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Abstract: For many classes of astronomical and astrophysical binary systems, long observational
records of their radial velocity V, which is their directly observable quantity, are available. For
exoplanets close to their parent stars, they cover several full orbital revolutions, while for wide
binaries such as, e.g., the Proxima/α Centauri AB system, only relatively short orbital arcs are
sampled by existing radial velocity measurements. Here, the changes ∆V induced on a binary’s radial
velocity by some long-range modified models of gravity are analytically calculated. In particular,
extra-potentials proportional to r−N , N = 2, 3 and r2 are considered; the Cosmological Constant
Λ belongs to the latter group. Both the net shift per orbit and the instantaneous one are explicitly
calculated for each model. The Cosmological Constant induces a shift in the radial velocity of the
Proxima/α Centauri AB binary as little as |∆V| . 10−7 m s−1, while the present-day accuracy in
measuring its radial velocity is σV ' 30 m s−1. The calculational scheme presented here is quite
general, and can be straightforwardly extended to any other modified gravity.

Keywords: gravitation; celestial mechanics; stars: binaries: spectroscopic; stars: planetary systems

1. Introduction
Although general relativity, after more than one century since its birth, has always

passed all the experimental and observational tests devised so far to put it to the test in
various scenarios [1–5], there is an increasingly rich phenomenology, at both astrophysical
(dark matter [6–8]) and cosmological (dark energy [9,10]) scales, pointing towards the1

option of, perhaps, modifying it in such long-range domains; for a recent overview, see,
e.g., [11], and references therein. To cope with such potential difficulties of the Einstein’s
theory, several alternative models of the gravitational interaction have been devised so far;
see, e.g., [12–20], and references therein. A major drawback of all such theoretical schemes
is that, to date, no independent tests exist for them other than just the phenomena for which
they were introduced at the time. Thus, devising alternative ways to empirically scrutinize
it, at least in principle, in different arenas is quite important.

Several long-range modified models of gravity envisage power-law modifications
of the r−1 Newtonian potential of a central body proportional to r−N , N > 1, where r
is the distance from it. They induce deviations from the inverse-square law in terms of
small additional accelerations proportional to r−N−1, N > 1. Such kind of effects are better
constrained with tight binary systems such as, e.g., several exoplanets [21–23] many of
which orbit at r ' 10−3 astronomical units (au) from their parent stars. One of the most
widely adopted observable in detecting them is the radial velocity2 (RV) V of the reflex
motion of their host stars displaced by the gravitational tug of the planets [24–27], i.e., the
projection of the barycentric stellar velocity vector v? onto the line of sight, even though
other observables can be in principle be used (see e.g., [28] and references therein). It is
expected that the accuracy in measuring exoplanets’ RV may be pushed, at least in principle,
to 0.2–0.5 m s−1 [26], or even down to the 0.01 m s−1 level [27]. To the best knowledge of
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the present authors, no calculations of the impact of the aforementioned modified models
of gravity on the RV have been performed in the literature so far. This paper aims to
fill this gap by analytically calculating the shifts ∆V of the RV due to some of the most
widely discussed r−N extra-potentials, i.e., those with N = 2, 3. Both the instantaneous
and the orbit averaged RV variations are computed; the latter ones are particularly suitable
for this type of planets since for most of them long data records covering many orbital
revolutions exist.

Additionally, extremely wide binaries for which RV data exist [29,30], such as, e.g., Prox-
ima orbiting the pair α Centauri AB in more than 5× 105 yr [30], may turn out to be useful,
at least in principle, to put to the test another class of modified models of gravity whose
extra-potentials go as r2. In particular, the Cosmological Constant3 (CC) Λ [33–40] induces
a small extra-acceleration which is proportional to r [41,42]. On the other hand, also sev-
eral classes of long range modified models of gravity aiming to explain in a unified way
seemingly distinct features of the cosmic dynamics such as early-time inflation, late-time
acceleration driven by dark energy and even dark matter imply a CC-type parameter-
ization [14,15,17,20,43–53]. Since it is of the utmost importance to try to independently
test the CC in different scenarios with respect to the cosmological ones which, only they,
have justified its introduction to date, attempting to use such wide binaries and their RV
measurements to tentatively constrain Λ should be deemed as a valuable effort. Thus, also
the RV change ∆V due to the Hooke-like acceleration induced by Λ is explicitly worked
out. In this case, both the instantaneous and the orbit averaged shifts are also analytically
calculated. Nonetheless, only the former one can be of practical use since the currently
available RV records of wide binaries do not cover a full orbital period for none of them.

