given by [103]

Jµ =
(
L2X + L3X − 2G3φ

)
∇µφ− G3X∇µX. (102)

using the fact that that X = 1
2 φ̇2, and then we find that the conserved quantity is given by

J ≡ J0 = φ̇
(
KX − 2G3φ + 3Hφ̇G3X

)
, (103)

so that the scalar field equation reduces to a much simpler form

J̇ + 3HJ = Pφ. (104)

When Pφ = 0, then the solution is simply

J =
Jc

a3 , (105)

for a constant Jc. Here we can also classify some particular subcases: first, when Jc = 0,
then the scalar field is on the attractor solution, while when Jc 6= 0, then the system is not
on the attractor and new dynamics may arise [97].

2.2.2. Linear Perturbations

By using the perturbed FLRW metric of Equation (1) with the field Equation (70), we
can obtain the linear theory predictions for the perturbations [106,107]

A1Φ̇ + A2 ˙δφ + A3
k2

a2 Φ + A4Ψ +

(
A6

k2

a2 − µ

)
δφ− ρmδm = 0, (106)

C1Φ̇ + C2 ˙δφ + C3Ψ + C4δφ− aρmVm

k2 = 0, (107)

B1Φ̈ + B2δ̈φ + B3Φ̇ + B4 ˙δφ + B5Ψ̇ + B6
k2

a2 Φ +

(
B7

k2

a2 + 3ν

)
δφ +

(
B8

k2

a2 + B9

)
Ψ = 0, (108)

G4(Ψ + Φ) + G4φδφ = 0. (109)
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Again, in the case when K = G3 = 0 and G4 = 1
2κ , we can see that Equations (106)–(109)

reduce to the GR limit given by Equations (6)–(9) with no anisotropic stress. On the other
hand, if we consider Equation (82), we similarly find the perturbed equations of motion for
the scalar field

D1Φ̈ + D2δ̈φ + D3Φ̇ + D4 ˙δφ + D5Ψ̇ +

(
D7

k2

a2 + D8

)
Φ +

(
D9

k2

a2 −M2
)

δφ

+

(
D10

k2

a2 + D11

)
Ψ = 0, (110)

where the full expressions for the variables Ai, µ, M, ν, Bi, Ci and Di can be found in
Appendix B of Ref. [108].

2.2.3. The Effective Fluid Approach for Horndeski Models

Following a similar approach as in the case of the f (R) models, we can now apply the
effective fluid approach to the Horndeski models as well. We already showed this for the
background effective DE density and pressure given by Equations (93) and (94), so in what
follows, we also do the same for the linear theory of these models, under the sub-horizon
and quasi-static approximations.

Obviously, the first step is to define an effective DE fluid by moving all MG contri-
butions to the right-hand side of the field equations and define the DE effective energy–
momentum tensor TDE

µν . Doing so with the gravitational field Equation (70), we find

Gµν = κ
(

T(m)
µν + TDE

µν

)
,

κTDE
µν = Gµν − 2κ

4

∑
i=2
G i

µν. (111)

By considering the decomposition of the TDE
µν tensor into its components, given

by Equations (3)–(5), we can extract the expressions for the DE effective perturbations in
the pressure, density, and velocity. Doing so, we find that the latter have the following
general structure:

δPDE

ρ̄DE
= (. . .)δφ + (. . .) ˙δφ + (. . .)δ̈φ + (. . .)Ψ + (. . .)Ψ̇

+ (. . .)Φ + (. . .)Φ̇ + (. . .)Φ̈, (112)

δDE = (. . .)δφ + (. . .) ˙δφ + (. . .)Ψ + (. . .)Φ + (. . .)Φ̇, (113)

VDE = (. . .)δφ + (. . .) ˙δφ + (. . .)Ψ + (. . .)Φ + (. . .)Φ̇. (114)

where the dots (. . .) indicate long expressions.
Following the same procedure as before and using the sub-horizon and quasi-static

approximations for Equations (106), (108) and (110) we find [108]

A3
k2

a2 Φ + A6
k2

a2 δφ− κρmδm ' 0, (115)

