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Abstract: Overlap fermion on the lattice has been shown to properly reproduce topological aspects
of gauge fields. In this paper, we review the derivation of Overlap fermion formalism in a torus
of three space-time dimensions. Using the formalism, we show how to use the Overlap fermion
determinants in the massless and infinite mass limits to construct different continuum topological
gauge actions, such as the level-k Chern–Simons action, “half-CS” term and the mixed Chern–
Simons (BF) coupling, in a gauge-invariant lattice UV regulated manner. Taking special Abelian and
non-Abelian background fields, we demonstrate numerically how the lattice formalism beautifully
reproduces the continuum expectations, such as the flow of action under large gauge transformations.
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1. Introduction

The gauge theories in three space-time dimensions admit a parity-odd Chern–Simons
(CS) topological gauge action in addition to the parity-even Maxwell gauge action. The
Maxwell theory can be nonperturbatively regulated via the lattice discretization of space-
time and by using the local plaquette gauge action. The CS theories are not so straight-
forward to regulate on the lattice, mainly due to the fact that the CS action is only gauge-
invariant up to integer winding under nontrivial gauge transformations (e.g., [1]) and
it is not possible to realize such a term simply as a local Wilson loop gauge action. Vig-
orous research work is being conducted on CS theories coupled to matter content and
certain infrared duality relations [2–4] have been conjectured to exist at critical points
separating different topological phases. Therefore, the question of how to study such
theories numerically on the lattice is important. The aim of this paper is to elucidate how
to introduce topological gauge actions, such as the Chern–Simons action, on the lattice in
a completely gauge-invariant manner by identifying such actions as the induced gauge
actions of lattice fermions.

Let us first consider gauge theories in even dimensions to see how gauge field topol-
ogy is realized using lattice fermions. The space of Euclidean continuum gauge fields,
A = Aµ(x)dxµ, in even dimensional space, D = 2m, usually has infinitely many discon-
nected pieces and each piece has an associated topological number. This is well known and
a chapter or more is attributed to this topic in all modern books on quantum field theory;
we find it useful to refer to the lecture notes by Bilal [5] which has a complete self-contained
description and has citations to other relevant lecture notes and books. The topological
number is given by

Q =
1

m!(2π)m

∫
Pm(F); Pm(F) = TrFm; (1)

where F = dA+ iA∧ A is the Euclidean field strength associated with Aµ(x) and Fm = F∧
F · · · ∧ F. As such not all gauge fields can be connected to the trivial one, Aµ(x) = 0. One
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way to nonperturbatively regularize a gauge theory is using lattice, where one introduces
gauge fields via gauge-links that connect neighboring lattice sites. Link variables belonging
to the Lie group defined by the path ordered product of the Lie group elements,

Uµ(x) = P
∫ x+µ̂

x
eiAµ(y)dy ≡ eiAlat

µ (x) (2)

along the path connecting x and x + µ̂ (we have set the lattice spacing to unity and x
takes on integer values) are lattice gauge fields. Naively, Uq

µ(x) = eiqAlat
µ (x) for some real

valued parameter q, continuously connects any gauge field configuration on the lattice
to the trivial one, Uµ(x) = 1, by sliding the value of q from 0 to 1 seemingly without
encountering any singular behavior in gauge-links or the plaquettes at any x during the
process. Notwithstanding the apparent lack of discontinuity on the lattice between any
two gauge-fields that could otherwise be topologically distinct from each other in the
continuum, an assignment of a topological integer to every gauge field configuration is still
possible. A straightforward approach is to invoke the Atiyah–Singer index theorem [6] and
use fermions to match Q with the index of a lattice Dirac operator. For every lattice gauge
field background in even dimensions and the associated massive Hermitian Wilson–Dirac
operator, Hw(U; mw), the index is the difference between the total number of negative
eigenvalues of Hw(U;±mw) [7]. If the index associated with a particular, Uµ(x) = eiAµ(x)

is not zero, we will see an eigenvalue of Hw(Uq; mw) cross zero as one smoothly changes
q ∈ [0, 1] in Uq

µ(x) = eiqAµ(x). Therefore, there is one value of q where the ground state of
the many body operator

Hw(U; mw) = a† Hw(U; mw)a, (3)

for a D + 1 dimensional auxiliary fermionic system, with a†, a being canonical fermion
creation and annihilation operators, is doubly degenerate. As is also well known, chiral
gauge anomalies in even dimensions are closely related to the topological index [5] and this
can also be understood in terms of the ground state, |0; U; mw〉, ofHw(U; mw) as explained
in [8] . Having defined the one form,

d|0; U; mw〉 = ∑
µ,x

∂

∂Aµ(x)
|0; U; mw〉dAµ(x) (4)

it is shown in [8] that

d[jcons − jcov] = Tr[PdP ∧ dP]; P = |0; U; mw〉〈0; U; mw| (5)

is a well defined function of the lattice gauge field background and jcons and jcov are the
consistent and covariant currents. The problem of anomaly cancellation can be studied
using Equation (5) and the need to fine tune the lattice Wilson–Dirac operator is discussed
in [8]. The above discussion on the ability of massless overlap fermion to detect and classify
topologically distinct gauge sectors on the lattice is well-known. In this paper, we review
the aspects of overlap fermions in odd-dimensions, especially in 2 + 1 dimensions, and
how the parity anomaly of overlap fermions can be used to introduce topological gauge
actions that are characteristic of odd-dimensional gauge theories.