2. The Calculational Scheme
In order to set up the calculational scheme for computing the shift ∆V of the RV V

induced by any small perturbing acceleration A with respect to the Newtonian monopole,
we will follow [54]. All the following results hold for the binary’s relative orbit; the resulting
shift ∆V for the stellar RV can be straightforwardly obtained by rescaling the final formula
by the ratio of the planet’s mass Mp to the sum M .

= M? + Mp of the masses of the parent
star and of the planet itself.

The velocity vector v is

v = vR uR + vT uT + vN uN , (1)

where

uR = (cos Ω cos u− cos I sin Ω sin u) i + (sin Ω cos u + cos I cos Ω sin u) j + sin I sin u k, (2)

uT = (− sin u cos Ω− cos I sin Ω cos u) i + (− sin Ω sin u + cos I cos Ω cos u) j + sin I cos u k, (3)

uN = sin I sin Ω i− sin I cos Ω j + cos I k, (4)

are the unit vectors along the radial, transverse and normal directions, respectively, of the
trihedron co-moving with the test particle [55]. In Equations (2)–(4), I is the inclination of the
orbit to the reference {x, y} plane, Ω is the longitude of the ascending node, and u .

= ω + f
is the argument of latitude given by the sum of the argument of pericentre ω and the true
anomaly f .

If a small perturbing acceleration A is present, the velocity v is, in general, changed by
an amount [54]

∆v = ∆vR uR + ∆vT uT + ∆vN uN , (5)

where [54]

∆vR = −nb a sin f√
1− e2

( e
2 a

∆a +
a
r

∆e
)
− nb a3

r2 ∆M− nb a2

r

√
1− e2(cos I ∆Ω + ∆ω), (6)
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∆vT = −nb a
√

1− e2

2 r
∆a +

nb a (e + cos f )

(1− e2)
3/2 ∆e +

nb a e sin f√
1− e2

(cos I ∆Ω + ∆ω), (7)

∆vN =
nb a√
1− e2

[(cos u + e cos ω)∆I + sin I (sin u + e sin ω)∆Ω]. (8)

In Equations (6)–(8), a is the semimajor axis, nb
.
=
√

µ/a3 is the Keplerian mean mo-
tion, µ

.
= GM is the binary’s gravitational parameter, G is the Newtonian constant of gravi-

tation, e is the eccentricity, andM is the mean anomaly. The shifts ∆a, ∆e, ∆I, ∆Ω, ∆ω, ∆M
are to be meant as instantaneous, i.e., they are functions of time through some of the time-
dependent anomalies connected with the position of the test particle along its orbit. The
variation ∆M of the mean anomalyMmust be calculated as [56]:

∆M = ∆η +
∫ t

t0

∆nb

(
t
′)

dt
′
, (9)

where η is the mean anomaly at epoch, and [56]∫ t

t0

∆nb

(
t
′)

dt
′
= −

∫ q

q0

3
2

nb
a

∆a
(

q
′) dt

dq′
dq
′
; (10)

in Equation (10), q denotes the time-dependent anomaly, such as the true anomaly f or the
eccentric anomaly E, specifically chosen as fast variable of integration.

The shift ∆V of the RV is calculated from the component ∆vz along the reference z
axis which is customarily aligned with the line-of-sight, while the {x, y} plane coincides
with the plane of the sky.