B6
k2

a2 Φ + B8
k2

a2 Ψ + B7
k2

a2 δφ ' 0, (116)

D7
k2

a2 Φ +

(
D9

k2

a2 −M2
)

δφ + D10
k2

a2 Ψ ' 0. (117)

As B7 = 4G4φ and B6 = B8 (see, for example, Appendix B of Ref. [108]), then
we see that Equation (116) leads to Φ = −Ψ when G4 is a constant, implying no DE
anisotropic stress. Then by solving Equations (115)–(117) for Φ, Ψ and δφ, we obtain the
Poisson equations
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k2

a2 Ψ = −κ

2
Geff
GN

ρ̄mδ, (118)

k2

a2 Φ =
κ

2
Qeffρ̄mδ, (119)

δφ =
(A6B6 − B6B7)ρmδm(

A2
6B6 − 2A6B6B7 + B2

6D9
) k2

a2 − B2
6 M2

, (120)

where the parameters Geff and Qeff are Newton’s effective constant and the lensing variable

Geff
GN

=
2
[(

B6D9 − B2
7
) k2

a2 − B6M2
]

(
A2

6B6 + B2
6D9 − 2A6B7B6

) k2

a2 − B2
6 M2

, (121)

Qeff =
2
[
(A6B7 − B6D9)

k2

a2 + B6M2
]

(
A2

6B6 + B2
6D9 − 2A6B7B6

) k2

a2 − B2
6 M2

. (122)

We also define the DE anisotropic stress parameters as

η ≡ Ψ + Φ
Φ

=
(A6 − B7)B7

k2

a2

(A6B7 − B6D9)
k2

a2 + B6M2
, (123)

γ ≡ −Φ
Ψ

=
(A6B7 − B6D9)

k2

a2 + B6M2(
B2

7 − B6D9
) k2

a2 + B6M2
, (124)

which are in agreement with the ones found in Ref. [106]. For these models, Equation (39)
is still valid, albeit with Geff given by Equation (121).

2.3. Scalar–Vector–Tensor Models

An interesting extension of Horndeski models is scalar–vector–tensor (SVT) mod-
els, which also include a vector degree of freedom and also include generalized Proca
theories [109]. The most general SVT Lagrangian is given by [110]

L ≡
6

∑
i=2
LSVT

i +
5

∑
i=2
LST

i + Lm, (125)

where the Lagrangians LST
i include the scalar–tensor terms, while the Lagrangians LSVT

i
contain the scalar–vector–tensor terms.

The SVT models in fact contain a scalar field ϕ, a vector field Aµ and the gravitational
field gµν, which are related to each other via the LSVT

i terms, given by

LSVT
2 = f2(ϕ, X1, X2, X3, F, Y1, Y2, Y3), (126)

LSVT
3 = f3(ϕ, X3)gµνSµν + f̃3(φ, X3)Aµ AνSµν, (127)

LSVT
4 = f4(ϕ, X3)R + f4X3(ϕ, X3)

{(
∇µ Aµ

)2 −∇µ Aν∇ν Aµ
}

, (128)

LSVT
5 = f5(ϕ, X3)Gµν∇µ Aν +Mµν

5 ∇µ∇ν ϕ +N µν
5 Sµν

− 1
6

f5X3(ϕ, X3)
{(
∇µ Aµ

)3 − 3
(
∇µ Aµ

)
∇ρ Aσ∇σ Aρ + 2∇ρ Aσ∇τ Aρ∇σ Aτ

}
, (129)

LSVT
6 = f6(ϕ, X1)LµναβFµνFαβ + f̃6(ϕ, X3)LµναβFµνFαβ

+Mµναβ
6 ∇µ∇α ϕ∇ν∇β ϕ +N µναβ

6 SµαSνβ, (130)

where for the sake of brevity, we defined gξ ≡
∂g
∂ξ , denoting the derivative of a g with

respect to the scalar ξ. In the previous equations, we also defined the kinetic terms and
couplings between the scalar and vector fields as
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X1 ≡ −
1
2
∇µ ϕ∇µ ϕ, X2 ≡ −