Chiral anomaly inducing topological index in even dimensions and parity anomaly
inducing the Chern–Simons action in odd-dimensions are locally related as [5]

Pm(F) = dQ2m−1(A, F) (6)
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where Q2m−1(A, F) is the Chern–Simons form in one dimension lower, namely, D = 2m− 1.
Setting a one-parameter family of gauge fields equal to At = tA, and noting that Ft =
tdA + it2 A ∧ A,

Q2m−1(A, F) = m
∫ 1

0
dt Tr(A ∧ Fm−1

t ); m > 1. (7)

Focusing on m = 2, we have

Q3(A, F) = Tr
[

A ∧ dA + i
2
3

A ∧ A ∧ A
]

. (8)

Similar to our discussion on the challenge in defining the topological index simply
as a local operator constructed out of local Wilson-loop operators on the lattice, it is not
simple to define the above Chern–Simons form as a local gauge-link-based operator and be
able to satisfy invariance under large gauge transformations of the type we will discuss
later in this paper. Solution to this problem again is to introduce the Chern–Simons action
using the fermions on the lattice; concretely, through the parity-odd part of the induced
gauge action from overlap fermions. An early study in Ref. [9] showed that the Abelian
parity anomaly is reproduced using lattice perturbation theory with a single-flavor of
two-component Wilson fermion with non-zero mass at lattice UV scales [9]. The important
point we stress in this paper is that the massive two-component Wilson Dirac operator X
on any background field Alatt, immediately leads to a gauge covariant unitary operator
[10], V,

V ≡
(

XX†
)−1/2

X, (9)

and the gauge-invariant phase of det(V) is parity-odd and becomes the lattice realization
of the Chern–Simons action for any gauge field background [10–13]. The unitary operator
V is nothing but the overlap operator of a two-component fermion of mass of inverse
lattice spacing. The phase within lattice regularization has been extensively analyzed
in [14] for various Abelian backgrounds. In addition to the Chern–Simons action, the
recent literature on fractional quantum Hall states rely heavily on parity-anomalous two-
component exactly massless Dirac fermions that leads to the so-called “half-Chern–Simons”
term. Subtleties arise when discussing half the Chern–Simons action while maintaining
gauge invariance [2,15,16]. We also show how the construction of the unitary lattice
operator V also immediately leads to the generalization of the Chern–Simons term to
include the BF terms such as B ∧ F = B ∧ dA.

In order to keep this paper as self-contained as possible, we first review the derivation
and the salient features of overlap fermions in three dimensions in Section 2. In Section 3, we
focus on the variation of overlap fermion determinant as fermion mass is varied from 1/a to
massless limit; the point of this discussion is to show that the infinite mass and zero fermion
mass limits indeed correctly reproduce the Chern–Simons and “half-Chern–Simons” terms
correctly in the continuum limit and independent of any lattice UV regulator parameters,
such as the mass term in the Wilson fermion kernel. More interestingly, in Section 4, we
take specific Abelian backgrounds with non-trivial topology on 2d spatial planes and show
how the flow from infinite mass to zero mass limit preserves gauge invariance. For this, we
follow the discussion in [10]. In Section 5, we take a non-Abelian background to discuss
how the A ∧ A ∧ A part of CS term present for non-Abelian case is correctly reproduced.
After the discussion of the Chern–Simons terms, in Section 6, we focus on straight-forward
extensions of overlap formalism to implement mixed Chern–Simons terms that couple two
different gauge field backgrounds, and as a consequence, provide dictionary between some
of the recently proposed fermion-boson dualities in the continuum to those on the lattice.
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2. Overlap Formalism in Three Dimensions

This section follows [17] very closely and we repeat the derivation while keeping a
phase ambiguity intact till the very end. Despite this paper being about nonperturbative
regularization of topological field theories, the lattice formalism is strictly presented on
toroidal S× S× S manifold tessellated into uniform cubes of volume a3, with a being the
lattice spacing. The naïve massless Dirac operator on a three dimensional lattice (we will
set the lattice spacing to unity) is given by

D =
1
2

3

∑
µ=1

σµ

(
Tµ − T†

µ

)
; D† = −D; (10)

where σµ are Pauli matrices satisfying σµσν = δµν + iεµνλσλ, and the action of translation
operator (Tµψ)(x) = Uµ(x)ψ(x + µ̂) up to lattice periodicity. Under parity (xµ → −xµ),

Tµ → T†
µ → D → −D. (11)

and under a gauge transformation G,

Tµ → GTµG†; (Gφ)(x) = g(x)φ(x); GG† = 1, (12)

which implies
D → GDG†. (13)

The naïve massless Dirac operator has a two fold degeneracy in all gauge field back-
grounds. Furthermore, for every eigenvalue there is one with the opposite sign. To see these
two features, we observe that the anti-Hermitian operator only couples odd lattice sites
with even lattice sites. The eigenvalues come in ±iλ pairs and the fermion determinant
is real and positive in all gauge backgrounds and there is no parity anomaly. In order to
realize a single flavor two-component massive Dirac fermion without any doublers in the
overlap formalism [7], we define two Hamiltonians that act on four component spinors:

H− =

(
1 0
0 −1

)
; H+ =

(
B D
−D −B

)
, (14)

where 1 denotes an identity matrix of the same size as D. We have added the Wilson term,

B =
1
2

3

∑
µ=1

(
2− Tµ − T†

µ

)
−mw; B = B†, (15)

with a Wilson mass parameter 0 < mw < 2 and B → B under parity. Under a
gauge transformation

B→ GBG†; H+ → GH+G†. (16)

Define the many body Hamiltonians by

H± = −
(
a† b†)H±

(
a
b

)
(17)

with a†, b† and a, b being canonical creation and annihilation operators for fermions.
With |0±〉 denoting the ground states of H±, the generating functional for a single two-
component overlap fermion with a mass, m, is

Z(η, η̄) = 〈0− | exp
[
η̄b + a†η + ma†b

]
|0+〉

=
∫

dξ̄dξe−ξ̄ξ〈0− | exp
[
χ̄b + a†χ

]
|0+〉; χ̄ = η̄ + mξ̄; χ = η + ξ, (18)
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where η, η̄, ξ, ξ̄ are Grassmann variables.
The problem of diagonalizing H+ in three dimensions is simplified by going to a new

basis. Let

Σ =
1√
2

(
1 1
1 −1

)
; Σ = Σ†; Σ2 = 1. (19)

The rotated Hamiltonian is

H′+ = ΣH+Σ =

(
0 B− D

B + D 0

)
≡
(

0 X†

X 0

)
. (20)

We can write

X = LΛR†; Λij = λiδij; λi > 0; R†R = L†L = 1. (21)

We define the unitary operator as

V = LR† =
1√

XX†
X (22)

and does not suffer from the phase ambiguity present in R (L is fixed once R is fixed).
Under parity,

X → X†; V → V† (23)

and under a gauge transformation

X → GXG†; V → GVG†. (24)

Let us make the dependence of V on U explicit and derive the relation under charge
conjugation (U → U∗):

V(U∗) = σ2Vt(U)σ2. (25)

We first note that

T∗µ (U) = Tµ(U∗) ⇒ B∗(U) = σ2B(U∗)σ2; D∗(U) = −σ2D(U∗)σ2. (26)

From this we obtain

X(U∗) = σ2Xt(U)σ2, ⇒ X†(U∗)X(U∗) = σ2X∗(U)Xt(U)σ2, (27)

and our relation, Equation (25), follows.
We can diagonalize H+ as

H+ = U
(

Λ 0
0 −Λ

)
U †; U =

1
2

(
R + L R− L
R− L R + L

)
; UU † = 1. (28)

We define new sets of canonical creation and annihilation operators by

c† = a† R + L
2

+ b† R− L
2

; d† = a† R− L
2

+ b† R + L
2

,

c =
R† + L†

2
a +

R† − L†

2
b; d =

R† − L†

2
a +

R† + L†

2
b, (29)

and we can write
H+ = −c†Λc + d†Λd. (30)

The ground states, |0±〉, are obtained by filling all the states corresponding to c† and
a†, respectively. Therefore, we have

c†|0+〉 = 0; d|0+〉 = 0; 〈0− |a = 0; 〈0− |b† = 0. (31)
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Using Equation (29), we can write

a† = c† 2
R + L

− b† A; b =
2

R† + L† d + Ga, (32)

where
G =

1−V
1 + V

. (33)

Using the above equations, we can write

χ̄b + a†χ = Q+ + Q−, (34)

where
Q+ = c† 2

R + L
χ + χ̄

2
R† + L† d; Q− = χ̄Ga− b†Gχ. (35)

Since
Q+ = a†χ + b†Gχ− χ̄Ga + χ̄b (36)

it follows that
[Q+, Q−] = −2χ̄Gχ. (37)

Therefore, we have

Z(η, η̄) =
∫

dξ̄dξe−ξ̄ξ〈0− | exp[Q+ + Q−]|0+〉

=
∫

dξ̄dξe−ξ̄ξ exp
(

1
2
[Q+, Q−]

)
〈0− |eQ− eQ+ |0+〉

=
∫

dξ̄dξe−ξ̄ξ exp
(

1
2
[Q+, Q−]

)
〈0− |0+〉

=
∫

dξ̄dξ exp[−ξ̄ξ − (η̄ + mξ̄)G(η + ξ)]det
R + L

2

= exp
[
−η̄

G
1 + mG

η

]
det(1 + mG)det

1 + V
2

det R

= exp
[
−η̄

1−V
1 + m + (1−m)V

η

]
det
[
(1 + m) + (1−m)V

2

]
det R. (38)

The fermion mass is in the range m ∈ [−1, 1] and the fermion determinant is gauge
invariant. There is a phase ambiguity present in the fermion determinant due to det R and
the fermion determinant at m = 1 is det R. The choice of fixing this phase is tied to the
choice of preserving parity symmetry at m = 0 at the cost of introducing gauge anomaly,
and the choice of preserving gauge invariance at the cost of losing parity symmetry at
m = 0. For the latter option, the choice of det(R) = 1 fixes the phase of infinite mass,
m = 1, fermion and preserves gauge invariance for all values of m. In this paper, we will
set det R = 1 from here on.

