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Abstract: In this work, we explore general leading singularities of one-loop amplitudes in higher-
derivative Yang–Mills and quadratic gravity. These theories are known to possess propagators which
contain quadratic and quartic momentum dependence, which leads to the presence of an unstable
ghostlike resonance. However, unitarity cuts are not to be taken through unstable particles and
therefore unitarity is still satisfied. On the other hand, this could engender issues when calculating
leading singularities which are generalizations of unitarity cuts. Nevertheless, we will show with
explicit examples how leading singularities are still well defined and accordingly they are able
to capture relevant information on the analytic structure of amplitudes in such higher-derivative
theories. We discuss some simple one-loop amplitudes which clarify these features.

Keywords: scattering amplitudes; quadratic gravity; higher-derivative theories

1. Introduction

The analytic properties of scattering amplitudes have been meticulously examined
in the literature [1–12]. The idea is to regard the amplitude as an analytic function of
kinematical invariants—and physical input would be needed to ascertain all associated
singularities. Several decades ago, this project developed into the ambitious expectation
that an adequate understanding of the structure of its singularities would enable one to
determine the S-matrix itself and, as a consequence, one would obtain a deep insight of all
the interactions involved. However, this program has proven to be a formidable task. In
any case, such investigations have unveiled the intricate analytic structure that amplitudes
may have in perturbation theory. Indeed, at the loop level, Feynman diagrams enjoy a
configuration that is rather involved consisting of nested branch cuts. This complicated
structure gets even more complex when one goes to higher orders in perturbation theory.
This non-trivial analytic structure can be envisaged when assuming unitarity; that is,
imposing the generalized optical theorem should be satisfied. It is the assumption of this
constraint that makes it possible to relate the discontinuity of an amplitude to the exchange
of on-shell states among sets of external particles. One-particle exchange is associated
with the existence of poles, whereas a two-particle exchange indicates the presence of a
branch cut.

The discontinuity across a pole is the residue of the associated holomorphic function
at such a pole. Often we discuss discontinuities in a given channel from the perspective
of the so-called cutting rules [13,14], which basically deals with two-particle exchanges.
In summary, we use such rules to compute the imaginary part of loop amplitudes, which
furnishes their discontinuities. An alternative interpretation is to conceive unitarity cuts as
residues of the amplitude; for instance, for two-particle exchange we take two propagators
1/(L2

1 − m2
1) and 1/(L2

2 − m2
2) (they can also be massless), then integrate over contours

that surround the poles L2
i −m2

i = 0 in the associated complex planes. This amounts to
removing the principal part of the propagator, keeping only its imaginary part given by the
associated delta functions δ(L2

i −m2
i ), in compliance with the fact that imaginary parts of
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loop amplitudes correspond to intermediate particles going on-shell. In this regard, the
hope alluded to earlier was partially fulfilled some time ago, when it was shown that the
use of branch cut singularities could be a powerful tool in the calculations of scattering
amplitudes. This program has given birth to a solid framework which nowadays is known
as the unitarity-based method [15–21]. This technique has since streamlined the evaluation
of many loop amplitudes; at one-loop, the problem of computing amplitudes boils down to
computing tree amplitudes—in many cases, we also need to calculate rational terms.

On the other hand, discontinuities in a given physical channel also possess by them-
selves an elaborate analytic structure. Hence, the cutting process can be repeated over and
over again, which leads to what became known as generalized unitarity constraints [2,22–50]1.
It did not take long for many authors to realize that this could also be useful in the eval-
uation of loop amplitudes. In the method of generalized unitarity, the aim is to find an
integrand that could reproduce all possible unitarity cuts. In the process, one may re-
quire the integrand to reproduce each of the cut solutions independently. The resulting
value for the cut calculated on each solution is called a leading singularity [2–6,51–54].
This technique is reminiscent of the so-called maximal-cut method in the sense that it
also requires the cutting of a maximal (or near-maximal) number of propagators. To put
it simply, leading singularities are generalizations of standard unitarity cuts. The latter
evaluates discontinuities across co-dimension one branch cuts; leading singularities are
associated with singularities of the highest possible co-dimension and are evaluated as
multidimensional residues, possessing support outside the physical region of integration.

Leading singularities comprise a powerful technique to compute amplitudes. Whereas
standard unitarity cuts might have divergences, leading singularities are calculated using
compact contours and are hence finite. Moreover, leading singularities encompass physical
states and are gauge-invariant, a property also enjoyed by standard unitarity cuts. These
features make them useful quantities to employ in the study of general theories. For
instance, it was shown that it is also a valuable contrivance when addressing classical
scattering and as a consequence it can be helpful in the calculation of many important
classical observables, reducing many calculations which could be very complicated within
the framework of general relativity [55–58]. In this work, we wish to show that they can
also be useful in the study of the analytic properties of scattering amplitudes in Lee–Wick-
type theories. This kind of higher-derivative theory was shown to be unitary despite
the presence of an unstable ghostlike resonance [59]. We are particularly interested in a
higher-derivative version of the Yang–Mills theory and also quadratic gravity. The latter
still constitutes a potential UV completion for quantum gravity [60,61]. We will study
one-loop scattering of gluons and gravitons as well as scattering of matter particles in such
higher-derivative theories. We remark that leading singularities in cubic theories of gravity
were already considered in [62,63].

Even though unitarity in theories with unstable particles is only assured when uni-
tarity cuts are not taken through unstable propagators [59,64–68], recently it was argued
that the unitarity method still works for loop amplitudes containing resonances [69]. This
implies that the leading-singularity technique is also available to approach amplitudes in
such theories. On the other hand, causality is violated on microscopic scales of order for the
width of the resonance [70–76]. This is a consequence of the fact that the poles associated
with such unusual resonances are on the physical sheet of the analytic continuation of the
scattering amplitude; therefore, the resummed propagators do not satisfy the usual analytic-
ity properties. In the calculation of one-loop Feynman diagrams using standard methods (or
when proving the cutting rules directly from Feynman diagrams), this demands the usage
of a deformed contour, the Lee–Wick contour [59,70,73], perhaps together with some addi-
tional prescription, known in the literature as the Cutkosky–Landshoff–Olive–Polkinghorn
(CLOP) prescription [77]. Even though important recent efforts were made towards a better
understanding of the analytic properties of amplitudes of higher-derivative theories [78–83],
modern tools were put in an application only recently [84–87]. Our investigation therefore
furnishes a promising avenue for the comprehension of the analytic structure of loop am-
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plitudes in higher-derivative Yang–Mills and quadratic gravity theories. Here, we will use
units such that h̄ = c = 1. We take the Minkowski metric as ηµν = diag(1,−1,−1,−1) and
the Riemann curvature tensor given by Rλ

µνκ = ∂κΓλ
µν + Γη

µνΓλ
κη − (ν↔ κ).

