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Abstract: We confront f (T, TG) gravity, with big bang nucleosynthesis (BBN) requirements. The
former is obtained using both the torsion scalar, as well as the teleparallel equivalent of the Gauss–
Bonnet term, in the Lagrangian, resulting to modified Friedmann equations in which the extra
torsional terms constitute an effective dark energy sector. We calculate the deviations of the freeze-out
temperature Tf , caused by the extra torsion terms in comparison to ΛCDM paradigm. Then, we
impose five specific f (T, TG) models and extract the constraints on the model parameters in order
for the ratio |∆Tf /Tf | to satisfy the observational BBN bound. As we find, in most of the models
the involved parameters are bounded in a narrow window around their general relativity values as
expected, asin the power-law model, where the exponent n needs to be n . 0.5. Nevertheless, the
logarithmic model can easily satisfy the BBN constraints for large regions of the model parameters.
This feature should be taken into account in future model building.
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1. Introduction

There are two motivations that lead to the construction of modifications of gravity.
The first is purely theoretical, namely, to construct gravitational theories that do not suffer
from the renormalizability problems of general relativity and thus are closer to a quantum
description [1,2]. The second is cosmological, namely, to construct gravitational theories
that at a cosmological framework can describe the early and late accelarating eras [3–7] ,
as well as to alleviate various observational tensions [8].

There is a rich literature on modified and extended theories of gravity. One may start
from the Einstein–Hilbert Lagrangian and add extra terms, resulting in f (R) gravity [9–11],
in f (G) gravity [12–14], in f (G, T ) theories [15], in f (P) gravity [16–18] in Lovelock grav-
ity [19,20], in Weyl gravity [21], in Horndeski/Galileon scalar-tensor theories [22,23], etc.
Nevertheless, one can follow a different approach and add new terms to the equivalent tor-
sional formulation of gravity, resulting in f (T) gravity [24,25], in f (T, TG) gravity [26–28],
in f (T, B) gravity [29,30], in scalar-torsion theories [31], etc. Torsional gravity has been
proven to exhibit interesting phenomenology, both at the cosmological framework [32–57]
and at the level of local, spherically symmetric solutions [58–75].
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One crucial test that every modification of gravity should pass that is usually un-
derestimated in the literature is the confrontation with Big Bang Nucleosynthesis (BBN)
data [76–80]. Specifically, the amount of modification needed in order to fulfill the late-time
cosmological requirements must not at the same time spoil the successes of early-time
cosmology, and among them the BBN phase. Hence, whatever are the advantages of
a specific modified theory of gravity, if it cannot satisfy the BBN constraints it must be
excluded [81–84].

In the present manuscript, we are interested in investigating the BBN epoch in a
universe governed by f (T, TG) gravity. In particular, we desire to study various specific
models that are known to lead to viable phenomenology and extract constraints on the
involved model parameters. The plan of the article is as follows: In Section 2, we briefly
present f (T, TG) gravity, extracting the field equations and applying them to a cosmological
framework. In Section 3, we summarize the BBN formalism and provide the difference
in the freeze-out temperature caused by the extra torsion terms. Then, in Section 4, we
investigate five specific f (T, TG) models, confronting them with the observational BBN
bounds. Finally, Section 5 is devoted to the Conclusions.

2. f (T , TG) Gravity

In this section, we briefly review f (T, TG) gravity [26–28]. As usual in torsional
formulation of gravity, we use the tetrad field as the dynamical variable, which forms an
orthonormal basis at the tangent space. In a coordinate basis, one can relate it with the
metric through gµν(x) = ηABeA

µ (x)eB
ν (x), where ηAB = diag(−1, 1, 1, 1), and with Greek

and Latin letters, denoting coordinate and tangent indices, respectively. Applying the
Weitzenböck connection Wλ

νµ ≡ eλ
A ∂µeA

ν [25], the corresponding torsion tensor is

Tλ
µν ≡Wλ

νµ −Wλ
µν = eλ

A (∂µeA
ν − ∂νeA

µ ) , (1)

and then the torsion scalar is obtained through the contractions

T ≡ 1
4

TρµνTρµν +
1
2

TρµνTνµρ − T ρ
ρµ Tνµ

ν , (2)

and incorporates all information of the gravitational field. Used as a Lagrangian, the torsion
scalar gives rise to exactly the same equations with general relativity, which is why the
theory was named the teleparallel equivalent of general relativity (TEGR).