3. Introducing Chern–Simons and Half-Chern–Simons Terms on the Lattice

With the choice of phase as explained in the last section, the fermion determinant becomes

Z(m) = det
[
(1 + m) + (1−m)V

2

]
, (39)

and it satisfies
Z(m)

Z∗(−m)
= det V. (40)

This is the parity anomaly which has the built in feature that if we write

Z(m) = |Z(m)|e−iΦ(m) (41)
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then
e−i[Φ(m)+Φ(−m)] = e−2iΦ(0) = det V, (42)

and Φ(0) is usually written using the η-invariant as πη
2 (Note, the propagator satisfies

G(m) = −G†(−m) and preserve parity. Thus the anomaly is in the fermion induced
gauge measure.) With this lattice formalism, we have all the required ingredients for
constructing Chern–Simons theories on lattice by the identification of the parity-odd phase
of det(V) with level-1 Chern–Simons action. As the simplest case, we can introduce a
level-k Chern–Simons action as

eiSCS(k) = det(V)k. (43)

In the massless limit, it is easy to see that the phase of det(1 + V) is half of det(V) up
to ±1. We can introduce the so-called Uk+N f /2(1) “half-Chern–Simons” theories on the
lattice as

eiSCS(k+N f /2) = det
(

1 + V
2

)N f

det(V)k. (44)

First, how do we know that det(V) is the same as Chern–Simons term? In the study
in [9], it is analytically shown that the phase of det(X) in the massive Wilson fermion case
is the same as Chern–Simons term. The pure phase det(V) in the case of overlap fermions
is the same as the phase of det(X), and, hence, we can borrow their results for overlap
fermions. In the subsequent two sections, we will also take an empirical approach and
show that for cases of Abelian and non-Abelian background fields where Chern–Simons
term can be exactly be worked out, the phase det(V) indeed approaches the expectations in
the continuum limit. Second, how did we manage to introduce “half-Chern–Simons” term
in an evidently gauge-invariant manner? Using a non-trivial Abelian background in the
next section, we demonstrate this through the flow of the phase of massless overlap fermion
determinant as a function of the Wilson loop, ei2πh3 for h3 ∈ [0, 1], and show that at specific
h3 where there is a discontinuity in the phase at m = 0, the determinant also vanishes.

4. Fermion Determinant in an Abelian Background with Uniform Magnetic Flux and
Non-Trivial Temporal Wilson Loop

We now analyze the complex fermion determinant of a two-component three dimen-
sional fermion in a well known Abelian background of interest both from the view point of
showing subtle properties under gauge invariance and also from its relevance in condensed
matter physics [2]. The gauge field background on a continuum `3 torus is

A1 = −2πQx2

`2 ; A2 = 0; A3 =
2πh3

`
. (45)

Since A1(x1, `, x3) has to be gauge equivalent to A1(x1, 0, x3), Q has to be an integer. In
addition, gauge invariance sets all h3 + n to be equivalent for any integer n. The evaluation
of the Chern–Simons action for this background in Equation (45) is tricky [16] and yields

Scs = 2πh3Q. (46)

Since F = 2πQ
`2 dx1 ∧ dx2, for this background, Q is the topological charge in all two-

dimensional slices at a fixed x3 and the deformation of A to tA has to connect two di-
mensional gauge fields in disconnected spaces. With a lattice regularization, tQ, as t goes
from 0→ 1, will result in Q levels of the two dimensional Wilson–Dirac operator crossing
zero [14] and the phase within lattice regularization properly reproduces the gauge invari-
ant Chern–Simons action [14]. Overlap fermions can be used to study the complex fermion
determinant strictly in the massless limit with the lattice regularization in place and we
will show that the massless fermion determinant has a zero in the path connecting h3 and
h3 + 1 for a fixed Q enabling it to correctly reproduce (1) a smooth function of h3, (2) that is
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gauge invariant under h3 → h3 + 1, (3) equal to half of Scs in Equation (46) at all values of
h3, and (4) has a jump in the phase at the location of the zero of the fermion determinant.

We can implement the above Abelian background on the lattice by using the gauge-
links as

U1(x) =

{
1 x1 6= L− 1

e−i 2πQ
L x2 x1 = L− 1

; U2(x) = ei 2πQ
L2 x1 ; U3(x) = ei 2πh3

L ; (47)

on a three dimensional periodic lattice defined by the points x1, x2, x3 ∈ [0, L− 1] and

Uµ(x + Lν̂) = Uµ(x); µ, ν = 1, 2, 3. (48)

Only the plaquettes in the (1, 2) plane have a non-zero flux and they are given by

U12(x) = U1(x)U2(x + 1̂)U∗1 (x + 2̂)U∗2 (x) =

exp
[
i 2πQ

L2

]
x 6= (L− 1, L− 1, x3)

exp
[
i 2πQ

L2 − i2πQ
]

x 6= (L− 1, L− 1, x3)
. (49)

We note that the flux is not uniform and singular in the continuum limit if Q is not an
integer. Therefore, we will set Q to be integers.