1
2

Aµ∇µ ϕ, X3 ≡ −
1
2

Aµ Aµ. (131)

As usual, the antisymmetric tensor Fµν and its dual F̃µν are related to Aµ via

Fµν ≡ ∇µ Aν −∇ν Aµ, F̃µν ≡ 1
2

εµναβFαβ, (132)

where εµναβ ≡ εµναβ
√−g , εµναβ is the Levi–Civita symbol. Furthermore, the Lorentz invariant

quantities can be constructed from Fµν as

F ≡ −1
4

FµνFµν,

Y1 ≡ ∇µ ϕ∇ν ϕFµαFν
α, Y2 ≡ ∇µ ϕAνFµαFν

α, Y3 ≡ Aµ AνFµαFν
α, (133)

which vanish when Aµ → ∇µπ, where π is a scalar field. Moreover, the symmetric tensor
Sµν is related to Aµ as

Sµν ≡ ∇µ Aν +∇ν Aµ, (134)

while the tensorsM and N are given by

Mµν
5 ≡ G

h5
ρσ F̃µρ F̃νσ, N µν

5 ≡ G h̃5
ρσ F̃µρ F̃νσ, (135)

Mµναβ
6 ≡ 2 f6X1(ϕ, X1)F̃µν F̃αβ, N µναβ

6 ≡ 1
2

f̃6X3(ϕ, X1)F̃µν F̃αβ, (136)

where

Gh5
ρσ ≡ h51(ϕ, Xi)gρσ + h52(ϕ, Xi)∇ρ ϕ∇σ ϕ + h53(ϕ, Xi)Aρ Aσ + h54(ϕ, Xi)Aρ∇σ ϕ, (137)

G h̃5
ρσ ≡ h̃51(ϕ, Xi)gρσ + h̃52(ϕ, Xi)∇ρ ϕ∇σ ϕ + h̃53(ϕ, Xi)Aρ Aσ + h̃54(ϕ, Xi)Aρ∇σ ϕ. (138)

Finally, the Lµναβ tensor is given by

Lµναβ ≡ 1
4

εµνρσεαβγδRρσγδ. (139)

As always, the scalar–tensor interactions are contained in the Horndeski theory dis-
cussed in the previous section:

LST
2 = G2(ϕ, X1), (140)

LST
3 = −G3(ϕ, X1)�ϕ, (141)

LST
4 = G4(ϕ, X1)R + G4X1(ϕ, X1)

{
(�ϕ)2 −∇µ∇ν ϕ∇ν∇µ ϕ

}
, (142)

LST
5 = G5(ϕ, X1)Gµν∇µ∇ν ϕ (143)

− 1
6

G5X1(ϕ, X1)
{
(�ϕ)3 − 3(�ϕ)∇µ∇ν ϕ∇ν∇µ ϕ + 2∇µ∇σ ϕ∇σ∇ρ ϕ∇ρ∇µ ϕ

}
,

where the terms fi, f̃i, h5i, h̃5i, and Gi are free functions.
It should be noted that even though this theory contains several free and a priori

undetermined functions, in practice, it has been significantly constrained by the recent GW
discovery [17].

The Effective Fluid Approach for SVT Theories with Non-Vanishing Anisotropic Stress

Following the same methodology as before, the quasi-static and sub-horizon approxi-
mations can be applied to the SVT model in order to determine the DE fluid parameters in
the effective fluid approach. These were found by Ref. [110] to be
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δρDE =
k6

a6 Z1 +
k4

a4 Z2 +
k2

a2 Z3 + Z4

k6

a6 Z5 +
k4

a4 Z6 +
k2

a2 Z7
δρm, δPDE =

1
3Z12

k6

a6 Z8 +
k4

a4 Z9 +
k2

a2 Z10 + Z11

k6

a6 Z5 +
k4

a4 Z6 +
k2

a2 Z7
δρm,

aρ̄DE

k2 VDE =
k4

a4 Z13 +
k2

a2 Z14 + Z15

k6

a6 Z5 +
k4

a4 Z6 +
k2

a2 Z7
δρm, ρ̄DEπDE =

k2

a2

k2

a2 (W14 −W11) + (W15 −W12)

