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Abstract: We present a brief description of noncompactified higher-dimensional theories from the
perspective of general relativity. More concretely, the Space–Time–Matter theory, or Induced Matter
theory, and the reduction procedure used to construct the modified Brans–Dicke theory and the
modified Sáez–Ballester theory are briefly explained. Finally, we apply the latter to the Friedmann–
Lemaître–Robertson–Walker (FLRW) cosmological models in arbitrary dimensions and analyze the
corresponding solutions.
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1. Introduction

Since matter or the source of spacetime and fields are fundamental concepts in classical
field theories, the Einstein tensor is expressed in terms of spacetime geometry and matter by
the corresponding energy-momentum density tensor. The Einstein field equations connect
these two fundamentals. As a result, in general relativity (GR), the distribution of matter
determines how spacetime is shaped. On the other hand, one could interpret Einstein’s
field equations in a different way and assert that geometry creates matter. One of Einstein’s
objectives was to develop a gravitational theory in which the idea of matter is abandoned in
favor of pure fields [1]. According to Einstein, unified field theory is a gravitational theory
in which matter is absorbed into the field itself, leading to a set of homogeneous partial
differential equations. Many extensions of Einstein’s framework have been made to extract
matter from pure geometry. One of Einstein’s intriguing extensions is the suggestion that
our four-dimensional spacetime (called a membrane or brane) is a submanifold embedded
in a higher dimensional ambient space (bulk). This idea first appeared in papers by
Kaluza and Klein, who proposed uniting gravity and electromagnetism. In Kaluza–Klein’s
(KK) theory, the extra dimension serves only a formal purpose, and the components of
the ambient space metric tensor are independent of the coordinate associated with the
extra dimension.

In the last two decades, there has been much appeal in the concept of extra dimensions
where ordinary matter is constrained to a brane. Early examples of this methodology can
be found in the works of Maia [2], Joseph [3], Akama [4], Rubakov–Shaposhnikov [5],
and Visser [6]. Wesson’s theory [7], which states that the geometry of the bulk space
generates matter on the brane, is the basis for a revised KK approach to unified field theory.
This theory differs from the traditional KK scenario due to the noncompact extra dimension
and the absence of matter in the five-dimensional bulk space. This theory is called the
Induced Matter Theory (IMT) because the effective four-dimensional matter results from
the bulk’s geometry. In other words, in IMT, the four-dimensional induced matter curves
the four-dimensional hypersurface, while the five-dimensional bulk space is Ricci-flat.
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Recently, instead of GR, by applying the scalar–tensor theories as underlying frame-
works, another extended version of the noncomactified KK gravity has also been estab-
lished [8,9], which will be the main content of the this review paper.

For other extensions of Wesson’s theory that have assumed an arbitrary number of
noncompact extra dimensions, see [10–12].

Furthermore, the authors of Ref. [13] have obtained interesting IMT cosmological
solutions by assuming a conformally flat bulk space. The Weyl tensor of the bulk space
vanishes in this case. As noted above, this restriction is in the spirit of IMT. The energy
conditions associated with the model of Ref. [13] have been also investigated in detail
in [14]. All matter fields in 4-dimensional spacetime are induced from the bulk, according
to IMT, and the path of particles in the bulk space is null. Therefore, the bulk can be
assumed to be empty. We can have some black holes in the bulk space if we only assume
that the bulk is Ricci-flat. Consequently, since black holes have mass, we must have some
kind of mass in the bulk, which contradicts the IMT axioms.

One of the consequences of IMT is that the mass of the particles varies from point-to-
point in spacetime. Indeed, it is well known that in unified field theories, Mach’s principle
is satisfied [15]. Thus, the mass of particles may be affected by the distribution of matter
fields in the Universe or the curvature of spacetime. As a result, it is not surprising that
Wesson’s IMT is a Machian theory [16] and the particle’s mass is not constant. Wesson used
dimensional analysis to introduce the relation l = Gm/c2 (where G and c are the Newton
gravitational constant and the speed of light, respectively) between the fifth coordinate,
l, and the mass of the test particles, m, to demonstrate mass variation [17,18], and for this
reason, he initially called his theory Space–Time–Matter (STM) theory [19]. The authors of
Ref. [20] have shown that if we use the above equation to calculate the mass variation of the
primordial nucleosynthetic particles and our time and compare it to the variation of mass
obtained from nucleosynthesis bounds, the results do not agree. However, in Ref. [21], it
was shown that if the induced mass is defined correctly, the variation of mass obtained
from IMT agrees with the mass variation bound obtained from the Hot Big Bang.

Let us also mention one of the more intriguing futures of IMT based on quantum
mechanics. Particles and waves, for example, have been shown to be merely different
representations of the same underlying geometry and may be the same thing viewed in
different ways [22]. Wesson [23] has also derived a form of the Heisenberg relation that
applies to real and virtual particles using five-dimensional IMT. (For an extension of this
idea to brane gravity, please see [24].) In this regard, the authors of [25] derived the induced
Einstein equation on the perturbed brane by contracting the Gauss–Codazzi equations.
They studied the Einstein equation on the perturbed brane of an FRW universe as a non-
perturbed brane embedded in a five-dimensional flat bulk space. They demonstrated that
the induced field equations correspond to the semiclassical Einstein equation. This means
that the classical fluctuations of the perturbed brane can be interpreted as matter field
quantum fluctuations.

Inspired by the IMT, the authors of [8,9] have shown that the field equations associated
with two different types of scalar–tensor theories, namely the Sáez–Ballester (SB) and
Brans–Dicke (BD) theories, in (D + 1)-dimensions are equivalent to their D-dimensional
counterparts with an effective matter field and a potential. These reduced gravitational
models have been nominated for the modified Sáez–Ballester theory (MSBT) [9,26] and
the modified Brans–Dicke theory (MBDT) [8], respectively. It is important to mention
that in both frameworks, introducing a non-zero induced scalar potential whose shape is
provided by the reduction process up to a constant of integration, is crucial to reconstruct
the corresponding theory on the hypersurface.

Now let us focus on the BD theory and the MBDT. One of the attractive aspects of the
BD theory is that the scalar field is not an ad hoc assumption but rather a fundamental
component. In cosmological models that use BD theory as a background theory, the scalar
field can act as quintessence or K-essence, resulting in an accelerated scale factor [27]. Such
cosmological models, however, have flaws that contradict the principles of the original ver-
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sion of the BD theory, experimental data, and energy conditions. More concretely, in some
of these models, the BD coupling parameter is assumed to be a variable constant [28]; in
others, an ad hoc scalar potential is added [29]. Concerning related investigations within
the standard BD theory as well as its modified version, see also [30–40]. Nevertheless, it
should be noted that the MBDT is free of the shortcomings mentioned above. In particular,
using the MBDT framework in cosmology does not necessitate using an ad hoc scalar poten-
tial or a variable BD coupling parameter to obtain an accelerated scale factor. Furthermore,
unlike other modified BD cosmological models, the FLRW-MBDT cosmologies eliminate
the inconsistency in the value of the BD coupling parameter associated with an acceler-
ated expansion of a matter-dominated universe and a decelerated radiation-dominated
epoch [8]. In this review paper, we will not present any cosmological application of the
MBDT. We recommend readers look at the detailed study of such models in [41–46].

The main goal in constructing the Sáez–Ballester (SB) scalar–tensor theory [47] was
to solve the problem of missing matter of the universe. The Einstein–Hilbert action was
supplemented in this framework by a non-canonical kinetic term containing a coupling
parameter. Both a scalar potential and a cosmological term are absent from the original
SB theory. In one particular instance, it is possible to find appropriate transformations
that allow the SB action to be reduced to the corresponding one with a canonical kinetic
term [48]. In contrast to the latter, the SB theory includes the action of ordinary matter that
is not coupled to the SB scalar field. Various cosmological models have been established
in the context of the SB theory to study open problems in both the classical and quantum
regimes [49–54]. Applying the similar reduction procedure used to construct the MBDT,
without assuming the presence of the higher dimensional matter fields and imposing the
cylindricity condition on the extra coordinate, it has been shown that the SB field equations
associated to the bulk split into four sets of effective field equations on any hypersurface
orthogonal to the extra dimension [9].

