# Estimating the Transit Speed and Time of Arrival of Interplanetary Coronal Mass Ejections Using CME and Solar Flare Data

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Data and Methods

## 3. Results

#### 3.1. Relation between the ICME Transit Speed and the CME Initial Speed

#### 3.2. Speed’s Longitudinal Dependence

#### 3.3. Model for Estimating the ICME Transit Speed and Time from Solar Data

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Gosling, J.T.; Bame, S.J.; McComas, D.J.; Phillips, J.L. Coronal mass ejections and large geomagnetic storms. Geophys. Res. Lett.
**1990**, 17, 901–904. [Google Scholar] [CrossRef] - Tsurutani, B.T.; Gonzalez, W.D. The Interplanetary causes of magnetic storms: A review. Wash. DC Am. Geophys. Union Geophys. Monogr. Ser.
**1997**, 98, 77–89. [Google Scholar] [CrossRef] - Zhang, J.; Dere, K.P.; Howard, R.A.; Bothmer, V. Identification of Solar Sources of Major Geomagnetic Storms between 1996 and 2000. Astrophys. J.
**2003**, 582, 520–533. [Google Scholar] [CrossRef] - Webb, D.F.; Howard, T.A. Coronal Mass Ejections: Observations. Living Rev. Sol. Phys.
**2012**, 9, 3. [Google Scholar] [CrossRef] - Zhang, J.; Temmer, M.; Gopalswamy, N.; Malandraki, O.; Nitta, N.V.; Patsourakos, S.; Shen, F.; Vršnak, B.; Wang, Y.; Webb, D.; et al. Earth-affecting solar transients: A review of progresses in solar cycle 24. Prog. Earth Planet. Sci.
**2021**, 8, 56. [Google Scholar] [CrossRef] - Michałek, G.; Gopalswamy, N.; Yashiro, S. A New Method for Estimating Widths, Velocities, and Source Location of Halo Coronal Mass Ejections. Astrophys. J.
**2003**, 584, 472–478. [Google Scholar] [CrossRef] - Wang, Y.; Shen, C.; Wang, S.; Ye, P. Deflection of coronal mass ejection in the interplanetary medium. Sol. Phys.
**2004**, 222, 329–343. [Google Scholar] [CrossRef] - Gopalswamy, N. Consequences of Coronal Mass Ejections in the Heliosphere. Sun Geosph.
**2006**, 1, 5–12. [Google Scholar] - Gopalswamy, N.; Yashiro, S.; Akiyama, S.; Mäkelä, P.; Xie, H.; Kaiser, M.L.; Howard, R.A.; Bougeret, J.L. Coronal mass ejections, type II radio bursts, and solar energetic particle events in the SOHO era. Ann. Geophys.
**2008**, 26, 3033–3047. [Google Scholar] [CrossRef] - Richardson, I.G.; Cane, H.V. Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996–2009): Catalog and Summary of Properties. Sol. Phys.
**2010**, 264, 189–237. [Google Scholar] [CrossRef] - Wu, C.C.; Lepping, R.P. Relationships Among Geomagnetic Storms, Interplanetary Shocks, Magnetic Clouds, and Sunspot Number During 1995–2012. Sol. Phys.
**2016**, 291, 265–284. [Google Scholar] [CrossRef] - Chi, Y.; Shen, C.; Wang, Y.; Xu, M.; Ye, P.; Wang, S. Statistical Study of the Interplanetary Coronal Mass Ejections from 1995 to 2015. Sol. Phys.
**2016**, 291, 2419–2439. [Google Scholar] [CrossRef] - Hess, P.; Zhang, J. A Study of the Earth-Affecting CMEs of Solar Cycle 24. Sol. Phys.
**2017**, 292, 80. [Google Scholar] [CrossRef] - Hildner, E.; Gosling, J.T.; MacQueen, R.M.; Munro, R.H.; Poland, A.I.; Ross, C.L. Frequency of coronal transients and solar activity. Sol. Phys.
**1976**, 48, 127–135. [Google Scholar] [CrossRef] - Gosling, J.T.; Hildner, E.; MacQueen, R.M.; Munro, R.H.; Poland, A.I.; Ross, C.L. The speeds of coronal mass ejection events. Sol. Phys.
**1976**, 48, 389–397. [Google Scholar] [CrossRef] - Hundhausen, A.J.; Burkepile, J.T.; St. Cyr, O.C. Speeds of coronal mass ejections: SMM observations from 1980 and 1984–1989. J. Geophys. Res. Space Phys.
**1994**, 99, 6543–6552. [Google Scholar] [CrossRef] - Lindsay, G.M.; Luhmann, J.G.; Russell, C.T.; Gosling, J.T. Relationships between coronal mass ejection speeds from coronagraph images and interplanetary characteristics of associated interplanetary coronal mass ejections. J. Geophys. Res. Space Phys.
**1999**, 104, 12515–12524. [Google Scholar] [CrossRef] - Yashiro, S.; Gopalswamy, N.; Akiyama, S.; Michalek, G.; Howard, R.A. Visibility of coronal mass ejections as a function of flare location and intensity. J. Geophys. Res. Space Phys.
**2005**, 110, A12S05. [Google Scholar] [CrossRef] - Wang, Y.; Chen, C.; Gui, B.; Shen, C.; Ye, P.; Wang, S. Statistical study of coronal mass ejection source locations: Understanding CMEs viewed in coronagraphs. J. Geophys. Res. Space Phys.