3. The Case of a Hooke-Type Acceleration
Here, we treat the RV shift induced by a perturbing radial acceleration proportional to

the distance r [41,42,57] given by
AK = K r uR. (11)

In the case of Equation (11), it is computationally more convenient to adopt the eccen-
tric anomaly E in terms of which the following Keplerian relations are expressed

r = a(1− e cos E), (12)

sin f =

√
1− e2 sin E

1− e cos E
, (13)

cos f =
cos E− e

1− e cos E
, (14)

dt
dE

=
1− e cos E

nb
. (15)

The instantaneous shifts of any orbital element κ has to be calculated as

∆κ(E) =
∫ E

E0

dκ

dt
dt

dE′
dE

′
, κ = a, e, I, Ω, ω, η, (16)

where dκ/dt are given by the Gauss equations for the rates of change of the orbital elements,
and dt/dE is given by Equation (15).

By using Equation (11), one has
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∆a(E) = −K a4e (cos E0 − cos E) [−2 + e (cos E0 + cos E)]
µ

, (17)

∆e(E) =
K a3 (−1 + e2) (cos E0 − cos E) [−2 + e (cos E0 + cos E)]

2 µ
, (18)

∆I(E) = 0, (19)

∆Ω(E) = 0, (20)

∆ω(E) =
K a3
√

1− e2
{

4
(
1 + e2) (sin E0 − sin E)− e [6 (E0 − E) + (sin 2E0 − sin 2E)]

}
4 e µ

, (21)

∆η(E) =
K a3

12 e µ

[
6 e
(

7 + 3 e2
)
(E0 − E)− 6

(
2 + 12 e2 + e4

)
(sin E0 − sin E)+

+3 e
(

1 + 5 e2
)
(sin 2E0 − sin 2E)− 2 e4 (sin 3E0 − sin 3E)

]
. (22)

From Equations (15) and (17), it turns out that Equation (10) yields

∫ t

t0

∆nb

(
t
′)

dt
′
=
K a3 e

8 µ
{12 [e (E0 − E)− 2 (sin E0 − sin E)] + 24 cos E0 (E0 − E + e sin E)+

+e [−6 cos 2E0(E0 − E + e sin E)− 3 (sin 2E0 + 3 sin 2E)+

+e
(
−8 sin3 E0 + 3 sin E + sin 3E

)]}
, (23)

so that, from Equation (24) calculated with Equations (22) and (23), one finally has

∆M(E) =
K a3

24 e µ

{
12 e

(
7 + 6 e2

)
(E0 − E)− 4

(
6 + 54 e2 + 7 e4

)
sin E0+

+6 e sin 2E0 + 3
(

8 + 72 e2 + 7 e4
)

sin E+

+2 e3 cos 2E0 (−9E0 + 9E + 2e sin E0 − 9e sin E)+

+6 e2 cos E0 [7e sin E0 + 12 (E0 − E + e sin E)]−

−3 e
(

2 + 19 e2
)

sin 2E + 7 e4 sin 3E
}

. (24)

Inserting Equations (17)–(21) and Equation (24) into Equations (6)–(8) allows one to
obtain an exact expression for the instantaneous shift ∆V(E) of the radial velocity induced
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by Equation (11); it is too cumbersome to be displayed explicitly here. Below, we show an
expansion of it to the first order in the eccentricity e, which reads:

∆V(E) =
K a5/2 sin I
√

µ
V(E), (25)

with

V(E) = cos(E0 − 2E−ω)− cos(E + ω) + 2 (−E0 + E) sin(E + ω)+

+
e
4
{5 cos(E0 − 3E−ω)− cos(2E0 − 2E−ω) + 17 cos(E0 − E−ω)−

−15 cos ω− cos(E0 − E + ω)− 21 cos(E0 + E + ω) + 16 cos(2E + ω)−

−2 (E0 − E) [2 sin ω + 6 cos E0 sin(E + ω) + 9 sin(2E + ω)]}+O
(

e2
)

.