2. Brief Review of Color–Kinematics Duality and Yang–Mills Amplitudes

In this section, we will give a brief review of an intriguing result involving Yang–
Mills amplitudes which became known as the color–kinematics duality [88–111]. We will
also list all important gauge-theory amplitudes that will be important in the calculations
that follow.

Tree-level amplitudes of the Yang–Mills theory can be written as a sum over distinct
trivalent diagrams [51]:

An = ∑
k

cknk
sk

(1)

where sk are inverse propagators (which could be massive), the cks are associated color
factors and the numerators nk are in general polynomials of Lorentz-invariant contractions
of polarization vectors and momenta. When the color factors satisfy Jacobi identities such as

ci + cj + ck = 0 (2)

one can easily prove that the amplitude is invariant under generalized gauge transformations:

ni → ni + si∆, nj → nj + sj∆, nk → nk + sk∆, (3)

where ∆ is an arbitrary function and si, sj, sk are inverse propagators not shared among the
different diagrams associated with each of the above color factors. On the other hand, this
also implies that such numerators are not, in general, gauge-invariant, despite the fact that
the amplitude is. Moreover, the above color factors can also obey relations such as ci = −cj.

The so-called color–kinematics duality states that there exists at least one representa-
tion for gauge-theory amplitudes such that the numerators will satisfy identical algebraic
properties as the corresponding color factors; that is,

ni + nj + nk = 0 (4)

and also, for instance, ni = −nj. The fact that such gauge-dependent numerators obey
these relations has one direct important consequence: One can derive gauge-invariant
homogeneous relations between color-ordered partial amplitudes [89]. These are the
so-called BCJ amplitude relations.

A somewhat different perspective arises in gauge theories with higher-derivative
operators in the Lagrangian. Here, we will be particularly interested in the higher-derivative
Yang–Mills with a Lagrangian density given by [72,85,87]

M2L = −M2

4
Fa

µνFaµν +
1
2

DµFaµνDλFaλ
ν (5)

where covariant-derivative in the adjoint representation reads

DµFa
αβ = ∂µFa

αβ + g f abc AbµFc
αβ. (6)

As is well known, higher-derivative terms modify the propagation of particles in such
a way that the associated propagator develops a massive contribution with wrong-sign
residue. We can interpret such a massive term as a new degree of freedom of the theory, a
ghost “particle” in itself, one carrying a different causal direction, as discussed in [74,76].
Such ghost particles were dubbed Merlin modes elsewhere [74,75]. Even though Merlin
modes could give rise to major problems, it was proved that the theory is unitary [59]
and possibly stable, at least in certain contexts [112,113]. These are consequences of the
fact that the Merlin modes are unstable and hence they cannot appear in the asymptotic
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spectrum. The possible drawback is that such theories predict causality violation for
microscopic time scales. However, as the theory possesses unitary time evolution, one
cannot verify paradoxes in experiments that involve normal particles in the asymptotic
states—the theory may have unconventional acausal effects, but this feature does not seem
to make it inconsistent.

We take the total gauge propagator in the form [87]

Dab
µν(p) = − δab

p2

(
ηµν − (1− ξ)

pµ pν

p2

)
+

δab

p2 −M2 − iMΓ

(
ηµν −

pµ pν

M2

)
. (7)

Henceforth, we will consider the Feynman gauge, ξ = 1. The second contribution is the
Merlin propagator in the narrow-width approximation, with Γ� M being the decay width
of the Merlin particle. Recall that, in general, one should consider a resummed form for
unstable propagators as perturbation theory breaks down in the resonance region. Observe
the two unusual minus signs in this equation; the change in the two signs together implies
that the imaginary part of the Merlin propagator is the same as a normal resonance, a
feature of the utmost importance for unitarity to hold—and, as a result, the generalized
unitarity method still makes sense in the applications for higher-derivative theories. In
what follows, unless otherwise stated, the contribution of the width Γ will be left implicit
in the Merlin propagators.

Concerning color–kinematics duality, it was shown in [87] that four-point amplitudes
in such a theory still obey the duality, but with an unusual feature—the presence of
quartic propagators renders the numerators in the amplitudes gauge-invariant and as a
consequence color-ordered amplitudes will not display conventional BCJ relations. In
this case, the amplitude representation we have derived is necessarily unique and color–
kinematics duality is trivially satisfied.

We will now list some of the tree-level amplitudes of higher-derivative Yang–Mills
theories that will be used in the considerations that will follow. Let us begin with the three-
particle amplitude. As demonstrated in [85,87], three-particle amplitudes involving only
physical gluons will not display contributions coming from higher-order derivative terms:

A(4)
3 [1h1 , 2h2 , 3h3 ] = M2 A(2)

3 [1h1 , 2h2 , 3h3 ] (8)

where the his are different helicities of the gluons and the superscripts represent the four-
and two-derivative theories. Square brackets for color-ordered gauge-theory amplitudes
are used in order to make an explicit distinction from non-color-ordered amplitudes. A
coefficient g/M2 was also factored out. In particular, such gluon amplitudes are completely
fixed by little group scaling and locality. We find that [51]

A(2)
3 [1−, 2−, 3+] =

〈12〉3
〈13〉〈32〉

A(2)
3 [1+, 2+, 3−] =

[
12
]3[

13
][

32
] . (9)

By employing BCFW recursion relations [114,115], one can show that the result (8) general-
izes to an arbitrary number of gluons:

A(4)
n [1h1 , 2h2 , 3h3 , . . . , nhn ] = M2 A(2)

n [1h1 , 2h2 , 3h3 , . . . , nhn ] (10)

Furthermore, momentum conservation allows us to show that the three-particle on-shell
amplitude involving a single Merlin particle vanishes [85,87]:

A(4)
3 (1h1 , 2h2 , 3I J) = 0, (11)
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which also can be generalized to

A(4)
n+1(1

h1 , 2h2 , . . . , nhn , kI J) = 0. (12)

Observe that massive gauge bosons carry explicit SU(2) little-group indices. In what
follows, we will use instead a bold notation to suitably indicate symmetric combinations
of SU(2) little-group indices for massive spinors. For a pedagogical discussion of the
formalism for massive spinors adopted in the present work, see [116–120].