k4

a4 W3 +
k2

a2 W4 + W5
δρm,

c2
s,DE =

1
3Z12

k6

a6 Z8 +
k4

a4 Z9 +
k2

a2 Z10 + Z11

k6

a6 Z1 +
k4

a4 Z2 +
k2

a2 Z3 + Z4

, (144)

where the coefficients Zi (i = 1, . . . , 15) are given in Appendix E of [110]. As in previous
cases, the sound speed given in Equation (144) does not on its own determine the stability
of sub-horizon perturbations, but in fact the relevant quantity is the effective sound speed
given, as in the previous cases, by the difference of the DE sound speed and a term
proportional to the anisotropic stress π = 3

2 (1 + w)σ. The effective sound speed again in
this case is defined as [74]

c2
s,eff ≡ c2

s,DE −
2
3

ρ̄DEπDE

δρDE
. (145)

3. The Effective Fluid Approach and the Boltzmann Codes
3.1. Designer Horndeski

One particularly interesting model to demonstrate the effective fluid approach is a
class of designer Horndeski parameterization, discovered in Ref. [108] and rediscovered
later in Ref. [111]. These models have a background expansion exactly equal to that of the
ΛCDM model, but also have different perturbations, and are particularly useful in searches
for deviations from ΛCDM [35,97].

For example, in a Horndeski model with just the G2 and G3 terms, i.e., of the KGB
type, we can use the modified Friedmann equation

−H(a)2 − K(X)

3
+ H2

0 Ωm(a) + 2
√

2X3/2H(a)G3X +
2
3

XKX = 0. (146)

and the scalar field conservation equation

Jc

a3 − 6XH(a)G3X −
√

2
√

XKX = 0 (147)

to solve for the unknown functions, while demanding that H(a) corresponds to the of the
ΛCDM model. In the previous equations, Jc is a constant which quantifies our deviation
from the attractor, as in the case of the KGB model [105]. Solving Equations (146) and (147)
for (G3X(X), K(X)) yields [108]

K(X) = −3H2
0 ΩΛ,0 +

Jc
√

2XH(X)2

H2
0 Ωm,0

− Jc
√

2XΩΛ,0

Ωm,0

G3X(X) = −2Jc H′(X)

3H2
0 Ωm,0

, (148)

where we wrote H = H(X), i.e., in terms of the kinetic term. In fact, Equation (148) gives
us a whole family of designer models that behave as ΛCDM at the background level but
have different perturbations. For example, assuming that X = c0

H(a)n , where c0 > 0 and
n > 0, we find [108]
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G3(X) = −
2Jcc1/n

0 X−1/n

3H2
0 Ωm,0

, (149)

K(X) =

√
2Jcc2/n

0 X
1
2−

2
n

H2
0 Ωm,0

− 3H2
0 ΩΛ,0 −

√
2Jc
√

XΩΛ,0

Ωm,0
.

As can be seen, this designer model, designated as HDES hereafter, has a nice and
smooth limit to the ΛCDM model and it also recovers GR when Jc ∼ 0.

3.2. Numerical Solutions of the Perturbation Equations

Here, we now present the numerical solutions of the perturbation equations in the
effective fluid approach, using as an example the HDES model, given by Equation (149).
In particular, we present the following:

• First, we consider the numerical solution of the full system of equations given by
Equations (106)–(109), which we call “Full-DES”.

• Second, we consider the numerical solution of the effective fluid approach given by
Equations (14) and (15), which we call “Eff. Fluid”.

• Third, we consider the numerical solution of the growth factor Equation (39) using
the appropriate expression for Geff, which we call “ODE-Geff”.

• Finally, we also consider the ΛCDM model.