Inserting E = E0 + 2π into the full expression of ∆V(E) allows us to obtain the exact
shift of the radial velocity per orbit, which is

∆V|2π = − πK a5/2 sin I

2
√

µ (1− e cos E0)
3

(√
1− e2

[
−8− 9 e2+

+6 e (−4 cos E0 + e cos 2E0)] cos ω sin E0 +
{
−8 cos E0 − 6 e4 cos3 E0+

+e
[
2 + 18 e2 + 3

(
−4 + e2

)
cos 2E0 + 3 e cos 3E0

]}
sin ω

)
. (26)

In the case of the Cosmological Constant Λ, it is

K =
Λ c2

3
= 3.5× 10−36 s−2, (27)

where c is the speed of light in vacuum. In view of the small value of the Cosmological
Constant, of the order of4 [58] Λ ' 10−52 m−2 and of the functional form of Equation (11),
only very wide binaries for which RV’s measurements exist [29,30] could be, in principle,
adopted to tentatively constrain Λ. Since the available observational records do not cover
an entire orbital period for such systems, the instantaneous expression of Equation (25) has
to be used to track the orbital arcs for which data exist. By looking at the orbit of Proxima
about α Centauri AB, for which accurate RV’s measurements exist [30], it is possible to infer
an order of magnitude of the signal of Equation (25) as little as

|∆VΛ| . 4× 10−7 m s−1. (28)

The current accuracy in measuring the Proxima’s RV is of the order of [30]

σV ' 30 m s−1; (29)

improvements of the order of a factor of two5 may be obtained with new instruments such
as ESPRESSO [59] on the Very Large Telescope (VLT).
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4. The Case of a r−3 Perturbing Acceleration
A perturbing acceleration in the form

AH =
H
r3 uR (30)

arises in different models of gravity. We remember that in General Relativity it corre-
sponds to the contribute of the gravitational field due to a charged non-rotating spherically
symmetric source in the Reissner-Nordström solution [60]. A similar perturbing acceler-
ation is present in f (T) gravity, for spherically symmetric solutions [61,62], in Einstein-
Gauss-Bonnet gravity [63,64] and when one considers the quantum corrections to the
Schwarzschild solution [65,66], just to mention some examples.

If the extra-acceleration is given by Equation (30), adopting the true anomaly f is
computationally more efficient. The following useful Keplerian expressions are used in
the calculation

r =
p

1 + e cos f
, (31)

dt
d f

=
r2
√

µ p
, (32)

where p .
= a

(
1− e2) is the orbit’s semilatus rectum.

From

∆κ( f ) =
∫ f

f0

dκ

dt
dt
d f ′

d f
′
, κ = a, e, I, Ω, ω, η, (33)

calculated with Equations (31) and (32) and the Gauss equations for dκ/dt, κ = a, e, I, Ω, ω, η,
one gets

∆a( f ) =
H e (cos f − cos f0) [2 + e (cos f + cos f0)]

µ (1− e2)
2 , (34)

∆e( f ) =
H (cos f − cos f0) [2 + e (cos f + cos f0)]

2 µ a (1− e2)
, (35)

∆I( f ) = 0, (36)

∆Ω( f ) = 0, (37)

∆ω( f ) = −H [3 e (− f + f0)− (2 + e cos f ) sin f + (2 + e cos f0) sin f0]

2 µ a e (1− e2)
, (38)

∆η( f ) =
H [3 e ( f − f0)− (2 + e cos f ) sin f + (2 + e cos f0) sin f0]

2 µ a e
√

1− e2
. (39)

Furthermore, it is

∫ t

t0

∆nb

(
t
′)

dt
′
=

3H
2 µ a (1− e2)

2
(1 + e cos f )

(
−
(

1− e2
)3/2

( f − f0) (1 + e cos f )−
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−2 arctan

 (−1 + e) tan
(

f
2

)
√

1− e2

 (1 + e cos f ) (1 + e cos f0)
2+

+(1 + e cos f0)