Since the gauge field background does not depend on x3, one can go to momentum
space in this direction. We will assume fermions obey antiperiodic boundary conditions in
this direction. Setting these momenta to be

[
2πk3

L − π
L

]
, k3 ∈ [0, L− 1], the operators B and

D reduce to

B(k3) =
1
2

2

∑
µ=1

(2− Tµ − T†
µ) + 2 sin2

π
(

h3 − 1
2 + k3

)
L

−mw;

D(k3) =
1
2

2

∑
µ=1

σµ(Tµ − T†
µ) + iσ3 sin

2π
(

h3 − 1
2 + k3

)
L

. (50)

with the gauge fields in the (1-2) plane being U1(x) and U2(x). Let us denote the fermion
determinant by ZL(h3, Q, m; mw) on the L3 periodic lattice in this background and note that

Z0
L(h3, Q, m; mw) = Z0

L(h3 + 1, Q, m; mw). (51)

We define

Z0
L(h3, Q, m; mw) =

ZL(h3, Q, m; mw)

ZL(0, Q, m; mw)
=
∣∣∣Z0

L(h3, Q, m; mw)
∣∣∣ exp

[
−iΦ0

L(h3, Q, m; mw)
]
. (52)

and
ZL(0, Q, m; mw)

ZL(0, 0, m; mw)
= exp[−FL(Q, m; mw)] (53)

as the determinant with reference to h3 = 0 and the determinant at h3 = 0 with respect to
the free determinant, respectively and FL is a real function. The key properties of the overlap
fermion determinant are shown in the figures from Figures 1–5. Let us start with the top
panel of Figure 1 which focuses on the Chern–Simons action, namely, Φ0

L(h3, Q,−1; mw).
We have shown the results only for mw = 1 but the L→ ∞ limit is independent of mw and
we should find

lim
L→∞

Φ0
L(h3, Q,−1; mw) = 2πh3Q. (54)
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0 0.2 0.4 0.6 0.8 1
h3

-2

0

2
Φ

0 L(h
3,Q

,-1
;1

)

L=4, Q=1
L=8, Q=1
L=16, Q=1
L=16, Q=2
L=16, Q=3

m=-1, mw=1

0 0.2 0.4 0.6 0.8 1
h3

-2

0

2

Φ
L0 (h

3,Q
,0

;m
w

)

L=4, Q=1, mw=1
L=8, Q=1, mw=1
L=16, Q=1, mw=1
L=16, Q=1, mw=0.5
L=16, Q=1, mw=1.5
L=16, Q=2, mw=1
L=16, Q=3, mw=1

m=0

Figure 1. The top panel shows the flow of the phase Φ0
L(Q, h3) in the infinite mass case, m = −1, as

a function of Wilson-loop variable h3 ∈ [0, 1] at Q = 1, 2, 3. The Wilson mass entering the kernel of
overlap operator is fixed at mw = 1. For fixed Q = 1, the variation with reduction in lattice spacing
by increasing L from 4 to 8 is also shown. The bottom panel shows similar flow of the phase of the
determinant in the massless case. The variability with respect to the regulator parameter mw and
lattice spacing are shown.
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-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
m=-1
m=-1/L
m=0
m=1/L

Q=1, L=16

Figure 2. The flow of the overlap fermion determinant in the complex plane as a function of h3 at a
fixed Q = 1 on L = 16 lattice. The flows are shown for m = −1 (black), −1/L (red), 0 (green), 1/L
(blue). The flow starts at (1, 0) for h3 = 0, goes clockwise and returns back to (1, 0) for h3 = 1.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
m=-1
m=-1/L
m=0
m=1/L

Q=2, L=16

Figure 3. The flow of the overlap fermion determinant in the complex plane as a function of h3 at a
fixed Q = 2 on L = 16 lattice. The description is the same as in Figure 2.
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0.5

1
m=-1
m=-1/L
m=0
m=1/L

Q=3, L=16

Figure 4. The flow of the overlap fermion determinant in the complex plane as a function of h3 at a
fixed Q = 3 on L = 16 lattice. The description is the same as in Figure 2.

10 15 20 25
L

-0.4

0

0.4

0.8

1.2

1.6

F L(Q
,0

;m
w

)

mw=1, Q=1

mw=1.5, Q=1

mw=1, Q=2

mw=1.5, Q=2

mw=1, Q=3

mw=1.5, Q=3

- 0.0824 - 0.7937/L - 7.823/L2

- 0.0824 - 0.8307/L - 4.937/L2

0.6245 - 4.377/L - 8.625/L2

0.6245 - 4.556/L -2.401/L2

1.7032 - 10.34/L -11.52/L2

1.7032 - 10.85/L + 2.462/L2

Figure 5. The plot demonstrates the existence of the continuum limit of the overlap fermion action
in constant flux background at zero h3. The continuum extrapolations (L→ ∞) are shown using an
expansion in lattice spacing 1/L. The consistency in the extrapolated values using different regulator
parameter mw is seen.