Similarly to curvature gravity, where one can construct higher-order invariants such
as the Gauss–Bonnet one, in torsional gravity one may construct higher-order torsional
invariants, too. In particular, since the curvature (Ricci) scalar and the torsion scalar
differ by a total derivative, in [26] the authors followed the same recipe and extracted a
higher-order torsional invariant that differs from the Gauss–Bonnet one by a boundary
term, namely

TG =
(

Kκ
ϕπKϕλ

ρKµ
χσKχν

τ − 2Kκλ
πKµ

ϕρKϕ
χσKχν

τ

+2Kκλ
πKµ

ϕρKϕν
χKχ

στ + 2Kκλ
πKµ

ϕρKϕν
σ,τ

)
δ

πρστ
κλµν , (3)

where Kµν
ρ ≡ − 1

2

(
Tµν

ρ − Tνµ
ρ − T µν

ρ

)
is the contortion tensor, and the generalized δ

πρστ
κλµν

denotes the determinant of the Kronecker deltas. Note that similarly to the Gauss–Bonnet
term, the teleparallel equivalent of the Gauss–Bonnet term TG is also a topological invariant
in four dimensions.

Using the above torsional invariants, one can construct the new class of f (T, TG)
gravitational modifications, characterized by the action [26]

S =
M2

P
2

∫
d4x e f (T, TG) , (4)
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with M2
P the reduced Planck mass. The general field equations of the above action can

be found in [26], where one can clearly see that the theory is different from f (R), f (R, G),
and f (T) gravitational modifications, and thus it corresponds to a novel class of modified
gravity.

In this work, we are interested in the cosmological applications of f (T, TG) gravity.
Hence, we consider a spatially flat Friedmann–Robertson–Walker (FRW) metric of the form

ds2 = −dt2 + a2(t)δijdxidxj , (5)

with a(t) the scale factor, which corresponds to the diagonal tetrad

eA
µ = diag(1, a(t), a(t), a(t)). (6)

In this case, the torsion scalar (2) and the teleparallel equivalent of the Gauss–Bonnet
term (3) become

T = 6H2 (7)

TG = 24H2(Ḣ + H2), (8)

with H = ȧ
a the Hubble parameter and where dots denote derivatives with respect to t.

The general field equations for the FRW geometry are [27]

f − 12H2 fT − TG fTG + 24H3 ˙fTG = 2M−2
P (ρr + ρm) (9)

f − 4
(
3H2 + Ḣ

)
fT − 4H ˙fT − TG fTG

+
2

3H
TG ˙fTG + 8H2 ¨fTG = −2M−2

P (pr + pm) , (10)

with ˙fT = fTT Ṫ + fTTG ṪG, ˙fTG = fTTG Ṫ + fTGTG ṪG, and ¨fTG = fTTTG Ṫ2 + 2 fTTGTG ṪṪG +
fTGTGTG Ṫ 2

G + fTTG T̈ + fTGTG T̈G, and where fTT , fTTG ,... denote multiple partial differentia-
tions with respect to T and TG. Note that in the above equations, we have also introduced
the radiation and matter sectors, corresponding to perfect fluids with energy densities
ρr, ρm and pressures pr, pm, respectively. Lastly, we mention that the above equations for
f (T, TG) = −T + Λ recover the TEGR and general relativity equations, where Λ is the
cosmological constant.

As we can see, we can re-write the Friedmann Equations (9) and (10) in the usual form

3M2
PH2 = (ρr + ρm + ρDE) (11)

−2M2
PḢ = (ρr + pr + ρm + pm + ρDE + pDE), (12)

where we have defined the effective dark energy density and pressure as

ρDE ≡
M2

P
2

(
6H2− f+12H2 fT+TG fTG−24H3 ˙fTG

)
, (13)

pDE ≡
M2

P
2

[
−2(2Ḣ + 3H2) + f − 4

(
Ḣ + 3H2) fT

−4H ˙fT − TG fTG +
2

3H
TG ˙fTG + 8H2 ¨fTG

]
, (14)

of gravitational origin.