2 arctan

 (−1 + e) tan
(

f0
2

)
√

1− e2

 (1 + e cos f ) (1 + e cos f0)−

−e
√

1− e2 [sin f + e sin( f − f0)− sin f0]
})

. (40)

Thus, inserting Equations (39) and (40) in Equation (9) yields

∆M( f ) =
H

2 µ a (1− e2)
2

−6 (1 + e cos f0)
2 arctan

 (−1 + e) tan
(

f
2

)
√

1− e2

+

+6 (1 + e cos f0)
2 arctan

 (−1 + e) tan
(

f0
2

)
√

1− e2

+

+
1

4 e
(
−1 + e2 −

√
1− e2

)
(1 + e cos f )

(
−1 + e2

) (
1 +

√
1− e2

) {
−
[
8 + 5 e2

(
1 + e2

)
+

+6 e3 (4 cos f0 + e cos 2 f0)
]

sin f + e
(
−1 + e2

)
(6 sin 2 f + e sin 3 f )+

+4
(

2 + e2
)
(1 + e cos f ) sin f0 + 2e

(
1 + 2e2

)
(1 + e cos f ) sin 2 f0

})
. (41)

The full expression for the instantaneous shift of the RV due to Equation (30) can be
obtained by inserting Equations (34)–(38) and Equation (41) in Equations (6)–(8), and taking
the z component ∆vz of the resulting velocity change ∆v; it is too cumbersome to be
explicitly displayed. An expansion to the first power of e of it is shown below:

∆V( f ) =
H sin I

4
√

µ a3/2 V( f )

where

V( f ) = {4 [cos u− cos(2 f − f0 + ω)] + 8 (− f + f0) sin u+

+e [cos( f − f0 −ω) + 9 cos ω− 8 cos(2 f + ω)− cos(2 f − 2 f0 + ω)−

−9 cos(u− f0)− cos(3 f − f0 + ω) + 9 cos(u + f0) + 2 (− f + f0) sin ω−

−12 ( f − f0) (cos f + cos f0) sin u]}+O
(

e2
)

. (42)
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The exact shift of the radial velocity per orbit can be obtained by inserting f = f0 + 2π
into the full expression of ∆V( f ); it reads

∆V|2π = −πH sin I (e sin ω + sin u0)

a3/2 (1− e2)
3/2√

µ
. (43)

By assuming, e.g., µ? = 0.5 µ�, µp = 50 µJup, a = 0.002 au, I = 50◦ along with an
experimental uncertainty in measuring the RV as little as σV ' 0.1 m s−1, Equation (43)
yields

|H| . 2× 1022 m4 s−2. (44)

The bound of Equation (44) should be viewed just as preliminarily indicative of the
possibility offered by the proposed approach, not as an actually obtainable constraint.
To this aim, a detailed error budget including the impact of several systematic errors like
other competing dynamical effects should be assessed, along with the choice of the initial
value of u0 in order to maximize the signal-to-noise ratio.

5. The Case of a r−4 Perturbing Acceleration
In different models of gravity it is possible to obtain a perturbing acceleration in

the form
AH =

Q
r4 uR. (45)

Just to refer to some examples, we mention the modification of the Schwarzschild
solution obtained using the renormalization group approach [67]; the Sotiriou-Zhou solu-
tion which is obtained starting from the coupling of a scalar field φ with the Gauss-Bonnet
invariant, even though it cannot be used to describe the spacetime around a star but, rather,
around a black hole [64,68–70]; such a perturbing acceleration arises also in the framework
of string theory, in presence of the Kalb-Ramond field [71]. Eventually, it is important to
remember that a perturbing acceleration in the form (45) arises also in other models of
gravity which are effective at the scale of elementary particles, so they cannot be considered
for our purposes (see e.g., [72] and references therein).