In the next section, we will review the IMT and present short discussion about this
framework. In Section 3, we present a brief review of the MBDT and MSBT. In Section 4,
as an application of the reduced SB theory, we will review the solutions of the FLRW-MSBT
cosmology. Finally, in Section 5, in addition to a brief summary, we will include other
useful discussions.

2. Five-Dimensional Ricci–Flat Space and the Effective Field Equations in
Four Dimensions

In this section, we present an overview and important notes on the framework estab-
lished in [55].

Assuming some postulates and applying an appropriate reduction procedure, the field
equation of general relativity (GR) can be set up on a four-dimensional hypersurface. The
five-dimensional manifold M5

dS2 = Gab(xc)dxadxb, (1)

in which our universe is locally and isometrically embedded can be, at least locally, taken as

dS2 = gµν(xα, l)dxµdxν + εψ2(xα, l)dl2. (2)

In this section, the Latin and Greek indices run from zero to four, and to three, re-
spectively; l is an extra noncompact coordinate, ψ = ψ(xα, l) is a scalar field and ε = ±1
(where ε2 = 1) is introduced such that we can take the extra dimension as either time-
like or space-like.1 Up to now, we have indeed expressed the ‘Postulate I’ of the Wesson’s
scheme [56].

Remark. Before reviewing the effective field equations, let us mention a few important points.
In the IMT, similar to the Kaluza’s approach, the same definitions for the five-dimensional Christoffel
symbols and Ricci tensor have been used [7]. However, unlike the compactified KK theory, the authors
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of IMT did not want to geometrize the electromagnetic field. Moreover, the derivatives with respect
to the extra coordinate were not assumed to be zero.2 We must emphasize that the frameworks to be
presented in this paper recover from a fully noncompactified approach without making any a priori
assumptions about the nature of the extra-dimensional manifold.

It is straightforward to show that the expressions for the αβ−, α4− and 44−parts of
the Ricci tensor R

(5)

ab are:

R
(5)

αβ = R
(4)

αβ −
DαDβψ

ψ
+

ε

2ψ2

 ∗ψ∗gαβ

ψ
− ∗∗g αβ + gλµ ∗gαλ

∗
gβµ −

1
2

gµν ∗gµν

∗
gαβ

, (3)

R
(5)

4α = ψDβPβ
α, (4)

R
(5)

44
= −εψD2ψ− 1

4
∗
g

λβ ∗
gλβ −

1
2

gλβ∗∗g λβ +

∗
ψ

2ψ
gλβ ∗gλβ, (5)

where
Pαβ ≡

1
2ψ

(∗
gαβ − gαβgµν ∗gµν

)
, (6)

∗
A ≡ ∂A

∂l , Dα is the covariant derivative on the hypersurface and D2 ≡ DαDα.
In the IMT [7,19,55], it was presumed that there is no higher-dimensional ordinary

matter; therefore G
(5)

ab = 0 (where G
(5)

ab are the components of the Einstein tensor in five

dimensions), or equivalently, R
(5)

ab = 0, which is known as the ‘Postulate II’ of the Wesson’s
scheme [56]. Therefore, by defining a hypersurface Σ4, for which l = l0 = constant, and

gµν(xα) = G (4)
(xα, l0), (7)

Equations (3)–(5) reduce to

R
(4)

αβ =
DαDβψ

ψ
− ε

2ψ2

 ∗ψ∗gαβ

ψ
− ∗∗g αβ + gλµ ∗gαλ

∗
gβµ −

1
2

gµν ∗gµν

∗
gαβ

, (8)

DβPβ
α = 0, (9)

εψD2ψ = −1
4
∗
g

λβ ∗
gλβ −

1
2

gλβ∗∗g λβ +

∗
ψ

2ψ
gλβ ∗gλβ. (10)

Equations (8)–(10) “form the basis of five-dimensional noncompactified KK theory” [7]. The
interpretation of these equations in four dimensions and their applications in cosmology
and astrophysics have been extensively presented in the literature, see for instance, [7,19].
In what follows, let us briefly analyze one of the effective field equations.

Using Equations (8) and (10), and (δ
µ
ν ),4 = 0 = gµβgσλ ∗gλβ

∗
g

µσ
+
∗
gµσ

∗
gµσ, we obtain an

expression for the Ricci scalar R
(4)

= gαβR
(4)

αβ:

R
(4)

=
ε

4ψ2

[
∗
g

µν ∗
gµν +

(
gµν ∗gµν

)2
]

. (11)

Defining an induced energy-momentum tensor in four dimensions as T
[IMT]

αβ ≡ R
(4)

αβ −
1/2R

(4)
gαβ, from using Equations (8) and (11), one can easily obtain
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T
[IMT]

αβ ≡
DαDβψ

ψ
− ε

2ψ2

 ∗ψ∗gαβ

ψ
− ∗∗g αβ + gλµ ∗gαλ

∗
gβµ −

1
2

gµν ∗gµν

∗
gαβ


−

εgαβ

8ψ2

[
∗
g

µν ∗
gµν +

(
gµν ∗gµν

)2
]

. (12)

In summary, according to the ‘Postulate III’ [56], we use the above expression as
a four-dimensional energy momentum tensor associated with our universe; hence the
Einstein field equations on a four-dimensional hypersurface, G

(4)

αβ = T
[IMT]

αβ , are automatically

contained in the corresponding five-dimensional vacuum equations G
(5)

ab = 0. In this regard,

T
[IMT]

αβ , which describes a matter as a manifestation of pure geometry in higher-dimensional
spacetime, has been interpreted as the energy momentum tensor of an induced-matter in the
KK theory.

3. Modified Scalar–Tensor Theories

In this section, we again take the line element (2) and the noncompact extra dimensions.
Moreover, we will consider the Remark mentioned in the previous section as well as the
following one

Remark. Equations (3)–(6) are again valid for this framework as well as that which will be
introduced in the next subsection. However, since in this and the subsequent subsection we
relate the equations associated with (D + 1)-dimensional spacetime to their corresponding D-
dimensional counterparts, the indices 4α and 44 should be replaced by Dα and DD, respectively.
Moreover, the superscripts (5) should be replaced with (D + 1). Furthermore, due to the presence
of the scalar field as well as the higher-dimensional matter in the bulk, equations G

(5)

ab = 0 or

equivalently, R
(5)

ab = 0 are generally no longer valid. More precisely, as we will show below, not
only are Equations (8)–(12) generalized, but we will also show that when the wave equation of each
framework is reduced on the hypersurface, it involves induced scalar potential.

In addition, we will consider the following generalizations. (i) Instead of deriving
the modified field equations in four dimensions, we want to obtain them in arbitrary
dimensions. Therefore, we assume that the Latin and Greek indices run from zero to D,
and to D− 1, respectively. Moreover, G and R

(D+1)
, respectively, are the determinant and the

Ricci scalar of the (D + 1)-dimensional metric Gab; ∇a stands for the covariant derivative
in (D + 1)-dimensional spacetime, and ∇2 ≡ ∇a∇a. The Lagrangian L

(D+1)

matt describes
ordinary matter in the (D + 1)-dimensional spacetime. (ii) Rather than considering the
GR as a background theory, let us consider two different types of scalar–tensor theories:
in the first, the scalar field is minimally coupled to gravity, while in the second, the scalar
field is non-minimally coupled. (iii) In order to apply a generalized reduction method, we
consider, in addition to the presence of the scalar field in the action, a higher-dimensional
ordinary matter3 L

(D+1)

matt .