Finally, the case with two Merlin particles is non-trivial; we find that [87,121]

A3[1+, 2, 3] =
√

2
〈r|3|1

]
〈r1〉 〈32〉2

A3[1−, 2, 3] =
√

2

[
r|3|1〉[

1r
] [32

]2. (13)

To complete our list of three-particle on-shell amplitudes, let us write down the results
involving gluons or Merlins with two scalars. Actually the amplitudes have the same
form—the difference relies on the polarization vectors. For gluons, which are massless, the
three-point amplitudes for one positive-helicity gluon and two massive (complex) scalars
of mass µ2 read [122]

Atree
3 (`+iA, pa+, `−jB) = gTa

ij(`
µ
A − `

µ
B)εµ(p) = gTa

ij

√
2
〈ξ|`A|p

]
〈ξ p〉 (14)

where Ta are SU(N) generators in the fundamental representation, which satisfy

[Ta, Tb] = i f abcTc

Tr[TaTb] =
1
2

δab (15)

( f abc are the structure constants) and |ξ〉 is an arbitrary reference spinor not proportional to
|p〉. Now, for Merlins, which are massive, we obtain that [87]

Atree
3 (`+iA, pa, `−jB) = gTa

ij(`
µ
A − `

µ
B)εµ(p) = gTa

ij

√
2
〈p|`A|p

]
M

. (16)

Let us now move on to four-point amplitudes. In the situation involving only gluons, we
have already noted that the amplitudes are essentially the same as in the pure Yang–Mills
theory. In this case, non-vanishing color-ordered amplitudes are the so-called NKMHV
amplitudes, which contain K + 2 negative-helicity gluons and n− K− 2 positive-helicity
gluons. The MHV and the anti-MHV amplitudes are given by the Parke–Taylor for-
mula [123]:

AMHV,tree
n [1+, · · · , i−, · · · , j−, · · · , n+] =

〈ij〉4
∏n

i=1〈i, i + 1〉

AantiMHV,tree
n [1−, · · · , i+, · · · , j+, · · · , n−] =

[
ij
]4

∏n
i=1
[
i, i + 1

] (17)

respectively, where n + 1→ 1. The Parke–Taylor formula can be proved using the BCFW
recursion relations.

Compton amplitudes involving Merlin particles were considered in detail in [87]. In
particular, we are interested in the color-ordered amplitude A4[2, 1+, 4+, 3] with Merlins
and gluons. Using BCFW recursion relations, one finds that [87,121]

A4[2, 1+, 4+, 3] = 2M4
[
14
]

〈14〉
〈32〉2

(p1 + p2)2 −M2 . (18)
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The other Compton scattering amplitudes that will be used in the calculation of the as-
sociated leading singularities are the ones with two gauge particles and two massive
fundamental scalars with mass m. The ones with gluons read [119,121,124]

A4(`iA, 1a+, 2b−, `jB) = −2g2

t

(
Ta

ikTb
kj

2`A · p1
+

Tb
ikTa

kj

2`A · p2

)
〈2|`A|1

]2
A4(`iA, 1a−, 2b−, `jB) = 2m2g2 〈21〉2

(p1 + p2)2

[
Ta

ikTb
lk

(`A + p1)2 −m2 +
Tb

ikTa
kj

(`A + p2)2 −m2

]
. (19)

The associated reverse-helicity amplitudes can be obtained from those above by swapping
angle and square brackets. In turn, the amplitude with external Merlins is given by [87]

A4(`iA, 1a, 2b, `jB) = 2g2Ta
ikTb

kj
〈1|`A|1

]
〈2|`B|2

]
M2

1
(`A + p1)2 −m2 + 2g2Tb

ikTa
kj
〈1|`B|1

]
〈2|`A|2

]
M2

1
(`A + p2)2 −m2

− ig2 f bacTc
ij

2
M2

[
〈12〉

[
21
]
(1− 2) · `A −

(
〈1|`A|1

]
〈2|1|2

]
− 〈2|`A|2

]
〈1|2|1

])]
×

(
1

(p1 + p2)2 −
2

(p1 + p2)2 −M2

)
+ g2{Ta, Tb}ij

〈12〉
[
21
]

M2 . (20)

The overall minus sign in front of the last term in the t-channel is a consequence of the
ghost feature of the Merlin mode.

There is still one amplitude we need that was not calculated previously—this is the
four-point amplitude with scalars, with a Merlin and a gluon as external states. In order to
build up such a scattering amplitude, we will consider the contributions due to consistent
factorization in all possible channels given the three-particle amplitudes. The residue in
the s-channel is given by

Ress = 2
√

2
〈1|`A|1

]
M

`
µ
Bεµ(2). (21)

The residue in the u-channel is obtained by swapping the Merlin with the gluon. As
amplitudes involving a single Merlin particle vanish, the residue in the t-channel presents
us with only one possibility—the pole must come from the massive Merlin particle. Thus,
the residue is given by the product of a three-point amplitude involving two scalars and a
Merlin and with another three-point amplitude with two Merlins and a gluon2:

Rest = −M2
[
ηµν(p1 − p2)ρ + ηνρ(2p2 + p1)µ − ηρµ(2p1 + p2)ν

]
εµI J(1)εν(2)ερMN(p)2`Aα[ε

α
MN(p)]

∗

= 2M2
[
ηµν(p1 − p2)ρ + ηνρ(2p2 + p1)µ − ηρµ(2p1 + p2)ν

]
εµI J(1)εν(2)`Aα

(
ηρα − pρ pα

M2

)
= 2M2

[
(ε(1) · ε(2))(p1 − p2) · `A − 2

(
`A · ε(1)p1 · ε(2)− `A · ε(2)p2 · ε(1)

)]
+ M4ε(1) · ε(2) (22)

where 2`A · p = M2. We also have a contact term:

Contact-Term [1, 2] = ε(1) · ε(2). (23)

Collecting our results, and restoring color factors and the factor g/M2 in the t-channel, we have:

A4(`iA, 1a, 2b, `jB) = 2
√

2g2Ta
ikTb

kj
〈1|`A|1

]
M

`
µ
Bεµ(2)

(`A + 1)2 −m2 + 2
√

2g2Tb
ikTa

kj
〈1|`B|1

]
M

`
µ
Aεµ(2)

(`B + 1)2 −m2

− i f abcTc
ijg

2
{

2
[
(ε(1) · ε(2))(p1 − p2) · `A − 2

(
`A · ε(1)p1 · ε(2)− `A · ε(2)p2 · ε(1)

)]
+ M2ε(1) · ε(2)

}
× 1

(p1 + p2)2 −M2

+ g2{Ta, Tb}ijε(1) · ε(2). (24)
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Observe that swapping the labels “gluon” and “Merlin” results in a change in the sign of
the last term in the t-channel:

A4(`iA, 1a, 2b, `jB) = 2
√

2g2Ta
ikTb

kj
〈2|`B|2

]
M

`
µ
Aεµ(1)

1
(`B + 2)2 −m2

+ 2
√

2g2Tb
ikTa

kj
〈2|`A|2

]
M

`
µ
Bεµ(1)

1
(`A + 2)2 −m2

− i f abcTc
ijg

2
{

2
[
(ε(1) · ε(2))(p1 − p2) · `A − 2

(
`A · ε(1)p1 · ε(2)− `A · ε(2)p2 · ε(1)

)]
−M2ε(1) · ε(2)

}
× 1

(p1 + p2)2 −M2

+ g2{Tb, Ta}ijε(1) · ε(2). (25)

Let us verify whether the above amplitude satisfies color–kinematics duality. We write:

A4(`iA, 1a, 2b, `jB) =
csns

(`A + p1)2 −m2 +
cunu

(`A + p2)2 −m2 −
ctnt

(p1 + p2)2 −M2 (26)

where we have defined the following numerators

ns = 2
√

2g2 〈1|`A|1
]

M
`

µ
Bεµ(2) + g2ε(1) · ε(2)

(
2`A · p1 + M2

)
nu = 2

√
2g2 〈1|`B|1

]
M

`
µ
Aεµ(2) + g2ε(1) · ε(2)

(
2`A · p2

)
nt = g2

{
2
[
(ε(1) · ε(2))(p1 − p2) · `A − 2

(
`A · ε(1)p1 · ε(2)− `A · ε(2)p2 · ε(1)

)]
+ M2ε(1) · ε(2)

}
(27)

and color factors

cs = Ta
ikTb

kj

cu = Tb
ikTa

kj

ct = i f abcTc
ij = [Ta, Tb]ij. (28)

Observe that ct is antisymmetric under an interchange of two legs, and the correspond-
ing numerator nt also obeys this property (to see this for the last term, one must check
the construction of the amplitude given above). Moreover, cs − cu = ct implies that
ns − nu = nt. Thus, we have obtained a representation for the amplitude that satisfies the
color–kinematics duality. A similar result is obtained for the other amplitude; that is,

A4(`iA, 1a, 2b, `jB) =
csns

(`A + p2)2 −m2 +
cunu

(`A + p1)2 −m2 −
ctnt

(p1 + p2)2 −M2 (29)

with

ns = 2
√

2g2 〈2|`B|2
]

M
`

µ
Aεµ(1) + g2ε(1) · ε(2)

(
2`A · p1

)
nu = 2

√
2g2 〈2|`A|2

]
M

`
µ
Bεµ(1) + g2ε(1) · ε(2)

(
2`A · p2 + M2

)
nt = g2

{
2
[
(ε(1) · ε(2))(p1 − p2) · `A − 2

(
`A · ε(1)p1 · ε(2)− `A · ε(2)p2 · ε(1)

)]
−M2ε(1) · ε(2)

}
(30)

and

cs = Ta
ikTb

kj

cu = Tb
ikTa

kj

ct = i f abcTc
ij = [Ta, Tb]ij. (31)
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3. Brief Review of the Double-Copy Method and Gravity Amplitudes

As a consequence of the color–kinematics duality, one can derive amplitudes for a
gravity theory with a spectrum which is the square of the Yang–Mills spectrum. One only
needs to substitute color factors for kinematic factors in the corresponding gauge-theory
amplitude [124–136]:

Mn = ∑
k

nknk
sk

. (32)

We suppressed a factor of the coupling (κ/2)n−2 at n points, where κ2 = 32πG. This is the
BCJ double-copy relation. The squaring relation can be generalized to

Mn = ∑
k

ñknk
sk

(33)

where ñk and nk belong to two distinct Yang–Mills numerators, with only one of them
constrained to satisfy the color–kinematics duality.

One can also use the color–kinematics relation together with the BCJ relations to
rewrite gravity amplitudes as products of partial Yang–Mills amplitudes. The set of
relations obtained in this way are called Kawai–Lewellen–Tye (KLT) relations [137]. The
KLT relation streamlines the usual cumbersome calculations found when dealing with
gravitational interactions: gravity tree amplitudes can be written in terms of gauge-theory
partial amplitudes. Through four points, these relations are given by

Mtree
3 (1, 2, 3) = iAtree

3 [1, 2, 3]Atree
3 [1, 2, 3]

Mtree
4 (1, 2, 3, 4) = −is12 Atree

4 [1, 2, 3, 4]Atree
4 [1, 2, 4, 3] (34)

where Mtree
n are tree-level gravity amplitudes. The basic building block is given by gauge-

theory tree-level scattering amplitudes.
The KLT relations are usually constructed for massless amplitudes, but a double-copy

prescription for Weyl gravity was put forward in [84,85,87]. Similar to the gauge-theory
case, we also verify an unusual feature: Since standard BCJ relations are not obeyed by four-
point gauge amplitudes, the corresponding KLT relations are not satisfied by four-point
quadratic-gravity amplitudes. This feature was duly explored in [87] in order to build up a
consistent map to relate gauge amplitudes with gravity amplitude through a double-copy
prescription. This map is given by

(Higher-derivative YM)⊗ YM = Weyl–Einstein (35)

which was motivated by the considerations studied in [84,85]. The action that describes the
Weyl–Einstein theory reads

S =
∫

d4x
√
−g
[

2
κ2 R− 1

2ξ2 CµναβCµναβ

]
(36)

where Cµναβ is the Weyl tensor. This action also describes the more general quadratic-gravity
theory in the Einstein frame. This can be obtained through a simple field redefinition from
the Jordan-frame action [138]:

S =
∫

d4x
√
−g

[
2
κ2 R +

1
6 f 2

0
R2 − 1

2ξ2 CµναβCµναβ

]
. (37)

Essentially the difference between the two frames is that in the former we verify the
presence of an extra scalar field with a particular interaction potential whose contribution
is usually added to the matter sector.

As extensively discussed in [87], the map given by Equation (35) does not yield a pure
Weyl–Einstein gravity. Typically, the double copy of two vector fields produces gravitons, a
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dilaton and an axion. For quadratic gravity, the map Equation (35) produces, besides such
degrees of freedom, the associated Merlins with each of those particles. The projection to
pure gravity can be obtained by correlating the helicities in the two gauge-theory copies
(for the graviton) and by taking the symmetric tensor product of gauge-theory Merlins
(for the gravitational Merlin). On the other hand, the map (35) requires, for consistency,
the consideration of spontaneously broken gauge theories. In other words, the pure YM
part of the double copy must comprise massive gauge fields. For a thorough discussion,
we refer the reader to [87]. For an interesting account of the double-copy construction for
spontaneously broken gauge theories, see [139–141].

The polarization tensors of massive Merlin particles can be constructed as tensor
products of the spin-1 polarization vectors [57]:

[
εαα̇
](S)

=
[
εαα̇
]⊗S

=

(√
2

M

)S(
|p〉
[
p|
)S

(38)

where symmetrization in the spinor products is implicitly understood.
Let us now list the on-shell amplitudes that will enter in the forthcoming calculations.