The top panel clearly shows that the correct limit is approached for Q = 1 as L→ ∞
(L = 8 and L = 16 fall on top of each other) and the dependence on Q is also as expected
and the overlap fermion correctly reproduces the first subtle properly and this is an obvious
consequence of the same result with Wilson fermions seen in [14]. We move on to behavior
of the phase for the massless fermions in the bottom panel of Figure 1. We should find

lim
L→∞

2Φ0
L(h3, Q, 0; mw) = lim

L→∞
Φ0

L(h3, Q,−1; mw) (55)
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and
lim

L→∞
Φ0

L(h3, Q, 0; mw) = lim
L→∞

Φ0
L(h3 + 1, Q, 0; mw). (56)

This necessitates a jump in the phase when the flux quantum, Q, takes on odd values.
First of all, we see that the phase has a limit when L→ ∞ as seen by comparing the behavior
for L = 8, mw = 1 and L = 16, mw = 1. Furthermore, the results for L = 16, mw = 0.5 and
L = 16, mw = 1.5 are indistinguishable from L = 16, mw = 1 showing the independence on
the regulator parameter, mw, as L→ ∞. Finally, we see that the phase shows a jump of π at
h3 = 1

2 for Q = 1 and Q = 3.
The plot of the full determinant, Z0

L(h3, Q, m; 1), is shown for Q = 1, Q = 2 and Q = 3
in Figures 2–4 respectively. In these plots, h3 ∈ [0, 1], and the motion along the closed
curve is clockwise starting from the normalized value of Z0

L(0, Q, m; 1) = 1. When m = −1,
the closed curves are unit circles that wind Q times and this is shown for reference in all
three plots. We set mL to be a constant when m ∈ (0, 1) to maintain a constant physical
mass. On the one hand, we see that Z0

L(h3, Q, m; 1) winds around Q times for m < 0 and its
magnitude changes with h3. On the other hand, we see that the phase of Z0

L(h3, Q, m; 1),
reaches a maximum and minimum value in the range

(
−π

2 , π
2
)

for m > 0 and its magnitude

changes with h3. With the behavior in place for m < 0 and m > 0, we see that Z0
L

(
1
2 , Q, 0; 1

)
is zero and enables a jump in the phase for odd values of Q with it being a smooth function
of h3. Finally, we show the results for FL(Q, m; mw) in Figure 5. It remains finite as L→ ∞,
which is the continuum limit of the background field, and independent of the regulator
parameter, mw.

5. Fermion Determinant in a Non-Abelian SU(2) Background with Non-Zero
Tr(A ∧ A ∧ A)

The second background we will consider is a constant su(2) background on a `3 torus
given by

A1 =
2πq1t1

`
; A2 =

2πq2t2

`
; A3 =

2πq3t3

`
; (57)

where tµ are the su(2) generators in color space given by Pauli matrices, normalized

such that tµtν = δµν + iεµνρtρ. In this case qi ∈
[
0, `

2

]
are all gauge inequivalent and the

Chern–Simons action reduces to

Scs = 16π2q1q2q3. (58)

Contrary to the Abelian background the phase of the massless fermion determinant is
simply given by 8π2q1q2q3 and we will show this to be the case. Defining ZL(q1, q2, q3, m; mw)
as the lattice regulated overlap fermion determinant on a L3 periodic lattice with m being
the fermion mass and mw being another regulator parameter, we will show that both

lim
L→∞

ZL(q1, q2, q3, m; mw)

ZL(q2, q2, 0, m; mw)
; lim

L→∞

ZL(q1, q2, 0, m; mw)

ZL(0, 0, 0, m; mw)

are both finite and independent of the regulator mw. This constant SU(2) background can
be introduced on the lattice as the link variables

Uµ = ei
2πqµ tµ

L . (59)

We will consider this background on a three dimensional periodic lattice defined by
the points n1, n2, n3 ∈ [0, L− 1] and

Uµ(n + Lν̂) = Uµ(n); µ, ν = 1, 2, 3. (60)

All values of qµ that remain finite as L→ ∞ are gauge inequivalent.
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One can go to momentum space in all three directions and write

Bia,jb(k) = bδijδab + ∑
µ

[
sµ(q)sa

µ(k)δ
ijtab

µ

]
;

Dia,jb(k) = i ∑
µ

[
cµ(q)sa

µ(k)σ
ij
µ δab

]
+ i ∑

µ

[
sµ(q)ca

µ(k)σ
ij
µ tab

µ

]
, (61)

where

b = 3−mw −∑
µ

[
cµ(q)ca

µ(k)
]
;

cµ(p) = cos
2πpµ

L
sµ(p) = sin

2πpµ

L
;

ca
µ(k) =

{
cos 2πkµ

L µ = 1, 2

cos 2πkµ+π
L µ = 3

; sa
µ(k) =

{
sin 2πkµ

L µ = 1, 2

sin 2πkµ+π
L µ = 3

. (62)

We have assumed anti-periodic boundary conditions for fermions in the µ = 3 direc-
tion. The matrix X(k) is given by

X(k) =


α1 α3 α4 α5
α∗3 α2 α6 α4
−α∗4 α6 α∗1 α3
α5 −α∗4 α∗3 α∗2

 (63)

where

α1 = b + s3(q)sa
3(k) + ic3(q)sa

3(k) + is3(q)ca
3(k)

α2 = b− s3(q)sa
3(k) + ic3(q)sa

3(k)− is3(q)ca
3(k)

α3 = s1(q)sa
1(k)− is2(q)sa

2(k)
α4 = ic1(q)sa

1(k) + c2(q)sa
2(k)

α5 = is1(q)ca
1(k)− is2(q)ca

2(k)
α6 = is1(q)ca

1(k) + is2(q)ca
2(k). (64)

Let us denote the fermion determinant by ZL(q3, m; mw) on the L3 periodic lattice in
this background and define