3.1. Modified Sáez–Ballester Theory in Arbitrary Dimensions

Let us give a brief overview of the framework established in [9], see also [26,48]. We
consider a generalized version4 of the SB action proposed in [47] in (D + 1)-dimensional
spacetime as

S (D+1)

SB =
∫

dD+1x
√∣∣∣G∣∣∣ [R(D+1) −Wφn Gab (∇aφ)(∇bφ) + χ L

(D+1)

matt

]
, (13)

where φ is the SB scalar field;W , n are dimensionless parameters of the model; χ = 8π,
and we used the same units taken in [9]. We should emphasize that there is no scalar
potential in action (13).
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One can easily show that the equations of motion corresponding to (13) are:

G
(D+1)

ab =Wφn
[
(∇aφ)(∇bφ)− 1

2
Gab(∇cφ)(∇cφ)

]
+ χ T

(D+1)

ab (14)

and
2φn∇2φ + nφn−1(∇aφ)(∇aφ) = 0, (15)

where G
(D+1)

ab and T
(D+1)

ab , respectively, denote the Einstein tensor and the energy momentum
tensor (of any ordinary matter field) in (D + 1)-dimensions. We should emphasize that
T

(D+1)

ab does not depend on φ, and it is therefore identically conserved. Equation (14) leads to

R
(D+1)

=Wφn(∇aφ)(∇aφ)− 2χ

D− 1
T

(D+1)
, (16)

where T
(D+1)

= GabT
(D+1)

ab .
Before deriving the effective field equations, let us write some useful equations that

will be used later:

∇µ∇νφ = DµDνφ +
ε
∗
φ
∗
gµν

2ψ2 , (17)

∇2φ = D2φ +
(Dαψ)(Dαφ)

ψ
+

ε

ψ2

∗∗φ +
∗
φ

 gµν ∗gµν

2
−
∗
ψ

ψ

, (18)

(∇aφ)(∇aφ) = (Dαφ)(Dαφ) + ε

 ∗φ
ψ

2

, (19)

∇D∇Dφ = εψ(Dαψ)(Dαφ) +
∗∗
φ −

 ∗ψ
ψ

 ∗φ. (20)

Letting a→ µ and b→ ν in Equation (14) yields the D-dimensional counterpart of the
corresponding (D + 1)-dimensional quantity:

G
(D+1)

µν =Wφn
[
(Dµφ)(Dνφ)− 1

2
gµν(Dαφ)(Dαφ)

]

− εWφn

2

 ∗φ
ψ

2

gµν + χT
(D+1)

µν , (21)

where we have used (19).
Now we are going to derive the equations associated with the MSBT.5

1. Let us first obtain a dynamical equation for the scalar field ψ, i.e., an extended version
of (10), which, in turn, will be applied to retrieve other modified equations. Letting
a→ D and b→ D in Equation (14), we obtain

R
(D+1)

DD =

(
εχψ2

1− D

)
T

(D+1)
+ χT

(D+1)

DD +Wφn
(
∗
φ

)2
, (22)

where we used Equation (16). Equating relations (5) (please see the Remarks) and (22),
we retrieve
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D2ψ

ψ
= − ε

2ψ2

gλβ∗∗g λβ +
1
2
∗
g

λβ ∗
gλβ −

gλβ ∗gλβ

∗
ψ

ψ


− εWφn

 ∗φ
ψ

2

+ χ

[
T

(D+1)

D− 1
−

εT
(D+1)

DD

ψ2

]
, (23)

which is one of our effective equations. It can be seen that in a special case where
φ = constant and the higher-dimensional ordinary matter is absent, Equation (23)
reduces to its IMT counterpart.

2. Let us now construct the Einstein tensor on the hypersurface. Concretely, we want
to retrieve the counterpart of (14) on a D-dimensional hypersurface. In this regard,
by taking the SB theory into account, we first relate the Ricci scalars R

(D+1)
and R

(D)
:

R
(D+1)

= GabR
(D+1)

ab = GαβR
(D+1)

αβ + GDDR
(D+1)

DD . (24)

Substituting R
(D+1)

αβ and R
(D+1)

DD from relations (3) and (5), respectively (where we re-
spect the expressions presented in the Remarks) into Equation (24), and then using
Equation (23), after some manipulations, we obtain

R
(D+1)

= R
(D) − ε

4ψ2

[(
gαβ ∗gαβ

)2
+
∗
g

αβ ∗
gαβ

]

+
2εWφn

∗
φ

2

ψ2 + 2χ

(
εT

(D+1)

DD

ψ2 − T
(D+1)

D− 1

)
. (25)

Now, we proceed as follows. By substituting R
(D+1)
µν and R

(D+1)
from relations (3)

and (25) into

G
(D+1)

µν = R
(D+1)

µν − 1
2
GµνR

(D+1)
, (26)

and equating the result with (21), we can easily construct the Einstein tensor on a
D-dimensional hypersurface:

G
(D)

µν = Wφn
[
(Dµφ)(Dνφ)− 1

2
gµν(Dαφ)(Dαφ)

]
+ χ

(
Fµν + T

[MSBT]

µν

)
− 1

2
gµνV(φ)

≡ Wφn
[
(Dµφ)(Dνφ)− 1

2
gµν(Dαφ)(Dαφ)

]
+ χT

(D)[eff]

µν − 1
2

gµνV(φ), (27)

where the induced scalar potential V(φ) should be obtained from the differential
Equation (32).
Let us also introduce the effective matter in Equation (27):
(i) Fµν is the effective matter induced from the (D + 1)-dimensional ordinary energy
momentum tensor:

Fµν ≡ T
(D+1)

µν + gµν

[
ε T

(D+1)

DD

ψ2 − T
(D+1)

D− 1

]
. (28)

Obviously, assuming a bulk without a higher-dimensional ordinary matter, i.e., L(D+1)
matt = 0,

then Fµν vanishes.

(ii) T
[MSBT]
µν is an induced energy momentum tensor associated with our herein MSBT

framework, which, in turn, has three components:
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χT
[MSBT]

µν = T
[IMT]

µν + T
[φ]

µν +
1
2

gµνV(φ), (29)

where

T
[φ]

µν ≡

1
2

εWφn

 ∗φ
ψ

2
gµν. (30)

Here T
[IMT]
µν is exactly the same quantity introduced in the previous section, see

Equation (12).
3. We now obtain the reduced wave equation on a D-dimensional hypersurface, i.e., the

counterpart to Equation (15). Substituting ∇2φ and (∇cφ)(∇cφ) from relations (18)
and (19) into (15), we obtain

2φnD2φ + nφn−1(Dαφ)(Dαφ)− 1
W

dV(φ)

dφ
= 0, (31)

where

dV(φ)

dφ
≡ −2Wφn

ψ2

{
ψ(Dαψ)(Dαφ) +

nε

2

( ∗φ2

φ

)
+ ε
[∗∗

φ +
∗
φ
(1

2
gµν ∗gµν −

∗
ψ

ψ

)]}
. (32)

4. Finally, let us obtain the last equation, which is an extended version of (9). In this
sense, substituting a = D and b = µ into Equation (14), we obtain

G
(D+1)

Dµ = R
(D+1)

Dµ = χT
(D+1)

Dµ +Wφn ∗φ(Dαφ). (33)

By equating (33) and (4) (which is obtained directly from metric (2); see also the second
Remark), we obtain an extended dynamical equation for Pαβ in MSBT:

ψPβ
µ;β = χT

(D+1)

Dµ +Wφn ∗φ(Dµφ) , (34)

where Pαβ is given by (6).

It is worth mentioning that Equations (27) and (31) are obtained from the action

S (D)

SB =
∫

d
D
x
√
−g
[

R
(D) −Wφn gαβ (Dαφ)(Dβφ)−V(φ) + χ L

(D)

matt

]
, (35)

which is a generalized action of the SB theory with a scalar potential and

√
−g T

(D)[eff]

µν ≡ 2
δSmatt

δgµν , (36)

where Smatt =
∫

d
D
x
√−g L

(D)

matt is the action corresponding to the matter fields in D dimen-
sions. We should emphasize that the induced energy momentum tensor is covariantly
conserved, namely, DβT

(D)[eff]β
α = 0.