As above, we begin with three-point amplitudes. Three-particle amplitudes involving
only physical gravitons do not display contributions coming from higher-order derivative
terms [85,87,142],

M(4)
3 [1h1 , 2h2 , 3h3 ] = M2M(2)

3 [1h1 , 2h2 , 3h3 ] (39)

(hi represents a given graviton helicity) where

M(2)
3 (1−, 2−, 3+) =

(
A(2)

3 [1−, 2−, 3+]
)2

=
〈12〉6

〈13〉2〈32〉2

M(2)
3 [1+, 2+, 3−] =

(
A(2)

3 [1+, 2+, 3−]
)
=

[
12
]6[

13
]2[32

]2 . (40)

This result generalizes to an arbitrary number of gravitons by employing BCFW recursion
relations. In turn, amplitudes with a single gravitational Merlin particle vanish [85,87]:

M(4)
n+1(1

h1 , 2h2 , . . . , nhn , k) = 0 (41)

The three-particle amplitude involving two gravitational Merlin particles and one graviton
may be obtained from the YM case by using the KLT relations discussed in [121]:

M3(1++, 2, 3) = iAtree, HD
3 [1+, 2, 3]Atree,YM

3 [1+, 2, 3] = −2i
〈r|3|1

]2
M4〈r1〉2 〈32〉4

M3(1−−, 2, 3) = iAtree, HD
3 [1−, 2, 3]Atree,YM

3 [1−, 2, 3] = −2i

[
r|3|1〉2

M4
[
1r
]2 [32

]4. (42)

To complete our list of required three-particle amplitudes, we need the ones involving
one gravitational particle (graviton or Merlin) and two massive scalars. The double-copy
prescription was given in [121]. The graviton case reads

Mtree
3 (`+A , p++, `−B ) = i

(
Atree, YM

3 [`+A , p+, `−B ]
)2

= 2i
〈ξ|`A|p

]2
〈ξ p〉2 (43)

whereas in the Merlin case the amplitude is given by [87]

Mtree
3 (`+A , p, `−B ) = iAtree, HD

3 [`+A , p, `−B ]A
tree,YM
3 [`+A , p, `−B ]

= 2i
〈p|`A|p

]2
M2 . (44)
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Let us now display the four-point amplitudes that to go into the formulas of the leading sin-
gularities below. Amplitudes involving only gravitons can be obtained from the usual KLT
relations. Likewise, amplitudes with gravitational Merlin particles and gravitons can also
be derived with the same procedure [87]. For instance, the amplitude M4[1++, 2, 3, 4++],
which involves two gravitational Merlin particles, reads [87,121]

Mtree
4 (2, 1++, 4++, 3) = −is23 Atree, HD

4 [2, 1+, 4+, 3]Atree, YM
4 [2, 4+, 1+, 3] = 4i

[
14
]4

s23

〈32〉4
(s12 −M2)(s13 −M2)

. (45)

where sij = (pi + pj)
2. As for the amplitudes involving scalar matter particles, we find

that [119,121]

M4(1, 2++, 3−−, 4) = −i
〈3|1|2

]4
[(p1 + p2)2 −m2][(p1 + p3)2 −m2](p2 + p3)2

M4(1, 2−−, 3−−, 4) = −im4 〈23〉4
(p2 + p3)2

1
[(p1 + p2)2 −m2][(p1 + p3)2 −m2]

(46)

for gravitons (reverse helicity amplitudes can be obtained from the above formulas by
swapping angle and square brackets) and

M4(`A, 1, 2, `B) =

[
2

M2 〈1|`A|1
]
〈2|`B|2

]
+
〈12〉

[
21
]

M2 (2(1 · `A) + M2)

]2
i

(`A + p1)2 −m2

+

[
2

M2 〈1|`B|1
]
〈2|`A|2

]
+
〈12〉

[
21
]

M2 (2(2 · `A) + M2)

]2
i

(`A + p2)2 −m2

− 4i
M4

(
〈12〉

[
21
]
(1− 2) · `A + 〈1|`A|1

]
〈2|`B|2

]
− 〈2|`A|2

]
〈1|`B|1

])2
(

1
(p1 + p2)2 −

2
(p1 + p2)2 −M2

)
. (47)

for Merlins [87]. The former can be derived from the double-copy formula

Mtree(1s, 2, 3, 4s) = i
(κ

2

)2
s23(−1)bsc−bs1c−bs2c+1 Atree[1s1 , 2, 3, 4s1 ]A

tree[1s2 , 3, 2, 4s2 ], s = s1 + s2 (48)

as proposed in [121]. The amplitude with Merlins can be derived from the relation [87]

M(1s, 2, 3, 4s) = i ∑
k

n(s1)
k (1s1 , 2, 3, 4s1)ñ

(s2)
k (1s2 , 2, 3, 4s2)

sk
(49)

where s = s1 + s2, s1, s2 are the associated spins of the matter particles, 2, 3 are graviton
or Merlin particles, ñk are numerators from the spontaneously broken gauge theory of
the double copy and sk are inverse propagators. The double-copy relation (49) implies
that Equation (47) necessarily contains all the degrees of freedom produced by the double
copy in the t-channel. In order to allow for only gravitons and gravitational Merlins to
flow through the cuts of the t-channel, one may employ four-dimensional physical state
projectors, defined as

∑
λ=±2

ε
µν
λ (p; r)ερσ∗

λ (p; r) =
1
2

(
πµρπνσ + πµσπνρ − πµνπρσ

)
(Graviton)

πµν = ηµν −
pµ p̄ν + pν p̄µ

p · p̄
2

∑
λ=−2

ε
µν
λ ε

ρσ∗
λ =

1
2

(
π̃µρπ̃νσ + π̃µσπ̃νρ −

2
3

π̃µνπ̃ρσ

)
(Merlin)

π̃µν = ηµν −
pµ pν

M2 . (50)

where p̄µ = (p0,−p).
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As in the previous case, our computations will require a four-point amplitude with
a Merlin and a graviton as external states. Since the associated gauge-theory amplitude
obeys color–kinematics duality, the evaluation of the corresponding gravity amplitude goes
through the use of the double-copy prescription as given by Equation (49). We obtain

M4(`A, 1, 2, `B)

=

[
2
√

2
〈1|`A|1

]
M

`
µ
Bεµ(2) + ε(1) · ε(2)

(
2`A · p1 + M2

)]2
i

(`A + p1)2 −m2

+

[
2
√

2
〈1|`B|1

]
M

`
µ
Aεµ(2) + g2ε(1) · ε(2)

(
2`A · p2

)]2
i

(`A + p2)2 −m2

+
{

2
[
(ε(1) · ε(2))(p1 − p2) · `A − 2

(
`A · ε(1)p1 · ε(2)− `A · ε(2)p2 · ε(1)

)]
+ M2ε(1) · ε(2)

}2 i
(p1 + p2)2 −M2 (51)

and also

M4(`A, 1, 2, `B)

=

[
2
√

2
〈2|`A|2

]
M

`
µ
Bεµ(1) + ε(1) · ε(2)

(
2`A · p2 + M2

)]2
i

(`A + p2)2 −m2

+

[
2
√

2
〈2|`B|2

]
M

`
µ
Aεµ(1) + ε(1) · ε(2)

(
2`A · p1

)]2
i

(`A + p1)2 −m2

+
{

2
[
(ε(1) · ε(2))(p1 − p2) · `A − 2

(
`A · ε(1)p1 · ε(2)− `A · ε(2)p2 · ε(1)

)]
−M2ε(1) · ε(2)

}2 i
(p1 + p2)2 −M2 . (52)

The overall minus sign in the t-channel comes from the difference in signs of the associ-
ated numerators coming from the two different gauge theories in the double-copy map.
Furthermore, similar to Equation (47), both expressions comprise all the Merlin degrees of
freedom produced by the double copy flowing in the t-channel.