3. Big Bang Nucleosynthesis Constraints

Big bang nucleosynthesis (BBN) was a process that took place during radiation era.
Let us first present the framework, which provides the BBN constraints through standard
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cosmology [76–80]. The first Friedmann equation from Einstein–Hilbert action can be
written as

3H2 = M−2
P ρ, (15)

where ρ = ρr + ρm. In the radiation era, the radiation sector dominates; hence, we can write

H2 ≈
M−2

P
3

ρr ≡ H2
GR. (16)

In addition, it is known that the energy density of relativistic particles is

ρr =
π2

30
g∗T4, (17)

where g∗ ∼ 10 is the effective number of degrees of freedom and T is the temperature. Thus,
if we combine (16) with (17) we obtain

H(T) ≈
(

4π3g∗
45

)1/2 T2

MPl
, (18)

where MPl = (8π)
1
2 MP = 1.22× 1019 GeV is the Planck mass.

During the radiation era, the scale factor evolves as a(t) ∼ t1/2. Therefore, using the
relation of the Hubble parameter with the scale factor, we find that in the radiation era
the Hubble parameter evolves as H(t) = 1

2t . Combining the last one with (18), we find

the relation between temperature and time. Thus, we have
1
t
'
(

32π3g∗
90

)1/2 T2

MPl
(or

T(t) ' (t/sec)−1/2 MeV).
During the BBN, we have interactions between particles. For example, we have

interactions between neutrons, protons, electrons, and neutrinos, namely, n + νe → p + e−,
n + e+ → p + ν̄e, and n→ p + e− + ν̄e. We name the conversion rate from a particle A to
particle B as λBA. Hence, the conversion rate from neutrons to protons is λpn, and it is equal
to the sum of the three interaction conversion rates written above. Therefore, the calculation
of the neutron abundance arises from the protons-neutron conversion rate [78,79]

λpn(T) = λ(n+νe→p+e−) + λ(n+e+→p+ν̄e) + λ(n→p+e−+ν̄e) (19)

and its inverse λnp(T), and therefore for the total rate we have λtot(T) = λnp(T) + λpn(T).
Now, we assume that the various particle (neutrino, electron, and photon) temperatures
are the same and low enough in order to use the Boltzmann distribution instead of the
Fermi-Dirac one, and we neglect the electron mass compared to the electron and neutrino
energies. The final expression for the conversion rate is [81–84]

λtot(T) = 4A T3(4!T2 + 2× 3!QT + 2!Q2) , (20)

where Q = mn −mp = 1.29× 10−3 GeV is the mass difference between neutron and proton
and A = 1.02× 10−11 GeV−4.

We proceed in calculating the corresponding freeze-out temperature. This will arise
comparing the universe expansion rate 1

H with λtot(T). In particular, if 1
H � λtot(T),

namely, if the expansion time is much smaller than the interaction time, we can consider
thermal equilibrium [76,77]. On the contrary, if 1

H � λtot(T) then particles do not have
enough time to interact so they decouple. The freeze-out temperature Tf , in which the

decoupling takes place, corresponds to H(Tf ) = λtot

(
Tf

)
' cq T5

f , with cq ≡ 4A 4! '

9.8× 10−10 GeV−4 [81–84]. Now, if we use (18) and H(Tf ) = λtot

(
Tf

)
' cq T5

f , we acquire
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Tf =

(
4π3g∗

45M2
Plc

2
q

)1/6

∼ 0.0006 GeV. (21)

Using modified theories, we obtain extra terms in energy density due to the modifica-
tion of gravity. The first Friedmann Equation (11) during radiation era becomes

3M2
PH2 = ρr + ρDE, (22)

where ρDE must be very small compared to ρr in order to be in accordance with observations.
Hence, we can write (22) using (16) as

H = HGR

√
1 +

ρDE
ρr

= HGR + δH, (23)

where HGR is the Hubble parameter of standard cosmology. Thus, we have
∆H =

(√
1 + ρDE

ρr
− 1
)

HGR, which quantifies the deviation from standard cosmology,
i.e., form HGR. This will lead to a deviation in the freeze-out temperature ∆Tf . Since

HGR = λtot ≈ cq T5
f and

√
1 + ρDE

ρr
≈ 1 + 1

2
ρDE
ρr

, we easily find

(√
1 +

ρDE
ρr
− 1
)

HGR = 5cq T4
f ∆Tf , (24)

and finally
∆Tf

Tf
' ρDE

ρr

HGR

10cq T5
f

, (25)

where we used that ρDE << ρr during BBN era. This theoretically calculated
∆Tf
Tf

should
be compared with the observational bound∣∣∣∣∣∆Tf

Tf

∣∣∣∣∣ < 4.7× 10−4 , (26)

which is obtained from the observational estimations of the baryon mass fraction converted
to 4He [85–91].