**2011**, 116, A04104. [Google Scholar] [CrossRef] - Chi, Y.; Zhang, J.; Shen, C.; Hess, P.; Liu, L.; Mishra, W.; Wang, Y. Observational Study of an Earth-affecting Problematic ICME from STEREO. Astrophys. J.
**2018**, 863, 108. [Google Scholar] [CrossRef] - Cane, H.V.; Richardson, I.G.; St. Cyr, O.C. Coronal mass ejections, interplanetary ejecta and geomagnetic storms. Geophys. Res. Lett.
**2000**, 27, 3591–3594. [Google Scholar] [CrossRef] - Wang, Y.M.; Ye, P.Z.; Wang, S.; Zhou, G.P.; Wang, J.X. A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000. J. Geophys. Res. Space Phys.
**2002**, 107, 1340. [Google Scholar] [CrossRef] - Gopalswamy, N.; Lara, A.; Lepping, R.P.; Kaiser, M.L.; Berdichevsky, D.; St. Cyr, O.C. Interplanetary acceleration of coronal mass ejections. Geophys. Res. Lett.
**2000**, 27, 145–148. [Google Scholar] [CrossRef] - Gopalswamy, N.; Lara, A.; Yashiro, S.; Kaiser, M.L.; Howard, R.A. Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. Space Phys.
**2001**, 106, 29207–29218. [Google Scholar] [CrossRef] - Vršnak, B.; Žic, T. Transit times of interplanetary coronal mass ejections and the solar wind speed. Astron. Astrophys.
**2007**, 472, 937–943. [Google Scholar] [CrossRef] - Vršnak, B.; Sudar, D.; Ruždjak, D.; Žic, T. Projection effects in coronal mass ejections. Astron. Astrophys.
**2007**, 469, 339–346. [Google Scholar] [CrossRef] - Temmer, M.; Preiss, S.; Veronig, A.M. CME Projection Effects Studied with STEREO/COR and SOHO/LASCO. Sol. Phys.
**2009**, 256, 183–199. [Google Scholar] [CrossRef] - Bronarska, K.; Michalek, G. Determination of projection effects of CMEs using quadrature observations with the two STEREO spacecraft. Adv. Space Res.
**2018**, 62, 408–416. [Google Scholar] [CrossRef] - Paouris, E.; Vourlidas, A.; Papaioannou, A.; Anastasiadis, A. Assessing the Projection Correction of Coronal Mass Ejection Speeds on Time of Arrival Prediction Performance Using the Effective Acceleration Model. Space Weather
**2021**, 19, e02617. [Google Scholar] [CrossRef] - Lara, A.; Gopalswamy, N.; Xie, H.; Gonzalez-Esparza, A. Sun-Earth Propagation Time of CMEs Originated at different Helio Longitudes. Eos Trans. AGU
**2005**, 86, SH53A-10. [Google Scholar] - Anna Lakshmi, M.; Umapathy, S.; Prakash, O.; Vasanth, V. Studies on some properties of coronal mass ejections based on angular width. Astrophys. Space Sci.
**2011**, 335, 373–378. [Google Scholar] [CrossRef] - Nedal, M.; Youssef, M.; Mahrous, A.; Helal, R. Investigating the Coronal Mass Ejections associated with DH type-II radio bursts and solar flares during the ascending phase of the solar cycle 24. Adv. Space Res.
**2019**, 63, 1824–1836. [Google Scholar] [CrossRef] - Vršnak, B.; Gopalswamy, N. Influence of the aerodynamic drag on the motion of interplanetary ejecta. J. Geophys. Res. Space Phys.
**2002**, 107, 1019. [Google Scholar] [CrossRef] - Shanmugaraju, A.; Vršnak, B. Transit Time of Coronal Mass Ejections under Different Ambient Solar Wind Conditions. Sol. Phys.
**2014**, 289, 339–349. [Google Scholar] [CrossRef] - Odstrcil, D. Modeling 3-D solar wind structure. Adv. Space Res.
**2003**, 32, 497–506. [Google Scholar] [CrossRef] - Tóth, G.; Sokolov, I.V.; Gombosi, T.I.; Chesney, D.R.; Clauer, C.R.; de Zeeuw, D.L.; Hansen, K.C.; Kane, K.J.; Manchester, W.B.; Oehmke, R.C.; et al. Space Weather Modeling Framework: A new tool for the space science community. J. Geophys. Res. Space Phys.
**2005**, 110, A12226. [Google Scholar] [CrossRef] - McKenna-Lawlor, S.M.P.; Dryer, M.; Kartalev, M.D.; Smith, Z.; Fry, C.D.; Sun, W.; Deehr, C.S.; Kecskemety, K.; Kudela, K. Near real-time predictions of the arrival at Earth of flare-related shocks during Solar Cycle 23. J. Geophys. Res. Space Phys.
**2006**, 111, A11103. [Google Scholar] [CrossRef] - Feng, X.; Zhou, Y.; Wu, S.T. A Novel Numerical Implementation for Solar Wind Modeling by the Modified Conservation Element/Solution Element Method. Astrophys. J.
**2007**, 655, 1110–1126. [Google Scholar] [CrossRef] - Feng, X.; Yang, L.; Xiang, C.; Wu, S.T.; Zhou, Y.; Zhong, D. Three-dimensional Solar WIND Modeling from the Sun to Earth by a SIP-CESE MHD Model with a Six-component Grid. Astrophys. J.