4. Leading Singularities in One-Loop Processes Involving Merlin Particles

We are now in the position to calculate the leading singularities of one-loop amplitudes.
As discussed above, we are interested in gluon as well as graviton scatterings in the
corresponding higher-derivative theories. Moreover, we are also going to consider the
one-loop four-point scattering process of massive scalars proceeding via the exchange of
gauge as well as gravitational particles. We will consider the narrow-width approximation
for the associated Merlin propagators. We are going to consider two different topologies
for the leading singularities, that is, box and triangle. These are depicted in Figure 1.

p2

p′
2 p′

1

p1 p1

p′
1

p2

p′
2

Figure 1. Different topologies for the calculation of the leading singularities. Thick lines represent all
possible external particles considered in the text, whereas dashed lines represent intermediate states.
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Let us briefly outline the necessary steps to implement the technique before moving on
to the actual calculation. As discussed above, generalized unitarity explores discontinuities
in loop diagrams. The important point is that, as in the case of standard unitarity cuts
associated with two-particle exchanges, the additional cuts can also be realized as contour
integrals. That this is a mandatory treatment for leading singularities can be noticed from
the fact that unitarity methods require the replacement of propagators by on-shell delta
functions—for more than two massless propagators, the solutions to the on-shell equations
are complex, and the associated delta functions can only yield zero. Thus, a well-defined
procedure leads one to consider contour integrals instead of delta functions [23]. Every
time a residue is evaluated, one uncovers a higher co-dimension singularity. The maximal
number of residues at the L-loop order is 4L in four dimensions. Evaluating all 4L residues
generates the highest co-dimension singularity—the corresponding discontinuity is the
leading singularity [54,55].

As mentioned above, the support of the delta functions is outside the physical region
where the loop momentum is a real vector. This suggests that the integration procedure
associated with the leading singularity should be carried out in terms of contour integrals
in C4, and the loop momentum is therefore to be regarded as a complex vector. By applying
the four-dimensional loop-momentum integral over each such contour, one obtains the
residue at the associated encircled pole. Contrary to the product of delta functions, the
transformations here yield a factor of the inverse of the Jacobian. This ensures that we
obtain an analytic result, and hence further contour integrations can be carried out [54,55].
As we will see in the course of the calculations, in our case there will be two distinct
leading singularities.

As discussed in [69], unitarity-based methods are still useful in theories containing
resonances; one only needs to verify whether the external momentum configurations of the
amplitude allow the unstable propagator to become resonant. When one is off resonance,
one possible way to deal with unstable particles is to eliminate them through the use of
a description which contains only stable modes, albeit a non-local one [69]. When the
coupling to the decay products is very small, and therefore only resonance production
is important, one may resort to the narrow-width approximation in order to circumvent
such issues.

On the other hand, in theories containing Merlin modes, close to the resonance the
Merlin propagator has the generic form

iD(q) ∼ −i
q2 −m2 − iγ

where γ is associated with its decay width. As observed above, the presence of the two
unusual minus signs is important for unitary—this is a consequence of the fact that the
imaginary part of the Merlin propagator is the same as that of a normal resonance, as can
be seen from the expression above:

Im[D(q)] ∼ −γ2

(q2 −m2)2 + γ2 .

Since we are interested in calculating contour integrals along adequate contours which are
associated with the process of cutting propagators, which in turn yields the corresponding
imaginary parts, two sets of amplitudes with different propagators which nevertheless
have the same imaginary parts will generate identical results for the aforementioned
contour integral. This means that the fact that leading singularities make sense in theories
with unstable particles indicates that these are also available in the study of the analytic
properties of loop amplitudes containing Merlin modes. This was precisely one of the key
points raised in [69].

A slight difference arises here. First, observe that, for stable particles and normal
unstable particles, the sign of the residue of the one-particle pole is opposite to that of
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the imaginary part of that pole. For the Merlin particle such signs are equal—a similar
result was also found in [143]. On the other hand, in the narrow-width approximation,
the cut of a Merlin propagator should produce the same delta function as of a normal
resonance. However, the Merlin propagator has an overall minus sign; when taking its
propagator to define a variable 1/u and then integrate over a contour |u| = ε encircling
u = 0 in the complex plane, the resulting residue has the opposite sign of the normal
resonance. However, both operations should be equivalent. Such observations motivate us
to define the contours for the leading singularities involving Merlins in such a way that
their orientations should be the opposite to that of a normal resonance. This is necessary as
positive energy flow associated with the Merlin propagates backward in time; furthermore,
the residue at the Merlin pole is always negative and the sign of the width is always
opposite from normal resonances. A related modification was put forward in [59] when
discussing unitarity in the framework of Veltman’s largest time equation.

In a sense, the fact that amplitudes with ghost and normal resonances can be recon-
structed by using unitarity-based methods can be seen as a non-trivial corollary of the
results given in [59,64]. Indeed, from Veltman’s work it is known that normal resonances
satisfy unitarity to all orders in perturbation theory. Thence any discontinuity computed
considering normal resonances in the intermediate states can be translated to a discontinu-
ity with ghost resonances by using the fact that such resonances can be described in the
same propagator with the coupling to the stable states described by the same self-energy;
that is,

iD(q) =
i

q2 −m2 + Σ(q)− q4/Λ2 .

Hence, it follows that, if the normal resonance satisfies the unitarity constraint, the ghost
resonance must also. Therefore unitarity-based methods (including leading singularities)
can be successfully applied to amplitudes involving all such resonances, as argued in [69].

4.1. Higher-Derivative Yang–Mills
4.1.1. Gluon Scattering

Here, we will study a specific one-loop gluon scattering g+g+ → g+g+ proceeding
in the higher-derivative Yang–Mills theory. The leading singularity formula with gluons
running in the loop is given by

LS(g)
g = ∑

h1,h3,h=±

∮
Γ

d4`

(2π)4
1

`2(`+ p′1)
2(`− p1)2 A3[1′+, `−h,−`h1

1 ]A3[−`h, 1+,−`h3
3 ]A4[2+, `−h3

3 , `−h1
1 , 2′+] (53)

where `1 = `+ p′1 and `3 = p1 − `. For Merlins running in the loop, we find that

LS(g)
M =

∮
−Γ

d4`

(2π)4
−1

(`2 −M2)

−1
[(`+ p′1)

2 −M2]

−1
[(`− p1)2 −M2]

A3[1′+, `,−`1]A3[−`, 1+,−`3]A4[2+, `3, `1, 2′+]. (54)

In the above formulae, we take color-ordered amplitudes as the result, and the full ampli-
tudes can be obtained in the same way as will now be described. Notice also that these
are the only possible configurations due to the fact that amplitudes with only one Merlin
vanish. Generically, the contour Γ is defined as enclosing all the corresponding poles
produced by cutting the propagators—the minus in front of it in the expression for LS(g)

M
is to remind us that the contour associated with a Merlin pole must have the opposite
orientation to that corresponding to a stable particle (or a normal resonance).