4. BBN Constraints on f (T , TG) Gravity

In this section, we will apply the BBN analysis in the case of f (T, TG) gravity. Let us
mention here that in general, in modified gravity, inflation is not straightaway driven by an
inflaton field, but the inflaton is hidden inside the gravitational modification, i.e., it is one
of the extra scalar degrees of freedom of the modified graviton. Hence, in such frameworks
reheating is usually performed gravitationally, and the reheating and BBN temperatures
may differ from standard ones. Nevertheless, in the present work we make the assumption
that we do not deviate significantly from the successful concordance scenario, in order to
examine whether f (T, TG) gravity can at first pass BBN constraints or not. Clearly a more
general analysis should be performed in a separate project, to cover more radical cases too.
In the following, we will examine five specific models that are considered to be viable in
the literature.

4.1. Model I: f = −T + β1
√

T2 + β2TG

Firstly, we investigate the model f = −T + β1
√

T2 + β2TG [28]. Since in our analysis
we focus on the radiation era where the Hubble parameter H(t) = 1

2t , we can express
the derivatives of the Hubble parameter as powers of the Hubble parameter itself, e.g.,
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Ḣ = −2H2 and Ḧ = 8H3. Additionally, in order to eliminate one model parameter we will
apply the Friedmann equation at present time, requiring

ΩDE0 ≡ ρDE0/(3M2
PH2

0), (27)

where ΩDE is the dark energy density parameter and with the subscript “0” denoting the
value of a quantity at present time. Doing so, and inserting f = −T + β1

√
T2 + β2TG into

(13) and then into (25), we finally find

∆Tf

Tf
= (10cqT3

f )
−1ζH0ΩDE0(3− 2β2)

−3/2

·
(

9− 15β2 + 6β2
2

)[
(3 + 2β2)H2

0 + 2β2Ḣ0

]3/2

·
[(

9 + 3β2 − 2β2
2

)
H4

0 + 9β2H2
0 Ḣ0 + β2

2H0Ḧ0

]−1
, (28)

where

ζ ≡
(

4π3g∗
45

) 1
2

M−1
Pl. . (29)

In this expression, we insert [92]

ΩDE0 ≈ 0.7, H0 = 1.4× 10−42 GeV, (30)

and the derivatives of the Hubble function at present are calculated through Ḣ0 = −H2
0(1 + q0)

and Ḧ0 = H3
0(j0 + 3q0 + 2) with q0 = −0.503 the current decceleration parameter of the Uni-

verse [92], and j0 = 1.011 the current jerk parameter [93,94]. Hence, Ḣ0 ≈ −9.7× 10−85 GeV2

and Ḧ0 ≈ 4.1× 10−126 GeV3.
Using the BBN constraint (26), we conclude that β2 ∈ (−2.98,−2.93) ∪ (0.99, 1.01),

where we have used (27) to find

β1 =
√

3H0ΩDE0

[
(3 + 2β2)H2

0 + 2β2Ḣ0

]3/2

·
[(

9 + 3β2 − 2β2
2

)
H4

0 + 9β2H2
0 Ḣ0 + β2

2H0Ḧ0

]−1
. (31)

Using the above range of β2, we find that β1 ∈
(
2.09× 10−26, 0.001

)
∪ (1.380, 1.384).

In Figure 1, we depict |∆Tf /Tf | appearing in (28) versus the model parameter β2.
As we can see, the allowed range is within the vertical dashed lines.

-5 -4 -3 -2 -1 0 1 2

-0.4

-0.2

0.0

0.2

0.4

β2

ΔTf

Tf

Figure 1. |∆Tf /Tf | vs. the model parameter β2 (blue solid curve), for Model I: f = −T +

β1
√

T2 + β2TG. The allowed range of β2, where (26) is satisfied (horizontal red dashed line), is
within the vertical dashed lines.
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4.2. Model II: f = −T + a1T2 + a2T
√
|TG|

Let us now study the case f = −T + a1T2 + a2T
√
|TG|, where a1, a2 are the free

parameters of the theory [28]. In this case, we find

∆Tf

Tf
=

3
10

c−1
q ζ3Tf

{
ΩDE0

3H2
0
−
√

6a2

[√
H2

0 + Ḣ0

6H0

(
6 −

2Ḣ2
0 − H0Ḧ0

H2
0 + Ḣ0

)
− 1

]}
. (32)