3.2. Modified Brans–Dicke Theory in Arbitrary Dimensions

In this subsection, we will present a brief overview of the modified Brans–Dicke
theory (MBDT). The action in (D + 1) dimensions in the Jordan frame associated with the
Brans–Dicke (BD) theory can be written as
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S (D+1)

BD =
∫

d
D+1

x
√∣∣∣G∣∣∣ [ϕR

(D+1) − ω

ϕ
Gab (∇a ϕ)(∇b ϕ) + 16π L

(D+1)

matt

]
, (37)

where ϕ and ω are the BD scalar field and an adjustable dimensionless parameter (called
the BD coupling parameter), respectively.6

The equations of motion corresponding to the action (37) can be written as

G
(D+1)

ab =
8π

ϕ
T

(D+1)

ab +

ω

ϕ2

[
(∇a ϕ)(∇b ϕ)− 1

2
Gab(∇c ϕ)(∇c ϕ)

]
+

1
ϕ

(
∇a∇b ϕ− Gab∇2 ϕ

)
, (38)

and
2ω

ϕ
∇2 ϕ− ω

ϕ
2 G

ab(∇a ϕ)(∇b ϕ) + R
(D+1)

= 0. (39)

From Equation (38), we easily obtain the Ricci scalar:

R
(D+1)

= −16π T
(D+1)

(D− 1)ϕ
+

ω

ϕ2 (∇
c ϕ)(∇c ϕ) +

2D
D− 1

∇2 ϕ

ϕ
, (40)

where T
(D+1)

= GabT
(D+1)

ab .
Substituting (40) into (39) yields7

∇2φ =
8πT

(D+1)

(D− 1)ω + D
. (41)

By applying a reduction procedure similar to that in the previous subsection, we can set
up the effective equations associated with the D-dimensional hypersurface. For a detailed
investigation of such a method in the context of the BD theory, see [8]. We therefore refrain
from presenting the details of this approach and confine ourselves to a brief summary of
the results. More precisely, considering the metric (2) and using an appropriate reduction
procedure, it has been show that Equations (38) and (41) generate four sets of modified
field equations on a D-dimensional hypersurface [8]. These field equations are:

1. An equation for the scalar field ψ is:

D2ψ

ψ
= − (Dαψ)(Dα ϕ)

ψϕ
− ε

2ψ2

gλβ∗∗g λβ +
1
2
∗
g

λβ ∗
gλβ −

gλβ ∗gλβ

∗
ψ

ψ


− ε

ψ2 ϕ

∗∗ϕ +
∗
ϕ

ω
∗
ϕ

ϕ
−
∗
ψ

ψ

+
8π

ϕ

[
(ω + 1)T

(D+1)

(D− 1)ω + D
−

εT
(D+1)

DD

ψ2

]
. (42)

2. The other effective field equations are the counterpart Equations of (38) and (41):

G
(D)

µν =
8πT

(D)[eff]
µν

ϕ
+

ω

ϕ2

[(
Dµ ϕ

)
(Dν ϕ)− 1

2
gµν(Dα ϕ)(Dα ϕ)

]
+

1
ϕ

(
DµDν ϕ− gµνD2 ϕ

)
− gµν

V(ϕ)

2ϕ
. (43)
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In Equation (43), the induced scalar potential V(ϕ) is obtained from a differential
equation, see Equation (48); the effective energy-momentum tensor T

(D)[eff]
µν consists of

two parts: T
(D)[eff]
µν ≡ Eµν + T

[MBDT]
µν with

Eµν ≡ T
(D+1)

µν − gµν

[
(ω + 1)T

(D+1)

(D− 1)ω + D
−

ε T
(D+1)

DD

ψ2

]
, (44)

8π

ϕ
T

[MBDT]

µν ≡ T
[IMT]

µν +
1
ϕ

T
[ϕ]

µν +
V(ϕ)

2ϕ
gµν. (45)

We should note that in Equation (45) T
[IMT]
µν is exactly the same induced matter intro-

duced in the IMT, but T
[ϕ]

µν is given by

T
[ϕ]

µν ≡
ε
∗
ϕ

2ψ2

[
∗
gµν + gµν

(
ω
∗
ϕ

ϕ
− gαβ ∗gαβ

)]
, (46)

which depends on the first derivatives of the BD scalar field with respect to l. Con-
cretely, it is another induced energy momentum tensor on the hypersurface arising
due to the presence of ϕ.

3. The wave equation of the MBDT is:

D2 ϕ =
1

(D− 2)ω + (D− 1)

[
8πT

(D)[eff]
+

(
D− 2

2

)
ϕ

dV(ϕ)

dϕ
− D

2
V(ϕ)

]
, (47)

where V(ϕ) is obtained from8

ϕ
dV(ϕ)

dϕ
≡ −2(ω + 1)

 (Dαψ)(Dα ϕ)

ψ
+

ε

ψ2

∗∗ϕ − ∗
ψ
∗
ϕ

ψ


− εω

∗
ϕ

ψ2

[ ∗
ϕ

ϕ
+ gµν ∗gµν

]
+

εϕ

4ψ2

[∗
g

αβ ∗
gαβ + (gαβ ∗gαβ)

2
]

+ 16π

[
(ω + 1)T

(D+1)

(D− 1)ω + D
−

ε T
(D+1)

DD

ψ2

]
. (48)

4. A counterpart to the conservation Equation (9) introduced in the IMT is:

G
(D+1)

αD = ψDβPβ
α =

8πT
(D+1)

αD
ϕ

+
ω
∗
ϕ(Dα ϕ)

ϕ2 +
Dα
∗
ϕ

ϕ
−
∗
gαλ

(
Dλ ϕ

)
2ϕ

−
∗
ϕ(Dαψ)

ϕψ
. (49)

In summary, considering the metric (2) as the background geometry, by applying
the reduction procedure introduced in [8], Equations (38) and (41) split into four sets of
effective Equations (42), (43), (47) and (49) on a D-dimensional hypersurface. It should
be noted that both the induced energy-momentum tensor and the induced scalar poten-
tial in the context of the MBDT are obtained from specific equations and therefore have
specific types with respect to the phenomenological models. However, we should em-
phasize that these quantities can be considered as fundamental rather than some ad hoc
phenomenological assumptions.
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It is seen that Equations (43) and (47) are identical to those of the BD theory obtained
from the action

S (D)

BD =
∫

d
D
x
√
−g
[

ϕR
(D) − ω

ϕ
gαβ (Dα ϕ)(Dβ ϕ)−V(ϕ) + 16π L

(D)

matt

]
, (50)

where specifically
√−g

(
Eµν + T

[MBDT]
µν

)
≡ 2δ

(∫
d

D
x
√−g L

(D)

matt

)
/δgαβ such that T

(D)[eff]
µν =

Eµν + T
[MBDT]
µν stands for the Lagrangian associated with the matter in D dimensions.

4. FLRW-MSBT Cosmology

Our main goal in this review paper has been to provide only a very brief overview of
the noncompactified KK gravity frameworks and their applications in cosmology. There-
fore, in this section, we confine ourselves to a single important cosmological application,
namely the FLRW cosmology in one of our modified models. To study other applications,
the reader is referred to the related work referenced in this paper, see, e.g., [13,41,43–45]
and references therein.

As a cosmological application of the MSBT framework constructed in the previous
section, let us present a review of the model investigated in [9]. The spatially flat FLRW
universe in a (D + 1)-dimensions was considered in Ref. [9]:

dS2 = −dt2 + a2(t)

[
D−1

∑
i=1

(
dxi
)2
]
+ εψ2(t)dl2. (51)

In Equation (51), t, xi (where i = 1, 2, . . . , D− 1), and a(t) stand for the cosmic time,
the Cartesian coordinates, and the scale factor, respectively. Moreover, let us assume there
is no higher-dimensional matter, and a, φ, and ψ to be depending on the cosmic time only.