We begin our discussion with the associated scattering with gluons running in the
loop. First consider the triangle topology for the leading singularity. In principle, the only
contribution in the sum over the helicities h1, h3 in LS(g)

4g would be the term corresponding
to h1 = h3 = +. However, a quick inspection of the remainder, that is,

LS(g)
4g = ∑

h=±

∮
Γ

d4`

(2π)4
1

`2(`+ p′1)
2(`− p1)2 A3[1′+, `−h,−`+1 ]A3[−`h, 1+,−`+3 ]A4[2+, `−3 , `−1 , 2′+] (55)
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reveals that it is actually zero. Thus, in pure Yang–Mills theories, the triangle leading
singularity associated with the one-loop scattering A1−loop

4 [1′+, 1+, 2+, 2′+] vanishes. What
about the box leading singularity? With a judicious choice of reference spinors for the
three-point amplitudes, one can show that the associated product of three-point amplitudes
vanishes. Thus, the box leading singularity is also zero.

The fact that both leading singularities are zero should not come as a surprise. One-
loop gluon amplitudes with gluons running in the loops can be calculated from the follow-
ing identity [19,37,38,122,144]:

A1−loop = AN=4 − 4AN=1 + Ascalar (56)

where AN=4 is the corresponding amplitude in the N = 4 super Yang–Mills theory,
AN=1 is the N = 1 amplitude with a chiral multiplet in the loop and Ascalar is the non-
supersymmetric amplitude with a complex scalar in the loop. Since all-plus gluon ampli-
tude vanishes to all orders in perturbation theory for supersymmetric theories, A1−loop

can be calculated by considering only complex scalars circulating in the loop—but this
amplitude consists of purely rational terms, which are cut-free in four dimensions. A
non-trivial result can only be obtained by going to D = 4− 2ε dimensions. Hence, its
leading singularity must be zero in four dimensions.

Now, let us study the case of Merlin particles running in the loop. We may proceed as
in [55]—recall that the contour encircling a Merlin pole must have the opposite orientation
as the one for a normal particle. We find that

LS(g)
M = − 1

8(p1 · p′1)
1

(2πi)

∮
Γ

dz
z

A3[1′+, `,−`1]A3[−`, 1+,−`3]A4[2+, `3, `1, 2′+]. (57)

The product of the amplitudes can be easily calculated:

A3[1′+, `,−`1]A3[−`, 1+,−`3]A4[2+, `3, `1, 2′+] = −24M12
[
22′
]

〈22′〉

[
11′
]

〈11′〉
1

(p2 + `3)2 −M2 (58)

where we have factored out g/M2. Observe that this expression corrects the overall numeric
factor found in an analogous formula in [87]. Using similar parameterizations as in [55],
we find that

LS(g)
M = M12

[
11′
]

〈11′〉

[
22′
]

〈22′〉
1

(2πi)

∮
Γ

dz
z

3z
−2(p1 · p′1)(q̄ · p2)z2 + 2(p1 · p′1)(p1 · p2)z + M2q · p2

. (59)

where qαα̇ = |1′〉
[
1| and the corresponding conjugate q̄αα̇ = |1〉

[
1′| are fixed reference

massless vectors. We define the contour Γ associated with the triangle topology as the
contour enclosing either of the poles at z = ∞ and z = 0. Choosing any of them will lead to
LS(g)
4M = 0. On the other hand, circling one of the two solutions of the quadratic factor that

arises in the denominator will lead to the box topology. We obtain

LS(g)
�M = −g4 ut

〈11′〉〈1′2〉〈22′〉〈2′1〉
6M4

√
s2u2 + 4M2stu

(60)

where the Mandelstam variables are defined as usual; that is, s = (p1 + p2)
2, t = (p1 +

p′2)
2 and u = (p1 + p′1)

2, with s + t + u = 0. We also restored the g/M2 factors. Thus,
we see that the leading singularity associated with the one-loop scattering amplitude
A1−loop

4 [1′+, 1+, 2+, 2′+] does not vanish in the higher-derivative Yang–Mills theory. This is
a consequence of the presence of massive Merlin modes running in the loops. Moreover,
only the box topology is non-trivial—essentially this is due to the fact that in the expression
of the one-loop amplitude only the box integral is present [87].
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4.1.2. Scalar Scattering

Now, we wish to explore general leading singularities in the scattering of matter
particles φφ → φφ via gluon and Merlin exchange. For simplicity, we will work with
identical massive scalars. The associated expressions are given by

LS(s)g = ∑
h1,h3

∮
Γ

d4`

(2π)4(`2 −m2)

1
(`+ p′1)

2(`− p1)2 A3(1′j, `,−`h1
1 )A3(−`, 1i,−`h3

3 )A4(2m, `−h3
3 , `−h1

1 , 2′n) (61)

for gluons running in the loop, whereas for Merlins we find that

LS(s)M =
∮
−Γ

d4`

(2π)4(`2 −m2)

−1
[(`+ p′1)

2 −M2]

−1
[(`− p1)2 −M2]

A3(1′j, `,−`1)A3(−`, 1i,−`3)A4(2m, `3, `1, 2′n). (62)

where m is the mass of the scalar particles. One also has two crossed terms:

LS(s)gM = ∑
h=±

∮
−Γ

d4`

(2π)4(`2 −m2)

1
(`+ p′1)

2
−1

[(`− p1)2 −M2]
A3(1′j, `,−`h

1)A3(−`, 1i,−`3)A4(2m, `3, `−h
1 , 2′n)

LS(s)Mg = ∑
h=±

∮
−Γ

d4`

(2π)4(`2 −m2)

−1
[(`+ p′1)

2 −M2]

1
(`− p1)2 A3(1′j, `,−`1)A3(−`, 1i,−`h

3)A4(2m, `−h
3 , `1, 2′n) (63)

which contain a four-point amplitude with external Merlin and gluon, in addition to the
scalars. There are actually other contributions that can be obtained from those above by
considering 1↔ 2. Thus, the calculation of those above will suffice to our purposes.