Using the constraint (26), and according to (32), ∆Tf /Tf is linear in a2; we deduce that
(32) is valid for a small region around 2.7× 1083 GeV−2, where we have used the constraint
from current cosmological era (27)

a1 =
ΩDE0

18H2
0
−
√

6a2

√
H2

0 + Ḣ0

36H0

[
6−

2Ḣ2
0 − H0Ḧ0(

H2
0 + Ḣ0

)2

]
. (33)

Using the above value of a2, we find that a1 = −1.1× 1083 GeV−2.

4.3. Model III: f =−T + β1
√

T2+β2TG + a1T2 + a2T
√
|TG|

Now, we analyze the model f = −T + β1
√

T2 + β2TG + a1T2 + a2T
√
|TG|, where we

have four free parameters, namely, β1, β2, a1, a2 [28]. In order to simplify the analysis, we
will impose the constraint −2.99 < β2 < 3

2 , obtained above.
In this case, we find

∆Tf

Tf
= −

(
60cqT3

f

)−1{
3
√

12β1(3−2β2)
−1/2(1+β2−2β1)

− 18
{ΩDE0

3H2
0

+

√
12β1

18H3
0

[
(3 + 2β2)H2

0 + 2β2Ḣ0

]−1/2

·
[
(3−6β1+2β2)H2

0 + 2β2Ḣ0

]
− a2√

6H0

√
H2

0 + Ḣ0

[
6−

2Ḣ2
0 − H0Ḧ0

(H2
0 + Ḣ0)2

]
+
√

6a2

−
√

12β1β2

18H3
0

[
(3 + 2β2)H2

0 + 2β2Ḣ0

]−3/2

·
[
(3 + 2β2)H4

0 + (9 + 8β2)H2
0 Ḣ0

+β2

(
4Ḣ2

0 + H0Ḧ0

)]}
ζ2T4

f

}
ζ.

Observing that expression (34) is linear in a2, and using the constraint (26) and two
values for β1 from the aforementioned range we extracted in model I, i.e., β1 = 1.4 and
β2 = 1, we find that (32) is valid for a small region around the point −3.5× 1083 GeV−2.
Using another set of values (β1 = 0.001, β2 ≈ −2.96), we find that (32) is valid for a small
region around the point −5.3× 1083 GeV−2, where we have used
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a1 =
ΩDE0

18H2
0
+

√
12β1

108H3
0

[
(3 + 2β2)H2

0 + 2β2Ḣ0

]−1/2

[
(3− 6β1 + 2β2)H2

0 + 2β2Ḣ0

]
−
√

6
36

a2

H0

√
H2

0 + Ḣ0

(
6−

2Ḣ2
0 − H0Ḧ0(

H2
0 + Ḣ0

)2

)

−
√

12β1β2

108H3
0

[
(3 + 2β2)H2

0 + 2β2Ḣ0

]−3/2

×
[
(3 + 2β2)H4

0 + (9 + 8β2)H2
0 Ḣ0 + β2

(
4Ḣ2

0 + H0Ḧ0

)]
, (34)

from (27). Imposing the above range of a2, we find that a1 = 1.4× 1083 GeV−2 for the first
case and a1 = 2.2× 1083 GeV−2 for the second.

4.4. Model IV: f = −T + β1
(
T2 + β2TG

)n

As a next model, we consider the power-law model f = −T + β1
(
T2 + β2TG

)n, where
the free parameters are β1, β2, n. In this model, we use values of β1, β2 in order to constrain
the power n. In this case, repeating the above steps, we find

∆Tf

Tf
=
(
10cq

)−1ΩDE0H2(1−n)
0 ζ4n−1T8n−7

f (3− 2β2)
n−2

·
[
(3 + 2β2)H2

0 + 2β2Ḣ0

]2−n[(
9− 12β2 + 4β2

2

)
−2n

(
18− 39β2 + 18β2

2

)
+ 16n2β2(2β2 − 3)