In the case of Equation (45), using the true anomaly f is computationally more efficient.
Inserting Equation (45) in Equation (33) and using Equations (31) and (32) yields

∆a( f ) = − 2Q e

µ a (1− e2)
3

{
−1

3
cos f [3 + e cos f (3 + e cos f )] + cos f0+

+e cos2 f0 +
1
3

e2 cos3 f0

}
, (46)

∆e( f ) =
Q

3 µ a2 (1− e2)
2

{
3 cos f + 3 e cos2 f + e2 cos3 f−

− cos f0 [3 + e cos f0 (3 + e cos f0)]}, (47)

∆I( f ) = 0, (48)

∆Ω( f ) = 0, (49)

∆ω( f ) =
Q

12 µ a2 e (1− e2)
2

{
3
(

4 + 3e2
)

sin f + e [6 (2 f − 2 f0 + sin 2 f ) + e sin 3 f ]−
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−2
(

6 + 5e2 + 6e cos f0 + e2 cos 2 f0

)
sin f0

}
, (50)

∆η( f ) = − Q
12 µ a2 (1− e2)

3/2

(
3
(

4− 5e2
)

sin f − 12 [e ( f − f0) + sin f0]+

+e {6 sin 2 f + e sin 3 f − 2 [6 cos f0 + e (−7 + cos 2 f0)] sin f0}.) (51)

Equation (10) allows us to obtain:∫ t

t0

∆nb

(
t
′)

dt
′
= − Q

4 µ a2 (1− e2)
3
(1 + e cos f )

(
4
(

1− e2
)3/2

( f − f0) (1 + e cos f )+

+

8 arctan

 (−1 + e) tan
(

f
2

)
√

1− e2

−

−8 arctan

 (−1 + e) tan
(

f0
2

)
√

1− e2

 (1 + e cos f ) (1 + e cos f0)
3+

+e
√

1− e2
(

2
(

4 + e2 + e
(
−2
(
−1 + e2

)
cos f + 6 cos f0+

+2 e2 cos3 f0 + 3 e cos 2 f0

))
sin f − 2(1 + e cos f )

(
4− e2+

+4 e cos f0 + e2 cos 2 f0

)
sin f0

))
. (52)

The shift of the mean anomaly, computed with Equations (51) and (52), turns out to be:

∆M( f ) =
Q

12 µ a2

(
− 1

e (1− e2)
3/2

(
3
(

4− 5e2
)

sin f − 12 (e ( f − f0) + sin f0)+

+e (6 sin 2 f + e sin 3 f − 2 (6 cos f0 + e (−7 + cos 2 f0)) sin f0))−

− 3

(1− e2)
3
(1 + e cos f )

(
4
(

1− e2
)3/2

( f − f0) (1 + e cos f )+

+(1 + e cos f ) (1 + e cos f0)
3

8 arctan

 (−1 + e) tan
(

f
2

)
√

1− e2

−

−8 arctan

 (−1 + e) tan
(

f0
2

)
√

1− e2

+ e
√

1− e2
(

2
(

4 + e2 + e
(
−2
(
−1 + e2

)
cos f+

+6 cos f0 + 2e2 cos f 3
0 + 3e cos 2 f0

))
sin f−
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−2 (1 + e cos f )
(

4− e2 + 4e cos f0 + e2 cos 2 f0

)
sin f0

)))
. (53)

Thus, Equations (6)–(8), calculated with Equations (46)–(51) and Equation (53), provide
the change in the radial velocity due to Equation (45); it is

∆V( f ) =
Q sin I
a5/2√µ

V( f ) (54)

where

V( f ) = (cos u− cos(2 f − f0 + ω) + (− f + f0−

− 2 arctan
(

tan
(

f
2

))
+ 2 arctan

(
tan
(

f0

2

)))
sin u+

+
e
4
(cos( f − f0 −ω) + 6 cos ω− 4 cos(2 f + ω)− 2 cos(2 f − 2 f0 + ω)−

−5 cos( f − f0 + ω)− cos(3 f − f0 + ω) + 5 cos( f + f0 + ω)+

+4 (− f + f0) sin ω− 8 ( f − f0) (2 cos f + 3 cos f0) sin u)) +O
(

e2
)

. (55)

By putting f = f0 + 2π in the full expression of ∆V( f ), one gets the exact shift of the
radial velocity per orbit:

∆V|2π =
2πQ sin I (e sin ω + sin u0)

a5/2 (1− e2)
5/2√

µ
. (56)

By adopting the same values for the exoplanet’s RV uncertainty and physical and
orbital parameters as in Section 4, Equation (56) returns

|Q| . 5× 1030 m5 s−2. (57)

As Equation (44), also the bound of Equation (57) should be viewed as preliminarily
and just indicative of the potential of the proposed strategy.