Therefore, Equations (14) and (15) for the metric (51) yield

D− 2
2

(
ȧ
a

)2
+

(
ȧ
a

)(
ψ̇

ψ

)
=

W
2(D− 1)

(
φ

n
2 φ̇
)2

, (52)

ä
a
+

D− 3
2

(
ȧ
a

)2
+

(
ȧ
a

)(
ψ̇

ψ

)
+

ψ̈

ψ
= − W

2(D− 2)

(
φ

n
2 φ̇
)2

, (53)

ä
a
+

D− 2
2

(
ȧ
a

)2
= − W

2(D− 1)

(
φ

n
2 φ̇
)2

, (54)

φ̈ +

[
(D− 1)

ȧ
a
+

n
2

(
φ̇

φ

)
+

ψ̇

ψ

]
φ̇ = 0, (55)

where Ȧ ≡ dA/dt for any arbitrary variable A = A(t).
Only three of the Equations (52)–(55) are independent, from which we have to deter-

mine the three unknowns a(t), φ(t), and ψ(t).
Let us first focus on a simple case: if the SB scalar field φ takes only constant values,

we can easily obtain a unique solution as

dS2 = −dt2 +
(

C1t
2
D

)2
[

D−1

∑
i=1

(
dxi
)2
]
+ ε
(

C2t
2
D−1

)2
dl2, (56)

where C1 and C2 are constants of integration. It is worth noting that (56) is the only
solution in the context of general relativity when an empty universe is described by a
(D + 1)-dimensional spatially flat FLRW metric.
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Whereas for the general case, employing Equations (52), (53) and (55), two constants
of motion are retrieved:

aD−1φ
n
2 φ̇ψ = c1, (57)

aD−1ψ̇ = c2, (58)

where c1 and c2 are constants of integration. Then, from using Equations (57) and (58), we
can determine ψ as a function of φ:

ψ(φ) =

{
ψi exp

(
2β

n+2 φ
n+2

2

)
, for n 6= −2,

ψiφ
β, for n = −2,

(59)

where β ≡ c2
c1

, and ψi is an integration constant. We will assume c1 6= 0 and aD−1ψ 6= 0. More-
over, to obtain a as a function of φ, we substitute ψ from Equation (59) into Equation (52):

a(φ) =

{
ai exp

[
2γ

n+2 φ
n+2

2

]
for n 6= −2,

aiφ
γ for n = −2.

(60)

In Equation (60), ai is a constant of integration and

γ ≡ 1
D− 2

[
−β±

√
β2 +

(
D− 2
D− 1

)
W
]

, (61)

which yields real values provided that

W ≥ −
(

D− 1
D− 2

)
β2. (62)

In order to obtain the unknowns in terms of the cosmic time, we substitute ψ and a,
respectively, from Equations (59) and (60) into Equation (57). Such a procedure yields

φ̇φ
n
2 exp

[
2 f

n+2 φ
n+2

2

]
=

c1a1−D
i

ψi
, for n 6= −2,

φ̇φ f =
c1a1−D

i
ψi

, for n = −2,

(63)

where

f ≡ (D− 1)γ + β. (64)

We should note that both γ and f depend on D. Depending on whether f is zero
or not, we will have two different solutions for each of the above differential equations.
In what follows, we will analyze them separately.

Case I: f ≡ (D− 1)γ + β = 0

For this case, relation (64) yields

γ = − β

D− 1
, W = −

(
D

D− 1

)
β2. (65)
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Moreover, from using Equation (63), we obtain

φ(t) =


[
(n+2)(1−D)h(t−ti)

2β

] 2
n+2 , for n 6= −2,

exp
[
(1−D)h(t−ti)

β

]
, for n = −2,

(66)

where ti is an integration constant and

h ≡
c1βa1−D

i
(1− D)ψi

. (67)

We should note that h does not depend on the cosmic time, but we emphasize that it
is a function of D, i.e., h = h(D). Moreover, substituting the scalar field from (66) into (59)
and (60), we obtain the other unknowns in terms of the cosmic time:

a(t) = ai exp[h(t− ti)], ∀n (68)

ψ(t) = ψi exp[(1− D)h(t− ti)], ∀n. (69)

For Case I, it is seen that among the unknowns, only φ(t) explicitly depends on n.
Substituting a(t) and ψ(t) from Equations (68) and (69) into (51), we eventually obtain

dS2 = −dt2+

a2
i exp[2(t− ti)]

D−1

∑
i=1

(
dxi
)2

+ εψ2
i exp[2(1− D)h(t− ti)]dl2, ∀n. (70)

Case II: f ≡ (D− 1)γ + β 6= 0

For this case, from using Equation (61),W can be expressed as

W = (D− 1)γ[2β + (D− 2)γ]. (71)

In order to obtain the SB scalar field in terms of the cosmic time, we integrate both
sides of Equation (63) over dt, which yields

φ(t) =


{

n+2
2 f ln

[
h̃(t− ti)

]} 2
n+2 , for n 6= −2,

[
h̃(t− ti)

] 1
f , for n = −2,

(72)

where
h̃ ≡ c1 f

aD−1
i ψi

. (73)

Moreover, by substituting φ(t) from Equation (72) into Equations (59) and (60),
we obtain

a(t) = ai
[
h̃(t− ti)

]r, ∀n (74)

ψ(t) = ψi
[
h̃(t− ti)

]m, ∀n, (75)

where

r ≡ γ

f
, m ≡ β

f
, m + (D− 1)r = 1. (76)
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Then, we can rewrite relation (71) as

W = (D− 1) f 2r[2m + (D− 2)r]. (77)

In what follows, to construct the cosmological solutions on the D-dimensional hy-
persurface and to analyze the reduced cosmological dynamics, we will use the MSBT
framework presented in the previous section.

Employing Equation (29) for metric (51), we can easily obtain the components of the
induced energy momentum tensor:

ρSB ≡ −T0[MSBT]
0 =

1
χ

[
ψ̈

ψ
− V(φ)

2

]
, (78)

pSB ≡ Ti[MSBT]
i = − 1

χ

[
ȧψ̇

aψ
− V(φ)

2

]
, (79)

where i = 1, 2, 3, . . . , D − 1 (with no sum), and ρSB and pSB are the induced energy den-
sity and pressure, respectively. Moreover, we use Equation (32) to obtain the induced
scalar potential:

dV
dφ

∣∣∣∣∣
Σo

= 2Wφnφ̇

(
ψ̇

ψ

)
. (80)

In order to eliminate φ̇ and ψ̇ in favor of the other variables of the model, we use
Equations (57) and (58):

dV
dφ

∣∣∣∣∣
Σo

= 2c2
1βWa2(1−D)φ

n
2 ψ−2. (81)

Finally, by substituting a and ψ from Equations (59) and (60) into Equation (81),
we obtain

dV
dφ

∣∣∣∣∣
Σo

=


V0φ−[1+2 f ], for n = −2,

V0φ
n
2 exp

[
− 4 f

n+2 φ
n+2

2

]
, for n 6= −2,

(82)

where
V0 ≡ 2c2

1βWa2(1−D)
i ψ−2

i . (83)

One sees that the differential Equation (82) depends on the values that f takes on.
More precisely, we must continue our discussions for two different cases, I and II, separately.
Such a procedure will be carried out later. Here are some important comments.

Equations (27) and (31) corresponding to the D-dimensional spatially flat FLRW
metric read

(D− 1)(D− 2)
2

H2 = χρSB + ρφ ≡ ρtot , (84)

(D− 2)
ä
a
+

(D− 2)(D− 3)
2

H2 = −
(
χpSB + pφ

)
≡ −ptot , (85)

2φnφ̈ + 2(D− 1)Hφnφ̇ + nφn−1φ̇2 +
1
W

dV
dφ

∣∣∣∣∣
Σo

= 0, (86)
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where H ≡ ȧ/a denotes the Hubble parameter, ρSB and pSB and dV
dφ

∣∣∣
Σo

are given by

Equations (78), (79) and (80), respectively. Moreover, ρφ and pφ stand for the energy density
and pressure associated with the SB scalar field φ:

ρφ ≡
1
2

[
Wφnφ̇2 + V(φ)

]
, (87)

pφ ≡
1
2

[
Wφnφ̇2 −V(φ)

]
. (88)

Employing Equations (84) and (85), one can easily show

ä
a
= − 1

(D− 1)(D− 2)
[(D− 3)ρtot + (D− 1)ptot ]. (89)

For later usage, let us also introduce the following equation of state (EoS) and
density parameters:

WSB ≡
pSB

ρSB

, Wφ ≡
pφ

ρφ
, Wtot ≡

ptot

ρtot

=
χpSB + pφ

χρSB + ρφ
, (90)

ΩSB ≡ 2χ

(D− 1)(D− 2)
ρSB

H2 , (91)

Ωφ ≡ 2
(D− 1)(D− 2)

ρφ

H2 . (92)

Employing these parameters, it is seen that Equation (84) can be written as ΩSB +Ωφ = 1.
In the following, we will observe that each equation of (82), due to whether the

quantity f vanishes or not, in turn generates two different functions of the scalar field,
which are analyzed separately.