]
·
{(

9 + 12β2 + 4β2
2

)
H4

0 + 4β2(3 + 2β2)H2
0 Ḣ0 + 4β2

2Ḣ2
0

−2n
[(

18 + 15β2 + 2β2
2

)
H4

0 + β2(27 + 12β2)H2
0 Ḣ0

+6β2
2Ḣ2

0 + 2β2
2H0Ḧ0

]
+ 2n2β2

[
4(3 + 2β2)H2

0 Ḣ0

+4β2Ḣ2
0 + 2β2H0Ḧ0

]}−1
. (35)

We use the constraint (26) and four values for β2 from the range we extracted in model
I above. For β2 ≈ −2.9, we find that the constraint (26) is valid for n . 0.5. Similarly,
using the value β2 = −2, we find n . 0.47, while for β2 = −1 we find n . 0.46. Finally,
for β2 = 1, we find n . 0.47. We mention that we have used the relation

β1 = −6(12)−nH2(1−n)
0 ΩDE0

[
(3+2β2)H2

0+2β2Ḣ0

]2−n

·
{(

9 + 12β2 + 4β2
2

)
H4

0 + 4β2(3 + 2β2)H2
0 tH0 + 4β2

2Ḣ2
0

−2n
[(

18 + 15β2 + 2β2
2

)
H4

0 + β2(27 + 12β2)H2
0 Ḣ0

+6β2
2Ḣ2

0 + 2β2
2H0Ḧ0

]
+ 2n2β2

[
4(3 + 2β2)H2

0 Ḣ0

+4β2Ḣ2
0 + 2β2H0Ḧ0

]}−1
, (36)

which arises from (27).
Now, taking β2 ≈ −2.9, n . 0.5 we find β1 ∈

[
−6.1× 10−82, 0.0007

]
GeV2(1−2n).

Similarly, for β2 = −2, n . 0.47 we find β1 ∈
[
−3.5× 10−74, 5.9× 10−6] GeV2(1−2n), while

using β2 = −1, n . 0.46 we find β1 ∈
[
−4.4× 10−58, 1.2× 10−6] GeV2(1−2n). Finally,

for β2 = 1, n . 0.47 we find β1 ∈
[
−6.4× 10−8, 9.0× 10−6] GeV2(1−2n).
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In order to provide the above results in a more transparent way, in Figure 2, we present
|∆Tf /Tf | from (35) in terms of the model parameter n. As we observe, n needs to be n . 0.5
to pass the BBN constraint (26).

0.0 0.2 0.4 0.6 0.8 1.0
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

n

ΔTf

Tf

Figure 2. |∆Tf /Tf | vs. the model parameter n (blue solid curve), for Model IV: f = −T +

β1
(
T2 + β2TG

)n with β2 ≈ −2.90, and the upper bound for |∆Tf /Tf | from (26) (red dashed line).
As we observe, constraints from BBN require n . 0.5.

4.5. Model V: f = −T + α ln β1
(
T2 + β2TG

)n

In the last model we examine is the logarithmic one, characterized by f = −T +
α ln β1

(
T2 + β2TG

)n, where β1, β2, n are the free parameters. Repeating the above analysis,
we find

∆Tf

Tf
=
(

10cqζT7
f

)−1
H2

0 ΩDE0

{
ln β1 + n[ln 12

+4 ln
(

ζT2
f

)
+ ln(3−2β2)

−2(3−2β2)
−2
(

18−39β2+18β2
2

)]}
·
{

ln β1 + n
{

ln 12 + 2 ln(H0) + ln[(3+2β2)H2
0+2β2Ḣ0]

−2
[
(3 + 2β2)H2

0 + 2β2Ḣ0

]−2[(
18 + 15β2 + 2β2

2

)
H4

0

+β2(27+12β2)H2
0 Ḣ0+6β2

2Ḣ2
0+2β2

2H0Ḧ0

]}}−1
, (37)

where using relation (27) we find

α = −6H2
0 ΩDE0

{
ln β1 + n

{
ln 12 + 2 ln(H0)

+ ln
[
(3+2β2)H2

0+2β2Ḣ0

]
−2
[
(3+2β2)H2

0 + 2β2Ḣ0

]−2[
(18+15β2+2β2

2)H4
0

+ β2(27+12β2)H2
0 Ḣ0 + 6β2

2Ḣ2
0 + 2β2

2H0Ḧ0

]}}−1
. (38)

We consider the values β1 = 0.001 GeV−4n, β2 ≈ −2.9, and we find that n is allowed
to take every value apart from−0.0003 and a very small region around it since (37) diverges.
Moreover, α is allowed to take every value apart from 0, which is the value it obtains using
the above narrow window for n. Using the same considerations as the above models, we
find that for β1 = 0.001 GeV−4n, β2 = −2 the value of n is allowed to take every value
apart from −0.012 and a every value but 0. Similarly, for β1 = 0.001 GeV−4n, β2 = −1 we
find that n 6= −0.018 and a 6= 0, while for β1 = 0.001 GeV−4n, β2 = 1 we find n 6= −0.018
and a 6= 0.