6. Summary and Conclusions
We analytically calculated the shifts ∆V of the RV V of a gravitationally bound bi-

nary system induced by some long-range modified models of gravity which could be
tested or constrained with existing RV data of known binaries such as, e.g., exoplanets
and binary stars. In particular, exoplanets close to their parents stars for which long RV
records covering several orbital revolutions are available can constrain power-law models
yielding extra-accelerations proportional to r−N−1, N = 2, 3; in this case, the expressions
for the RV changes over one orbital period are to be used. It is useful to recall that in a
previous paper [72] we constrained the extra acceleration parameters using existing long
data records of the LAGEOS satellites, tracked on an almost continuous basis with the
Satellite Laser Ranging (SLR) technique. In that case, we obtained the following constraints
|HSLR| . 4.2× 106 m4 s−2 in the N = 2 case, and |QSLR| . 1.2× 1013 m5 s−2 in the N = 3
case. Other preliminary constraints on Q came from some astronomical and astrophysical
systems; see Table 2 of [73]. The spacecraft GRACE provided |QGRACE| . 1× 1016 m5 s−2,
while the pericentre precessions of the Solar System’s planets and of the S2 star around
Sagittarius A∗ yielded |QSS| . 1.5× 1029 m5 s−2 and

∣∣QSgrA∗
∣∣ . 5× 1050 m5 s−2, respec-

tively. Accordingly, the constraints that can be obtained using the method described in this
paper are much looser, and the motivation is evident: the perturbing accelerations in the
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form (30) and (45) are rapidly decreasing, so that it is more effective to test them on smaller
scales, such as those of satellites orbiting the Earth, rather than at planetary system scale.

On the other hand, wide binaries with orbital periods of the order of hundreds of
thousands of years such as Proxima and α Centauri AB may, in principle, be used to put
constraints on Hooke-type anomalous accelerations proportional to r; the CC belongs
to such a family of models. In such scenarios, RV data necessarily cover just relatively
short orbital arcs; thus, the instantaneous expressions for ∆V must be adopted. In the
particular case of the CC, it induces a RV shift of the Proxima/α Centauri AB system as
little as |∆V| . 10−7 m s−1, while the current accuracy in measuring its RV is of the order
of σV ' 30 m s−1.

Nonetheless, we believe that our approach could be useful to test the prediction of
modified models of gravity outside the Solar System. In addition, we point out that the
calculational scheme set up in this work is completely general, and can be straightforwardly
extended to other modified models of gravity for which explicit expressions for the resulting
extra-accelerations are available.
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Notes
1 It should be stressed that most of the current research in the field of dark matter and dark energy is, actually, made within general

relativity. Of course, there is the option of alternative theories of gravity, but it would be incorrect to look at them as a necessity
from the point of view of dark matter and dark energy.

2 To date, according to the online database http://exoplanet.eu/ (accessed on 11 July 2022), about a thousand planets have been
discovered with the RV method.

3 The CC is the most straightforward explanation within general relativity for the paradigm phenomenologically dubbed as “dark
energy” driving the observed late-time cosmic acceleration [31,32].

4 Λ can be expressed in terms of the measurable parameters H0 and ΩΛ, where H0 is the Hubble parameter and ΩΛ is the energy
density of the Cosmological Constant normalized to the critical density. Their determinations from the measurements of the
Cosmic Microwave Background (CMB) power spectra by the satellite Planck can be retrieved in [58].

5 P. Kervella, private communication, 2022.
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