**2010**, 723, 300–319. [Google Scholar] [CrossRef] - Shen, F.; Feng, X.; Wu, S.T.; Xiang, C. Three-dimensional MHD simulation of CMEs in three-dimensional background solar wind with the self-consistent structure on the source surface as input: Numerical simulation of the January 1997 Sun-Earth connection event. J. Geophys. Res. Space Phys.
**2007**, 112, A06109. [Google Scholar] [CrossRef] - Davies, J.A.; Harrison, R.A.; Perry, C.H.; Möstl, C.; Lugaz, N.; Rollett, T.; Davis, C.J.; Crothers, S.R.; Temmer, M.; Eyles, C.J.; et al. A Self-similar Expansion Model for Use in Solar Wind Transient Propagation Studies. Astrophys. J.
**2012**, 750, 23. [Google Scholar] [CrossRef] - Möstl, C.; Davies, J.A. Speeds and Arrival Times of Solar Transients Approximated by Self-similar Expanding Circular Fronts. Sol. Phys.
**2013**, 285, 411–423. [Google Scholar] [CrossRef] - Núñez, M.; Nieves-Chinchilla, T.; Pulkkinen, A. Prediction of shock arrival times from CME and flare data. Space Weather
**2016**, 14, 544–562. [Google Scholar] [CrossRef] - Paouris, E.; Mavromichalaki, H. Effective Acceleration Model for the Arrival Time of Interplanetary Shocks driven by Coronal Mass Ejections. Sol. Phys.
**2017**, 292, 180. [Google Scholar] [CrossRef] - Dumbović, M.; Čalogović, J.; Vršnak, B.; Temmer, M.; Mays, M.L.; Veronig, A.; Piantschitsch, I. The Drag-based Ensemble Model (DBEM) for Coronal Mass Ejection Propagation. Astrophys. J.
**2018**, 854, 180. [Google Scholar] [CrossRef] - Čalogović, J.; Dumbović, M.; Sudar, D.; Vršnak, B.; Martinić, K.; Temmer, M.; Veronig, A.M. Probabilistic Drag-Based Ensemble Model (DBEM) Evaluation for Heliospheric Propagation of CMEs. Sol. Phys.
**2021**, 296, 114. [Google Scholar] [CrossRef] - Riley, P.; Mays, M.L.; Andries, J.; Amerstorfer, T.; Biesecker, D.; Delouille, V.; Dumbović, M.; Feng, X.; Henley, E.; Linker, J.A.; et al. Forecasting the Arrival Time of Coronal Mass Ejections: Analysis of the CCMC CME Scoreboard. Space Weather
**2018**, 16, 1245–1260. [Google Scholar] [CrossRef] - Wold, A.M.; Mays, M.L.; Taktakishvili, A.; Jian, L.K.; Odstrcil, D.; MacNeice, P. Verification of real-time WSA-ENLIL+Cone simulations of CME arrival-time at the CCMC from 2010 to 2016. J. Space Weather Space Clim.
**2018**, 8, A17. [Google Scholar] [CrossRef] - Iwai, K.; Shiota, D.; Tokumaru, M.; Fujiki, K.; Den, M.; Kubo, Y. Validation of coronal mass ejection arrival-time forecasts by magnetohydrodynamic simulations based on interplanetary scintillation observations. Earth Planets Space
**2021**, 73, 9. [Google Scholar] [CrossRef] - Suresh, K.; Gopalswamy, N.; Shanmugaraju, A. Arrival Time Estimates of Earth-Directed CME-Driven Shocks. Sol. Phys.
**2022**, 297, 3. [Google Scholar] [CrossRef] - Melkumyan, A.A.; Belov, A.V.; Abunina, M.A.; Abunin, A.A.; Eroshenko, E.A.; Oleneva, V.A.; Yanke, V.G. Main Properties of Forbush Effects Related to High-Speed Streams from Coronal Holes. Geomagn. Aeron.
**2018**, 58, 154–168. [Google Scholar] [CrossRef] - Melkumyan, A.A.; Belov, A.V.; Abunina, M.A.; Abunin, A.A.; Eroshenko, E.A.; Yanke, V.G.; Oleneva, V.A. Comparison between statistical properties of Forbush decreases caused by solar wind disturbances from coronal mass ejections and coronal holes. Adv. Space Res.
**2019**, 63, 1100–1109. [Google Scholar] [CrossRef] - Shen, C.; Wang, Y.; Pan, Z.; Miao, B.; Ye, P.; Wang, S. Full-halo coronal mass ejections: Arrival at the Earth. J. Geophys. Res. Space Phys.
**2014**, 119, 5107–5116. [Google Scholar] [CrossRef] - Belov, A.; Abunin, A.; Abunina, M.; Eroshenko, E.; Oleneva, V.; Yanke, V.; Papaioannou, A.; Mavromichalaki, H.; Gopalswamy, N.; Yashiro, S. Coronal Mass Ejections and Non-recurrent Forbush Decreases. Sol. Phys.
**2014**, 289, 3949–3960. [Google Scholar] [CrossRef] - Webb, D.F.; Cliver, E.W.; Gopalswamy, N.; Hudson, H.S.; St. Cyr, O.C. The solar origin of the January 1997 coronal mass ejection, magnetic cloud and geomagnetic storm. Geophys. Res. Lett.
**1998**, 25, 2469–2472. [Google Scholar] [CrossRef] - Robbrecht, E.; Patsourakos, S.; Vourlidas, A. No Trace Left Behind: STEREO Observation of a Coronal Mass Ejection Without Low Coronal Signatures. Astrophys. J.
**2009**, 701, 283–291. [Google Scholar] [CrossRef] - Kay, C.; Opher, M.; Evans, R.M. Global Trends of CME Deflections Based on CME and Solar Parameters. Astrophys. J.
**2015**, 805, 168. [Google Scholar] [CrossRef]