As a concrete example, we set c̃0 = 1, n = 2, Ωm,0 = 0.3, k = 300H0 and σ8,0 = 0.8,
unless otherwise specified. Then we show the evolution of the growth-rate parameter
f σ8(z) for the HDES model on the left panel of Figure 2. Specifically, we show the “Full-
DES” brute-force numerical solution, the effective fluid approach, the ΛCDM model and
the numerical solution of the Geff equation and as can be seen, the agreement between all
approaches is excellent. On the other hand, in the right panel of Figure 2, we show the
percent difference between the “Full-DES” brute-force numerical solution and the effective
fluid approach (magenta dot dashed line) and the numerical solution of the growth factor
Equation (39) (green dotted line).

ΛCDM
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Figure 2. (Left) The theoretical predictions for the f σ8(z) parameter of the HDES model with n = 2,
J̃c = 5 · 10−2 and σ8,0 = 0.8 versus the f σ8 data compilation from Ref. [112]. (Right) The percent
difference between the “Full-DES" brute-force numerical solution and the effective fluid approach
(magenta dot dashed line) and the numerical solution of the growth factor equation (39) (green dotted
line). Image from Ref. [108].

3.3. Modifications to CLASS and the ISW Effect

Finally, we now show how the effective fluid approach can be implemented into a
Boltzmann code, such as CLASS [69]. Our modifications to the code are denoted as EF-
CLASS [97,108], while we also compare with the hi_CLASS code [113], which solves the full
set of dynamical equations, but at the cost of significantly more complicated modifications.

In our case, however, the modifications for the effective fluid approach are much easier,
as we only require the DE velocity and the anisotropic stress [97,108]. In the particular
case where we consider the HDES model, then there is the further simplification that the
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anisotropic stress πDE is also zero, as can be seen from Equation (109), since G4φ = 0. Thus,
to modify CLASS, we only require the expression for the DE velocity, which for n = 1 is
given by

VDE '
(
−14
√

2
3

Ω−3/4
m,0 J̃c H0 a1/4

)
ρ̄m

ρ̄DE
δm. (150)

Next, we show the results of applying Equation (150) to the CLASS code and compar-
ing with hi_CLASS. This is shown in the left panel of Figure 3, where the low-` multipoles
of the TT CMB spectrum for a flat universe with Ωm,0 = 0.3, ns = 1, As = 2.3 · 10−9, h = 0.7
and (c̃0, J̃c, n) = (1, 2 · 10−3, 1) can be seen. Our EFCLASS code is denoted by the green
line, hi_CLASS is given by the orange line, while the blue line corresponds to the ΛCDM
model. As can be seen, the agreement between EFCLASS and hi_CLASS is remarkable
and even with our simple modification, has roughly ∼ 0.1% accuracy across all multipoles
(shown on the right panel of Figure 3).
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Figure 3. (Left) The TT CMB spectrum for Ωm,0 = 0.3, ns = 1, As = 2.3 · 10−9, h = 0.7 and
(c̃0, J̃c, n) = (1, 2 · 10−3, 1). The results of the EFCLASS code are denoted by the green line, those of
hi_CLASS by an orange line and for the ΛCDM with a blue line. (Right) The percent difference of
our code with hi_CLASS. Image from Ref. [108].

Finally, we also compare our modifications of the effective fluid approach with a direct
calculation of the integrated Sachs–Wolfe (ISW) effect. Specifically, the temperature power
spectrum is given by [114]

CISW
` = 4π

∫ dk
k

IISW
` (k)2 9

25
k3Pζ(k)

2π2 , (151)

where IISW
` (k) is a kernel that depends on the line of sight integral of the growth and a

bessel function, while Pζ(k) is the primordial power spectrum, given by the primordial
power spectrum times a transfer function [97,114]

k3Pζ

2π2 = As

(
k
k0

)ns−1
T(k)2, (152)

where As is the primordial amplitude, k0 is the pivot scale and T(k) is the Bardeen, Bond,
Kaiser and Szalay (BBKS) transfer function [115].