4.1. Case (I) D-Dimensional Solutions with f = (D− 1)γ + β = 0

For this case, by solving Equation (82), we obtain

V(φ) =


2V0
n+2 φ

n+2
2 , for n 6= −2,

V0 ln
(

φ
φi

)
, for n = −2.

(93)

In Equation (93), φi is an integration constant and

V0 = 2βD(1− D)h2, (94)

is obtained from using Equations (65), (67) and (83). Substituting φ(t) from Equation (66)
into (93), we eventually obtain the corresponding induced scalar potential in terms of the
cosmic time:

V(t) = V0(1− D)hβ−1 (t− ti) = 2D(1− D)2h3 (t− ti), ∀n, (95)

where h is given by Equation (67).
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Now, having the scale factors a(t) and ψ(t) from (68) and (69) as well as the scalar
potential in terms of the cosmic time, we substitute them into (78) and (79), which yields

χρSB ≡ −χT0[MSBT]
0 = (1− D)2h2[−Dh(t− ti) + 1], (96)

χpSB ≡ χTi[MSBT]
i = (1− D)h2[D(1− D)h(t− ti)− 1]. (97)

Employing Equations (68), (96) and (97), it is easy to show that the quantity ρ̇SB + (D−
1)H(ρSB + pSB) vanishes identically. More concretely, the conservation of the induced energy
momentum tensor holds in MSBT, which is one of the distinctive features of the framework.

Moreover, substituting φ(t) and V(t) from relations (66) and (95) into (87) and (88),
we obtain

ρφ =
1
2

D(1− D)h2[1 + 2(1− D)h(t− ti)], ∀n, (98)

pφ =
1
2

D(1− D)h2[1− 2(1− D)h(t− ti)], ∀n, (99)

from which we obtain

Wφ =
1− 2(D− 1)h(t− ti)

1 + 2(D− 1)h(t− ti)
, ∀n. (100)

In summary, the SB cosmological model in D-dimensional hypersurface derived from
the (D + 1)-dimensional solutions associated with Case I are:

ds2 = −dt2 + a2
i exp

[
2

√
Λ

D− 1
(t− ti)

][
D−1

∑
i=1

(
dxi
)2
]

, (101)

ρtot =
1
2
(D− 2)Λ, ptot = −

1
2
(D− 2)Λ, Wtot = −1, ∀n, (102)

where

Λ = Λ(D) ≡ 1
D− 1

(
c1β

aD−1
i ψi

)2

= constant > 0, for D > 1. (103)

We note that in deriving the total energy density, we have used Equations (84), (85)
and (96)–(99).

Relation (103) implies that the quantity Λ(D) > 0 can be interpreted as a cosmological
constant, which, in turn, emerges from combining varying induced matter fields, see
relations (96)–(99). Let us look at Λ(D) from a different perspective. With Equation (69),
the expression in parenthesis of Equation (103) can be replaced by ψ̇/ψ, i.e., we obtain

Λ(D) =
1

D− 1

(
ψ̇

ψ

)2

= constant, ∀t, (104)

which holds forever. Equation (104) implies that the value of the so-called cosmological
constant depends not only on the number of spatial dimensions, but also on the squared
expansion rate associated with the extra dimension. Finally, it should be mentioned that
the solution belonging to Case I describes an exponentially expanding universe, which is
analogous to the usual de Sitter solution.

It is worth making a few more comments about our solution here. Let us consider the
canonical metric

dS2 =
l2

L2 g̃µν(xα, l)dxµdxν − dl2, (105)
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where L > 0 is a constant, and g̃µν = diag(1,−a2(t),−a2(t), . . . ,−a2(t)). We also assume

a special case where T
(D+1)
µν = 0, and the SB scalar field depends only on t. Therefore,

we obtain

χT
(D)[eff]

µν =
1

2L2

(
D2 − 3D + 2 + l2

0V0

)
g̃µν, (106)

where V0 = constant is obtained from (32), and l0 = constant is the value of l on the
hypersurface. For this case, from Equation (27) we obtain

G
(D)

µν =

(
D2 − 3D + 2

2L2

)
g̃µν +Wφn

[
(Dµφ)(Dνφ)−

l2
0

2L2 (Dαφ)(Dαφ)g̃µν

]
. (107)

Applying the framework presented in the preceding section, the cosmological solu-
tions corresponding to the metric (105) are

a(t) = ai exp
[
(D− 1)(t− ti)

L

]
, (108)

φ(t) =



{
CL(n+2)
2(1−D)

exp
[
(1−D)(t−ti)

L

]} 2
n+2

, for n 6= −2,

{
exp

[
exp (1−D)(t−ti)

L

]} CL
1−D

, for n = −2,

(109)

where ti and ai are integration constants, and C ≡ aD−1φ
n
2 φ̇ is a constant of motion. In a

special case where φ = constant, from using Equation (107), we obtain Gµν = Λ(D)g̃µν,
where Λ = Λ(D) ≡ (D2 − 3D + 2)/(2L2). To study the latter in four dimensions in more
detail, see [59,60] and the references therein.

4.2. Case (II) D-Dimensional Solutions with f ≡ β + (D− 1)γ 6= 0

The induced scalar potential assigned to this case is obtained from solving the differ-
ential Equation (82):

V(φ) =


−V0

2 f exp
[
−4 f
n+2 φ

n+2
2

]
, for n 6= −2,

−V0
2 f φ−2 f , for n = −2.

(110)

Equation (110) can be expressed in terms of t with a single relation for all values of n:

V(t) = − (D− 1)mr[1 + m− r]
(t− ti)2 , ∀n, (111)

where we have used (72).
Substituting a(t), ψ(t) and V(t) from relations (74), (75), and (111) into (78) and (79),

we obtain

ρSB = −D(D− 1)mr2

2χ(t− ti)2 , pSB = −Dmr(1 + m)

2χ(t− ti)2 , ∀n, (112)

which yields a barotropic fluid:

pSB = WSB ρSB , WSB =
1 + m

(D− 1)r
, ∀n. (113)
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Moreover, ρφ and pφ are obtained from substituting φ(t) and V(t) from (72) and (111)
into (87) and (88):

Wφnφ̇2 =
(D− 1)r(1 + m− r)

2(t− ti)2 , (114)

ρφ =
W(1−m)

2 f 2(t− ti)2 =
[(D− 1)r]2[2m + (D− 2)r]

2(t− ti)2 , (115)

pφ =
W(1 + m)

2 f 2(t− ti)2 =
[(D− 1)r][2m + (D− 1)r][2m + (D− 2)r]

2(t− ti)2 , (116)

where the first relation was written for later use. Therefore, we obtain

Wφ =
1 + m
1−m

=
(D− 1)r + 2m

(D− 1)r
, (117)

Ωφ =
(1−m)(1 + m− r)

(D− 2)r
=

(D− 1)[(D− 2)r + 2m]

(D− 2)[(D− 1)r + m]
. (118)

Now, the total energy density and pressure are obtained easily by substituting ρSB , pSB ,
ρφ, and pφ from relations (112), (115), and (116) into corresponding definitions:

ρtot =
(D− 1)(D− 2)r2

2(t− ti)2 , ptot =
(D− 2)r(1 + m)

2(t− ti)2 , Wtot =
1 + m

(D− 1)r
∀n, (119)

which implies that the total induced matter is also a barotropic obtained from adding two
other barotropic matter fluids. Let us also write another useful equation:

ä
a
= − r[m + (D− 2)r]

(t− ti)2 , ∀n, (120)

which has been obtained from substituting ρtot and ptot from relations (119) into
Equation (89).