**Figure 2.**The relation of the initial CME speed (${V}_{0}$) and the transit speed of the corresponding ICME (${V}_{tr}$) for 288 events.

**Figure 3.**Dependence of the ICME transit speed on the parent CME initial speed for events with absolute heliolongitude: (

**a**) $\varphi \le {8}^{\xb0}$; (

**b**) 15${}^{\xb0}\le \varphi \le {24}^{\xb0}$.

**Figure 4.**Distribution of the regression coefficients (

**a**) and the correlation coefficients (

**b**) depending on $sin\varphi $.

**Figure 5.**The relation of the expected ICME transit speed to the initial CME speed and the sine of the associated flare absolute heliolongitude. Different colors indicate the gradation of the expected transit speed in magnitude.

**Figure 6.**The relation of the expected ICME transit time to the initial CME speed and the sine of the associated flare absolute heliolongitude. Different colors indicate the gradation of the expected propagation time in magnitude.

**Figure 7.**Dependencies of the expected transit velocities [${V}_{tr}$] (

**a**) and time of arrival ToA [${T}_{tr}$] (

**b**) on the initial CME speed and longitude of the associated flare.

**Figure 8.**The relationship between actually observed and model-calculated ICME transit velocities for (

**a**) the full sample; for (

**b**) central events $\varphi <{10}^{\xb0}$.

**Figure 10.**Screenshot of the program for calculating the expected transit and maximum speed and propagation time of ICMEs created on the basis of the described model.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Belov, A.; Shlyk, N.; Abunina, M.; Abunin, A.; Papaioannou, A.
Estimating the Transit Speed and Time of Arrival of Interplanetary Coronal Mass Ejections Using CME and Solar Flare Data. *Universe* **2022**, *8*, 327.
https://doi.org/10.3390/universe8060327

**AMA Style**

Belov A, Shlyk N, Abunina M, Abunin A, Papaioannou A.
Estimating the Transit Speed and Time of Arrival of Interplanetary Coronal Mass Ejections Using CME and Solar Flare Data. *Universe*. 2022; 8(6):327.
https://doi.org/10.3390/universe8060327

**Chicago/Turabian Style**

Belov, Anatoly, Nataly Shlyk, Maria Abunina, Artem Abunin, and Athanasios Papaioannou.
2022. "Estimating the Transit Speed and Time of Arrival of Interplanetary Coronal Mass Ejections Using CME and Solar Flare Data" *Universe* 8, no. 6: 327.
https://doi.org/10.3390/universe8060327