We show in Figure 4 a comparison between CLASS and hi_CLASS for the ΛCDM
model (left) and the HDES models (right), for the same parameters as in Figure 3. Overall,
there is good agreement at all multipoles, except for ` = 2, as the BBKS formula is only 10%
accurate on large scales or equivalently, small multipoles.
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Figure 4. Plots of the ISW effect and a comparison with CLASS/hi_CLASS for the ΛCDM model
(left) and the HDES model (right), for the same parameters as in Figure 3. Image from Ref. [108].

4. Conclusions

In this review, we briefly presented the so-called effective fluid approach, which is
a framework that allows for treating modified gravity models as GR with an ideal DE
fluid, described by an equation of state, a sound speed, an anisotropic stress and DE
pressure, density and velocity perturbations. While in general MG models have very
complicated evolution equations, they are significantly simplified under the effective fluid
approach with the addition of the quasi-static and sub-horizon approximations, as they can
be written in terms simple DE fluid equations. However, it should noted that in general
it is not possible to discriminate modified gravity models from GR plus DE exotic fluids,
as one may always move the modifications of gravity to the right-hand side of the field
equations and rewrite them as the Einstein equations with extra matter/DE contributions.

Thus, the main advantage of this approach, as highlighted in this work, is that it
allows us to easily including most MG models in the Boltzmann codes, as the latter are
typically fine-tuned and hard-coded for GR and a DE fluid. Here, we presented the main
formalism and the results for the DE fluid quantities for several MG models, including
the f (R), Horndeski and scalar–vector–tensor models, in all of which we presented the
critical quantities that describe the evolution of the perturbations and the effective DE
fluid equations.

We also described some specific applications, i.e., the numerical solutions of the fluid
equations for growth factor, the designer Horndeski model and how our approach can be
implemented in the Boltzmann codes. In the case of the HDES model, we found that with
our effective fluid approach and just a simple modification, the agreement between our
modified EFCLASS code and the more complicated, but exact, hi_CLASS code, is roughly
∼0.1% accuracy across all multipoles, as shown on the right panel of Figure 3.

Finally, we should also stress that an open point of debate in the community is
the proper application of the quasi-static approximation, especially in more complicated
models, as is extensively discussed in Ref. [116]. Even though this issue does not affect our
effective fluid approach, it is a point that should be addressed prior to the advent of the
next-generation surveys, in order to avoid unwanted theoretical errors in the predictions.
Still, as demonstrated in this work, the effective fluid approach can provide a powerful
framework, covering most viable MG models and allowing for a simple (and educational)
way to modify the Boltzmann codes, which are necessary in data analyses.
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Abbreviations
The following abbreviations are used in this manuscript:

BBKS Bardeen, Bond, Kaiser and Szalay (transfer function)
CAMB Code for Anisotropies in the Microwave Background
CDM Cold Dark Matter
CLASS Cosmic Linear Anisotropy Solving System
CMB Cosmic Microwave Background
DE Dark Energy
DM Dark Matter
EFCLASS Effective Fluid CLASS
EOS Equation of State
FLRW Friedmann–Lemaître–Robertson–Walker metric
GC Galaxy Counts
GR General Relativity
GW Gravitational Wave
ISW Integrated Sachs-Wolfe effect
HDES Horndeski Designer model
HS Hu–Sawicki model
KGB Kinetic Gravity Braiding model
ΛCDM The cosmological constant (Λ) and cold dark matter (CDM) model
LSS Large-Scale Structure
MG Modified Gravity
SVT Scalar–Vector–Tensor

Notes
1 In this review, our conventions are: (-+++) for the metric signature, the Riemann and Ricci tensors are given by Vb;cd −Vb;dc =

VaRa
bcd and Rab = Rs

asb. The Einstein equations are Gµν = +κTµν for κ = 8πGN
c4 and GN is the bare Newton’s constant, while in

what follows, we set the speed of light c = 1.
2 For the sake of brevity, we now set in what follows Gi ≡ Gi(φ, X), Gi,X ≡ GiX ≡ ∂Gi

∂X and Gi,φ ≡ Giφ ≡ ∂Gi
∂φ where i = 2, 3, 4.
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