In what follows, let us analyze the solutions of Case II.

• It is straightforward to show that the corresponding conservation equation is satisfied
for our herein three matter fields. Namely,

ρ̇SB + 3H(ρSB + pSB) = 0, ρ̇φ + 3H(ρφ + pφ) = 0, ρ̇tot + 3H(ρtot + ptot) = 0. (121)

• If we assume that the induced matter plays the role of an ordinary matter in the
universe, it is better to check at least the satisfaction of the weak energy condition for
it. Let us be more specific. Relations (112) imply that for satisfying ρSB ≥ 0, m must
take negative values. Moreover, in order to satisfy ρSB + pSB = −Dmr

χ (t− ti)
2 ≥ 0, r

and m must take positive and negative values, respectively. Therefore, if a(t) increases
and ψ(t) decreases with cosmic time, then the weak energy condition will be satisfied.

• It is seen that Wtot = WSB = Wφ, which can also be fulfilled under approximation
conditions with |pφ| � χ|ρSB| and/or χ|pSB| � |ρφ|.

• Let us now focus on Equation (120). Before continuing our discussions, we want to
mention that we will focus on the solutions with D > 3. Moreover, we assume that the
constant coefficients ai h̃r and ψi h̃m that appeared in relations (74) and (75) always take
positive values. Furthermore, we do not need to write ∀n in front of the equations
since they apply to all n.
In what follows, we present two different cases.
Case IIa: γ < 0, β + (D− 2)γ > 0
For this case, we obtain
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− β

D− 2
< γ < 0, β > 0, γ < f ,

2(D− 1)βγ <W < (D− 1)βγ < 0.
(122)

Moreover, for this case, we find −β/(D− 2) < f < β, namely, f takes positive as well
as negative values. However, in order to have an expanding universe, relation (74) yields
r = γ/ f > 0. Therefore, from using (74) and (122), we find f (D) < 0. We eventually
conclude that f (D) must be constrained as

− β

D− 2
< f (D) < 0. (123)

The above conditions lead to a cosmological model with a > 0 and ä > 0. However,
the extra dimension in such a model shrinks with cosmic time, which is favorable
within the Kaluza–Klein frameworks [7].
Let us also determine the allowed ranges of the energy density, pressure, and density
parameters. According to conditions (122) and (123) together with f + β > 0 (that is
satisfied for D > 3), we find

ρSB > 0, pSB < 0, WSB < 0, ΩSB > 0,
ρφ < 0, pφ > 0, Wφ < 0, Ωφ < 0,
ρtot > 0, ptot < 0, Wtot < 0.

(124)

Moreover, in this case, both the potential V(t) and the kinetic term Wφnφ̇2 take
negative values forever.
Case IIb: γ > 0, β + (D− 2)γ < 0
In this case, we obtain

0 < γ < − β
D−2 , β < 0, γ > f ,

2(D− 1)βγ <W < (D− 1)βγ < 0.
(125)

Moreover, we find β < f (D) < −β/(D − 2), which implies that f takes both
positive and negative values. Using the similar procedure mentioned above, we
eventually obtain:

0 < f (D) < − β

(D− 2)
. (126)

Admitting the above constraints together with assumption D > 3, we can easily
show that the inequalities (124) hold among the corresponding physical quantities in
this case.

In summary, FLRW-MSBT cosmological solutions associated with this case (Case II
where f 6= 0), by removing the parameter m, can be written as

ds2 = dS2
∣∣∣

Σy

= −dt2 + a2
i
[
h̃(t− ti)

]2r
[

D−1

∑
i=1

(
dxi
)2
]

, (127)

ρSB = −D(D− 1)[1− (D− 1)r]r2

2χ(t− ti)2 , pSB = WSB ρSB , (128)

V(t) = − (D− 1)r(2− Dr)[1− (D− 1)r]
(t− ti)2 , (129)

where scalar field φ(t) is given by (72). Moreover, employing relations (76), (77), and (113),
WSB andW are rewritten as
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WSB =
2

(D− 1)r
− 1, (130)

W =
(D− 1)rβ2(2− Dr)

[1− (D− 1)r]2
. (131)

Concerning the power-law solution, we see that the scale factor accelerates whenever
the deceleration parameter q = −aä/(ȧ)2 takes negative values, which for our model, we
need to have r > 1. More concretely, all the three EoS parameters should be less than
(3− D)/(D − 1). (For instance, for D = 4, we obtain WSB(= Wtot = Wφ) < −1/3.) Let
us assume D > 3. We therefore find that both ρSB and ρtot take positive values, whilst
the corresponding pressures take negative values. Consequently, both play the role of
dark energy. (For investigations on dark energy models in the context of scalar–tensor
theories, see, for instance, [61,62] and related papers.) On the other hand, we can easily
show ρSB + pSB ≥ 0 an ρtot + ptot ≥ 0. The above expressions indicate that the weak
energy condition is satisfied for both matters. However, regarding the matter associated
with the scalar field, we obtain other properties. Let us be more precise. Assuming r > 1,
from relation (131), we obtainW < 0. Moreover, Equations (114)–(118) indicateWφnφ̇2 < 0,
ρφ < 0, pφ > 0, and Ωφ < 0, which can be considered as a dark energy [63]. It is worth
noting that for this case (i.e., Case II where f 6= 0), m takes negative values, which implies
that the extra dimension decreases with cosmic time.

Let us see under what conditions we obtain a decelerating scale factor. Assuming that
the induced matter is analogous to an ordinary matter with an EoS parameter W constrained
as 0 ≤W ≤ 1 (which in particular can be a matter-dominated, radiation-dominated, or stiff
fluid with W = 0, 1/(D − 1), 1 in a D-dimensional hypersurface). From relation (130),
we therefore obtain 1/(D − 1) ≤ r ≤ 2/(D− 1), which is, for D > 3, associated with a
decelerating universe. Moreover, we obtain −1 ≤ m ≤ 0, i.e., the extra dimension shrinks
with cosmic time. It is easy to show that the weak energy condition is satisfied for both
the induced and total matters. Whilst, according to (114)–(116), we find that theW , ρφ and
pφ (the quantities associated with the SB scalar field) in the ranges 2/D < r ≤ 2/(D− 1)
and 1/(D− 1) ≤ r < 2/D take negative and positive values, respectively, and they vanish
when r = 2/D. In addition, note that inequality (62) is satisfied for the allowed ranges that
yield the decelerating as well as accelerating scale factor, see [9].

5. Conclusions and Discussion

Since the theories discussed in this paper can be considered as alternative theories
to GR, let us take a look at some other theories in this category. Concretely, there are the
following methods to alter GR: by changing the matter source, the underlying geometry,
the gravitational action functional, or all three, for example, by taking into account scalar
field contributions or adding an exotic energy source component to the standard field equa-
tions. The latter approach recently attracted much interest and substituted any arbitrary
function for the standard Einstein–Hilbert action. This function could be a Ricci scalar R
( f (R) gravity), a scalar torsion T ( f (T) gravity), a G ( f (G) gravity, and f (R, G) gravity),
or it could be the inclusion of another matter field Lagrangian along with some geometrical
features. Because of the importance of f (R) models in cosmology, the f (R) theory of gravity
is regarded as the best modification among the others. It has been hypothesized that cosmic
acceleration can be achieved by replacing the Einstein–Hilbert action with a generic Ricci
scalar function, f (R). As an extension of f (R) modified theories of gravity, the explicit
coupling of any arbitrary function of the Ricci scalar with the matter Lagrangian density has
been proposed [64]. Because of the interaction, the massive particles’ motion is nongeodesic,
and an extra force orthogonal to the four velocities results. Nojiri and Odintsov [65] an-
alyzed many modified gravity theories that are viewed as gravitational alternatives to
dark energy. Several authors [66–77] have examined f (R), f (G), f (R, T), and f (R, G)
gravity in various contexts. Shamir [78] provided a theoretically viable f (R) gravity model
that illustrates the unification of early-time inflation and late-time acceleration. In addi-
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tion, the extension of f (R, T) gravity to KK spacetime has been investigated by several
authors [79–83]. One may want to add Einstein–Dilaton–Gauss–Bonnet gravity [84–86].