As an example, in Figure 3 we present |∆Tf /Tf | from (37) as a function of the model
parameter n. The model parameter n is allowed to take all possible values except those
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values around a very small region centered at −0.0003, in which (37) diverges. Hence, we
conclude that the logarithmic f (T, TG) model can easily satisfy the BBN bounds.

-0.0005 -0.0004 -0.0003 -0.0002 -0.0001 0.0000
0

2.×10-35

4.×10-35

6.×10-35

8.×10-35

n

ΔTf

Tf

Figure 3. |∆Tf /Tf | vs. the model parameter n (blue solid curve), for Model V: f = −T +

α ln β1
(
T2 + β2TG

)n, choosing β1 = 0.001 GeV−4n, β2 ≈ −2.7. The vertical dashed line at n− 0.0003
denotes the point where (37) diverges.

5. Conclusions

Modified gravity aims to provide explanations for various epochs of the universe
evolution, and at the same time to improve the renormalizability issues of general relativity.
Nevertheless, despite the specific advantages at a given era of cosmological evolution, one
should be very careful not to spoil the other, well understood and significantly constrained,
phases, such as the big bang nucleosynthesis (BBN) one.

In particular, there are many modified gravity models, which are constructed phe-
nomenologically in order to be able to describe the late-time universe evolution at both
the background and perturbation level. Typically, these models are confronted with obser-
vational data such as Supernovae Type Ia (SNIa), Baryonic Acoustic Oscillations (BAO),
cosmic microwave background (CMB), cosmic chronometers (CC), gamma-ray bursts
(GRB), growth data, etc. The problem is that although modified gravity scenarios, through
the extra terms they induce, are very efficient in describing the late-time universe, quite
often they induce significant terms at early times too, thus spoiling the early-time evolution,
such as the BBN phase, in which the concordance cosmological paradigm is very successful.
Hence, independently of the late-universe successes that a modified gravity model may
have, one should always examine whether the model can pass the BBN constraints too.

In the present work, we confronted one interesting class of gravitational modification,
namely, f (T, TG) gravity, with BBN requirements. The former is obtained using both
the torsion scalar, as well as the teleparallel equivalent of the Gauss–Bonnet term, in the
Lagrangian. Hence, one obtains modified Friedmann equations in which the extra torsional
terms constitute an effective dark energy sector.

We started by calculating the deviations of the freeze-out temperature Tf , caused by the
extra torsion terms, in comparison to ΛCDM paradigm. We imposed five specific f (T, TG)
models that have been proposed in the literature in phenomenological grounds, i.e., in order
to be able to describe the late-time evolution and lead to acceleration without an explicit
cosmological constant. Hence, we extracted the constraints on the model parameters in

order for the ratio |∆Tf /Tf | to satisfy the BBN bound
∣∣∣∆Tf

Tf

∣∣∣ < 4.7× 10−4. As we found,
in most of the models the involved parameters are bounded in a narrow window around
their general relativity values, as expected. However, the logarithmic model can easily
satisfy the BBN constraints for large regions of the model parameters, which acts as an
advantage for this scenario.

We stress here that we did not fix the cosmological parameters to their general relativity
values; on the contrary, we left them completely free and we examined which parameter
regions are allowed if we want the models to pass the BBN constraints. The fact that in
most models the parameter regions are constrained to a narrow window around their
general relativity values was in some sense expected, but in general is not guaranteed or
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known a priori since many modified gravity models are completely excluded under the
BBN analysis since for all parameter regions their early-universe effect is huge.

In conclusion, f (T, TG) gravity, apart from having interesting cosmological implica-
tions both in the inflationary and late-time phase, possesses particular sub-classes that can
safely pass BBN bounds; nevertheless, the torsional modification is constrained in narrow
windows around the general relativity values. This feature should be taken into account in
future model building.
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