Z0
L(q1, q2, q3, m; mw) =

ZL(q1, q2, q3, m; mw)

ZL(q1, q2, 0, m; mw)

=
∣∣∣Z0

L(q1, q2, q3, m; mw)
∣∣∣ exp

[
−iΦ0

L(q1, q2, q3, m; mw)
]
. (65)

and
ZL(q1, q2, 0, m; mw)

ZL(0, 0, 0, m; mw)
= exp[−FL(q1, q2, m, ; mw)] (66)

as the determinant with reference to q3 = 0 and the determinant at q3 = 0 with respect
to the free determinant, respectively and FL is a real function. We will set q1 = 1

4 and
q2 = 1

2π and vary q3. The nonabelian Chern–Simons action given in Equation (58) reduces
to Scs = 2πq3 and we show the phase of the overlap fermion correctly reproduces this result
as L→ ∞ in the top panel of Figure 6. Since all q3 are gauge inequivalent, we should find

lim
L→∞

Φ0
L

(
1
4

,
1

2π
, q3, 0; mw

)
= πq3 (67)

and we should also find

lim
L→∞

[
Φ0

L

(
1
4

,
1

2π
, q3,

m
L

; mw

)
+ Φ0

L

(
1
4

,
1

2π
, q3,−m

L
; mw

)]
= 2πq3 (68)
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Both these features are correctly reproduced in the top panel of Figure 6. Since all q3
are gauge inequivalent, we see that the phase at q3 = 1 and q3 = 2 only approaches 2πq3
as L→ ∞. Note that unlike the Abelian case, the determinant winds around the origin for
all values of fermion mass and the fermion determinant remains non-zero for all values of
q3. This is made clear through a plot of

∣∣∣Z0
L

(
1
4 , 1

2π , q3, m
L ; 1
)∣∣∣ in Figure 7.

0 0.5 1 1.5 2
q3

-2

0

2

Φ
L0 (1

/4
, 1

/(2
π)

, q
3,-1

;1
)

L=64
L=128
L=256
L=512

0 0.5 1 1.5 2
q3

-2

0

2

Φ
L0 (1

/4
, 1

/(2
π)

, q
3, m

; m
w

)

m=-1
m=-1/L
m=0
m=1/L

Figure 6. The figure is similar to Figure 1 showing the flow of the phase of the fermion determinant
as a function of SU(2) gauge field magnitude q3. The top panel shows the result for infinitely massive
fermion, m = −1 with regulator parameter mw = 1. The convergence of the results at different L
towards a continuum result is shown. The bottom panel shows the flow with q3 at different fermion
masses m.
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(1
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1/
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q 3
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Figure 7. The dependence of the magnitude of the fermion determinant on q3. The result at zero
and non-zero masses are shown. The determinant at zero mass vanishes are certain values of q3,
though not for any reasoning from invariance under large gauge transformation as seen in the case of
Abelian background field studied in this paper.

We note a curious observation in this particular background. The fermion determinant
for massless fermions becomes very small for certain values of q3 and it has zeros even at
finite L that remains stable as L→ ∞ as seen in Figure 7. For our choice of q1 and q2, we
find zeros a pair of zeros at q3 = 0.508 and q3 = 0.646 and another pair at q3 = 1.502 and
q3 = 1.556 that remain stable across L. In spite of the fact that all q3 are gauge inequivalent,
we see non-trivial behavior seen in the complex determinant for massless fermions in this
particular background. Finally, similar to the Abelian background, we found the results for
FL

(
1
4 , 1

2π , m; mw

)
to be finite as L→ ∞ and independent of the regulator parameter, mw.

6. Mixed Chern–Simons (BF) Action and Dualities

Let VA denote the dependence of the unitary operator in Equation (22) on the Abelian
gauge field background, A. A mixed Chern–Simons (BF) term can be written as

det
[
VAVBV†

A+B

]
= det

[
V†

AV†
B VA−B

]
∼ e

i
2π

∫
d3xεµνλ Aµ∂νBλ . (69)

One can formally verify the identity by inserting the naïve expressions for CS that are
only valid for perturbative fields. The path integrals are defined over all gauge fields and a
suitable measure such as a standard Maxwell action for gauge fields is needed to verify
the integrals non-perturbatively. Therefore, the last step is essentially a mnemonic and it
suggests relations of the form∫

[dA] det
[
VA−BV†

A−C

]
= δ(B− C),∫

[dA] det
[
VA−BVA−CV†

A−DV†
A−E

]
= VBVCV†

DV†
E δ(B + C− D− E), (70)

using a gauge action for A that is implicit and allows one to take a continuum limit (as
pointed out explicitly in [3]).
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Dualities among various three dimensional theories start with the conjecture [2] that a
theory with one massless two component fermion coupled to a dynamical gauge field A
and a classical background C defined by

Z(C) =
∫
[dA]eSg(A) det

1 + VA
2

det
[
V†

AVA−C

]
=
∫
[dA]eSg(A) det

1 + V†
A

2
det VA−C, (71)

is parity even and dual to a theory at the Wilson–Fisher fixed point. An explicit computation
shows that

Z∗(C) =
∫
[dA]eSg(A) det

1 + VA
2

det V†
A−C =

∫
[dA]eSg(−A) det

1 + V−A
2

det V†
−A−C

⇒ Z∗(C) =
∫
[dA]eSg(A) det

1 + VA
2

det
[(

V†
A

)2(
V†

C

)2
VA−C

]
. (72)