Induced–Metter Theory is one of several ideas (for example, Weylian geometry, Finsler
geometry, and braneworld gravity) for modifying the underlying geometry.

In 1921, Kaluza proposed a unification of electromagnetism and gravity in the context
of a four-dimensional hypersurface wrapped in a five-dimensional bulk space. Klein
imposed the cylindricity condition and completed the Kaluza theory by proposing a
circular topology for the fifth dimension. The extra coordinate has no bearing on the
elements of the five-dimensional metric tensor and serves only a formal purpose in the
KK theory. To obtain much better performance of the unified theory of gravitation and
electromagnetism, Einstein and Mayer thought of Kaluza’s idea from the posture that
the spacetime continuum could be a four-dimensional one but possessing vectors (and
tensors) with a fifth component. In 1938, Einstein and Bergmann generalized the KK
theory. During this work, the condition of cylindricity (resembling the existence of a five-
dimensional Killing vector) is replaced by the idea that the space is periodically closed
concerning the fifth coordinate.

In recent decades, the KK theory of extra dimensions, in which matter is confined
within a lower-dimensional hypersurface, has attracted much attention. Wesson’s induced
matter theory, also known as the spacetime matter theory, is based on a revised KK approach.
It is worthwhile to highlight that P. S. Wesson and J. Ponce de Leon’s papers are among the
original works [55,87,88]. Overduin and Wesson’s work [7] and Wesson’s monograph [19]
are particularly significant. These studies demonstrated the possibility of dropping the
cylindrical assumption, the revised KK theory’s suitability for addressing cosmological
issues, and the presence of an induced electromagnetic field on the brane. One of the most
significant achievements of the induced matter theory is the elegant demonstration of the
geometric origin of matter. More precisely, Paul Wesson and his colleagues considered
our universe as a brane embedded in a five-dimensional bulk space and showed that the
latter’s geometry, which is warped but devoid of matter, induces the matter on the brane.
The IMT includes papers on dark matter, dark energy [89,90], the induced unified theory of
gravity and electromagnetism, successful cosmological models [91], cosmological models
with a variable cosmological constant [92,93], and test particles in higher-dimensional
models [94–98].

It is worth revieingw the significant results demonstrated in [99] regarding the equiva-
lence between STM and Z2-symmetric brane-world theories [100–102]. (i) In both frame-
works, matter fields emerge only by assuming the metric as a function of the extra variables,
so no matter arises for metrics that do not depend on l. Therefore, brane models incor-
porating the concept that matter can be viewed as an effect of geometry of bulk are the
ultimate goal of STM theory. (ii) It was pointed out that the motion of the test particles
has similar properties in both theories. (iii) From a theoretical perspective, both theories
employ two opposing approaches to explain the same problem. More concretely, the goal of
brane theory is to employ physical information from the brane to reconstruct the generating
bulk, whereas in the STM theory, the physics on the hypersurface is constructed from bulk.
(iv) From a practical point of view, employing a concrete example, it was demonstrated
that solely the interpretation of the effective matter quantities is different in these frame-
works [99]. It should also be noted that the main fundamental difference between these
frameworks lies in their motivation to introduce an extra dimension.

If, instead of GR, the BD (SB) theory is considered as an underlying framework,
then MBDT (MSBT) is established by the same reduction procedure used to construct the
STM theory; for a detailed study see [8,9]. The two sets of the field equations associated
with the BD (SB) theory in (D + 1)-dimensional spacetime, by employing the reduction
procedure, split into four sets on the any D-dimensional hypersurface orthogonal to the
extra dimension. One pair of these sets, whose scalar potential and matter fields emerge
from the geometry, are the modified version of their corresponding counterparts of the
standard BD (SB) framework consisting a scalar potential. Another pair, which has no
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equilvalent in the mentioned standard scalar–tensor theories, is associated with the scalar
field of the extra dimension, ψ and the modified version of the conservation Equation
introduced in the STM theory. Inspired by [99], the equivalence between the MBDT (MSBT)
and the BD (SB) brane models can also be investigated.

Let us focus on some special cases. (i) As mentioned, the induced scalar potential is
one of the fundamental and inseparable sector of the MBDT and MSBT, which vanishes
only for a few special cases. For instance, in the MBDT, without loss of generality, it vanishes
when ω = −1, T

(D+1)

DD
= 0 and l is a cyclic coordinate. Assuming the latter condition and

ψ = constant, we obtain a zero scalar potential in the MSBT. (ii) When L
(D+1)

matt = 0 and the
BD and SB scalar fields take constant values, then both the MSBT and MBDT reduce to the
corresponding framework constructed in [103]. It is worth noting that the authors of [103]
generalized the IMT to arbitrary dimensions. More concretely, they applied the same procedure
of IMT to relate a (D + 1)-dimensional vacuum space with a D-dimensional hypersurface
with sources and eventually obtained the same effective field equations of IMT. Moreover,
they employed this formalism to investigate the relation between lower-dimensional gravity
frameworks and the four-dimensional vacuum GR. It has been claimed that the former might
be more easily quantized than the usual GR [7,103]. (iii) In both the MBDT and MSBT, when the
corresponding scalar fields take constant values and T

(D+1)

Dµ
= 0, we obtain Pβ

µ;β = 0.
In this review paper, we detail only the FLRW-MSBT model among various cosmolog-

ical models studied in the context of MBDT and MSBT. (For a very brief review of modified
gravity and cosmology, see [104].) Regarding the FLRW-MBDT cosmology, let us mention
that the accelerated epoch of the matter-dominated universe is not only consistent with the
decelerated radiation-dominated epoch, but also with more recent cosmological data [8].

Finally, we should note that the MBDT and MSBT have been applied less as back-
ground framework in research. We believe that they have great potential to probe open
problems, and we therefore will include them in our future research.
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Notes
1 To keep in touch with the original works discussed in each (sub)section, let us apply the same units contained within. For example,

in this section we use the same units as in [55].
2 It is worth noting that noncompact extra dimensions have also been adopted within compactified KK theory as an approach to

incorporate chiral fermions into the theory and to organize a vanishing four-dimensional cosmological constant, see e.g., [57,58].
However, these frameworks have adapted the Klein’s mechanism of harmonic expansion, i.e., a finite volume has been assumed
for the compact manifold [7].

3 It is worth mentioning that in the IMT [55], an apparent vacuum bulk was taken into account. (In this paper, a ‘vacuum’
spacetime means that ‘ordinary matter’ does not exist.) As mentioned earlier, however, we will consider a non-vanishing energy
momentum tensor, L

(D+1)

matt
6= 0, to construct an extended version of the corresponding reduced framework. One is free to impose

higher-dimensional ordinary matter fields that, in turn, invoke an intricate Kaluza–Klein framework. It should be emphasized
that with such a procedure there is a risk that introduces numerous degrees of freedom, so that the corresponding model can no
longer be tested. In this respect, we usually assume a vacuum bulk in cosmological applications.

4 In the original SB theory, scalar potential was not added to the action [47].
5 In [9], the general coordinate free framework has been used to construct the MSBT. However, in this paper, we employ a different

particular approach.
6 In (D + 1)–dimensions, assuming ω >−D/(D− 1), it will be possible to go from the Jordan frame to the Einstein frame by

conformal transformations.
7 We should note that Equations (38)–(40) and (38)–(41) are valid not only for the metric (2) but also for any other more

generalized metrics.
8 We must emphasize that Equations (45), (47) and (48) (for D 6= 4) are the modified version of those introduced in [8].
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