If Z∗(C) = Z(C), we arrive at a non-trivial relation

〈det V†
A〉 = det V2

C (73)

where the expectation value is with respect to the measure in Equation (71) and the lattice
regularization can be used to verify this relation. In fact, if we use

V2A = V4
A (74)

which has been verified in the continuum limit when a measure for the gauge field is
included [18], we see that if we assume that the dynamical fermion has a charge of 2 units,

Z2(C) =
∫
[dA]eSg(A) det

1 + V2A
2

det
(

V†
A

)2
det
[
V†

AV†
CVA−C

]
(75)

then Z∗2 (C) = Z2(C) is trivially satisfied.
Regularized versions of the various duality relations discussed in [2] can be obtained

by following the steps found there. We multiply both sides of Equation (71) by det V†
B+C,

promote C to the dynamical field with B being a background field and arrive at a regularized
version of a fermion-boson duality,

eSg(B) det
1 + V†

B
2

=
∫
[dC]Z(C)det V†

B+C, (76)

after using Equation (70). If we assume Z(C) is real we arrive at a regularized version of a
boson–boson duality∫

[dC]Z(C)det
[
VBV†

B+C

]
=
∫
[dC]Z(C)det VB+C. (77)

We can multiply both sides of Equation (71) by det VB+C, promote C to a dynamical
field with B being a background field and arrive at a regularized version of a fermion-
fermion duality∫

[dA][dC]eSg(A) det
1 + VA

2
det
[
V†

AVA−CVB+C

]
= eSg(B) det

1 + VB
2

(78)

and we have used Equations (76) and (77).
A regularized version of a duality involving a fermion with charge of 2 units discussed

in [19] can be obtained by setting B = −2X in Equation (78). In this case, we can multiply
both sides by det2V†

X to make the right-hand side even under parity. We also multiply both
sides by det

[
VXVYV†

X−Y
]

to couple it to an external flux and promote X to a dynamical
field. Then we have
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Z(Y) =
∫
[dA][dC][dX]eSg(A) det

1 + VA
2

det V†
A det[VA−CV−2X+C]det2V†

X det
[
VXVYV†

X−Y

]
=

∫
[dX]eSg(2X) det

1 + V2X
2

det2V†
X det

[
VXVYV†

X−Y

]
(79)

Defining a change of variable, X = Z + C, in the first integral, we obtain

Z(Y) =
∫
[dA]eSg(A) det

1 + VA
2

det V†
A det VY

∫
[dC][dZ]det

[
VA−CV2Z+CV†

Z+CV†
Z+C−Y

]
. (80)

The integral over C can be performed using Equation (70) This forces A = Y and we
arrive at the regularized version of a fermion-fermion duality

eSg(Y) det
1 + VY

2

∫
[dZ]det

[
VZV†

YVZ+Y

]
=
∫
[dX]eSg(2X) det

1 + V2X
2

det
[
V†

XVYV†
X−Y

]
(81)

that connects a fermion with 2 units of charge to a fermion with 1 unit of charge.
We should remark that for the sake of simplicity and to a first degree of approximation,

we assumed that the massless fermion limits of the odd-flavored theories considered above
occurs at the “bare" fermion mass m = 0. Unlike the parity-invariant theories with SU

(
N f

)
flavor symmetry with N f being even, where the mass term is protected by the symmetry,
there is no such symmetry consideration in odd flavored theories. Thus, it could be possible
that one needs to tune the overlap fermion mass m = mc in order to reach criticality,
provided there is one. In that case, the above set of equations might have to be modified
accordingly with such mass terms, but it is a straightforward exercise.

7. Conclusions

Overlap formalism was developed three decades ago [7] to properly reproduce all
salient features of massless fermions in even dimensions. This was extended to odd dimen-
sions in [10] and we showcase the salient features of massless fermions in odd dimensions;
particularly, we extended the formalism and spell out the lattice constructions of topological
gauge actions that are being investigated currently in the context of TQFTs coupled to
fermions, and in the context of infrared dualities. We focused on the overlap fermion deter-
minant and used two examples, one Abelian background and one non-Abelian background.
We showed that the overlap fermion determinant correctly reproduces all known properties
of the phase of the fermion determinant; especially, we discussed how the lattice regular-
ization manages to implement the half-Chern–Simons term (or half-the-eta-invariant) in a
gauge-invariant manner. While it is satisfying that we can nonperturbatively formulate the
topological gauge theories on the lattice, an actual numerical study of such theories is not
yet practical due to the sign problem and we did not address such issues in this paper.

An interesting possibility of having a lattice regularized Chern–Simons theory is the
following. As we noted in this paper, it is important to realize that the identification
of overlap det(V) with the continuum Chern–Simons action eiSCS is possible only in the
continuum limit (as usual, the continuum limit taken at the trivial UV fixed point of the
lattice gauge theory). However, as a lattice gauge theory that is away from any critical
points, the overlap fermion determinants offer a great way to introduce new parity-odd
gauge-invariant gauge-actions. Thus, one could now ask about the phase diagrams of such
well defined lattice gauge theories as a function of different lattice couplings. This is an
exciting direction to think about in the future.
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