We begin with LS(s)g . The technique is similar to the one used in [55]. In the present
case it will be instructive to describe it with some detail. We parametrize ` as

` = zL + ωq (64)

where Lαα̇ = |L〉
[
L| and q is a fixed reference massless momentum. Now, the integration

variables are z, ω ∈ C and the helicity spinors |L〉, |L
]
. The measure becomes

d4`

`2 −m2 = zdz〈LdL〉
[
LdL

] dω

4[ω−m2/(2zL · q)] . (65)

Contour integration around the pole `2 = m2 fixes ω = m2/(2zL · q):

LS(s)g = ∑
h1,h3

1
4(2πi)3

∮
Γ

zdz〈LdL〉
[
LdL

]
(2m2 + 2` · p′1)(2m2 − 2` · p1)

A3(1′j, `,−`h1
1 )A3(−`, 1i,−`h3

3 )A4(2m, `−h3
3 , `−h1

1 , 2′n). (66)

Now, define two auxiliary massless vectors p3, p4 through the following relations:

p′1 = p3 + x1 p4

p1 = p4 + x1 p3

x1 =
m2

2p3 · p4
. (67)

From such definitions, one can show that

(1 + x1)
2

x1
=

(p1 + p′1)
2

m2

(1− x1)
2

x1
=

(p1 + p′1)
2 − 4m2

m2 . (68)

The reference massless vector q and its conjugate q̄ will be taken to be

qαα̇ = |3〉
[
4|

q̄αα̇ = |4〉
[
3|. (69)
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Now, use the expansion
L = Ap3 + Bp4 + Cq + Dq̄. (70)

We choose D = 1 as the overall scale of L is immaterial, and we find that C = AB as a
consequence of L2 = 0. One finds that

Lαα̇ = |L〉
[
L| =

(
A|3〉+ |4〉

)([
3|+ B

[
4|
)

. (71)

Therefore, with a simple change in the variables, one obtains that

LS(s)g =
x1

4m2
1

(2πi)3 ∑
h1,h3

∮
Γ

zdzdAdB
(2x1 + z(Ax1 + B))(2x1 − z(A + Bx1))

A3(1′j, `,−`h1
1 )A3(−`, 1i,−`h3

3 )A4(2m, `−h3
3 , `−h1

1 , 2′n). (72)

Contour integrations over the two visible poles fix

A = −B =
2x1

z(1− x1)

which leads us to

LS(s)g =
x1

4m2(1− x2
1)

∑
h1,h3

1
(2πi)

∮
Γ

dz
z

A3(1′j, `,−`h1
1 )A3(−`, 1i,−`h3

3 )A4(2m, `−h3
3 , `−h1

1 , 2′n). (73)

Now, let us explicitly evaluate the case with opposite helicities. Using the following
parameterizations

`αα̇
1 (z) = |`1〉

[
`1| = r(x1)

(
|3〉+ z

r(x1)
|4〉
)([

3| − x1

z
r(x1)

[
4|
)

`αα̇
3 (z) = |`3〉

[
`3| = r(x1)

(
|4〉+ x1

z
r(x1)|3〉

)([
4| − z

r(x1)

[
3|
)

r(x) =
1 + x
1− x

(74)

and the three-point amplitudes given above, one can prove that

LS(s+−)g = − g2

2
x2

1(
1− x2

1
)(1 + x1

1− x1

)2
Tc

jkTd
ki

1
2πi

∮
Γ

dz
z3 A4(2m, `d+

3 , `c−
1 , 2′n) (75)

and

LS(s−+)
g = − g2

2
1(

1− x2
1
)
r(x1)2

Tc
jkTd

ki
1

2πi

∮
Γ

dz zA4(2m, `d−
3 , `c+

1 , 2′n), (76)

where the associated color factors coming from the three-point amplitudes are manifest.
Let us focus on LS(s+−)g . For the purpose of calculating the leading singularity associated
with the triangle topology with opposite helicities, it is useful to rewrite the Compton
amplitude as

A4(2m, `d+
3 , `c−

1 , 2′n) = = −2g2

t

(
Tc

mlT
d
ln

2p2 · `1
+

Td
mlT

c
ln

2p′2 · `1

)
〈`1|2|`3

]2
= − g2

t

(
{Tc, Td}mn + [Tc, Td]mn

2p2 · `1
+
{Td, Tc}mn + [Td, Tc]mn

2p′2 · `1

)
〈`1|2|`3

]2
= g2{Tc, Td}mnz2 (z2/r(x1)

2k̄ · p2 + z/r(x1)(p3 − p4) · p2 − k · p2)
2

[(k̄ · p2)/r(x1)z2 + (p3 − x1 p4) · p2z− x1r(x1)k · p2][p2 ↔ p′2]

− 2ig2

t
f cdeTe

mnr(x1)z
(z2/r(x1)

2k̄ · p2 + z/r(x1)(p3 − p4) · p2 − k · p2)
2

[(k̄ · p2)/r(x1)z2 + (p3 − x1 p4) · p2z− x1r(x1)k · p2][p2 ↔ p′2]

×
(

z(p′2 − p2) · (p3 − x1 p4)− x1r(x1)(p′2 − p2) · q + z2/r(x1)(p′2 − p2) · q̄
)

(77)
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where the Mandelstam variables are now given by

s = (p1 + p2)
2

t = (p1 + p′1)
2 = (p2 + p′2)

2

u = (p1 + p′2)
2 = (p2 + p′1)

2 (78)

where
s + t + u = 4m2. (79)

Now, define
E4 ≡ −4(1− x1)

2(q · p2)(q̄ · p2) = −su.

and introduce the change in the variables

z =
2(1 + x1)

E2

√−x1 (q · p2)z′ = −
2(1 + x1)

E2

√−x1 (q · p′2)z′,

to obtain that

LS(s+−)g = −g4 m
2
√−t

1√
4− t/m2

(
N2 + 2

4N2 δmnδij +
(N2 − 4)

4N
δmiδjn

)

× 1
2πi

∮
Γ

dz
z

(
z2(−x1)

1/2 + s−u
E2 z + 1

(−x1)1/2

)2(
1 +

√−t
m

u
E2 z− z2

)(
1−

√−t
m

s
E2 z− z2

)
+

g4

4t
E2

(4− t/m2)3/2 (Nδmiδjn − δijδmn)

× 1
2πi

∮
Γ

dz
z2

(
z2(−x1)

1/2 + s−u
E2 z + 1

(−x1)1/2

)2(
1 +

√−t
m

(u−s)
2E2 z− z2

)
(

1 +
√−t

m
u

E2 z− z2
)(

1−
√−t

m
s

E2 z− z2
) (80)

where we used the following SU(N) relation [145]:

Tc
mlT

c
jk =

1
2

(
δmkδjl −

1
N

δmlδjk

)
. (81)

One can also use [145]

TcTd =
1
2

[
1
N

δcd1 + (dcde + i f cde)Te
]

f abc f abd = Nδcd

dabcdabd =
N2 − 4

N
δcd (82)

with dcde being the totally symmetric group invariant of SU(N).
Now, let us discuss the choice of the contour Γ. The triangle topology is given by

either of the contours that encircles the residues at z = 0, ∞. For LS(s+−)g we will choose
Γ = S1

∞. On the other hand, with the replacement z → −1/z, it is easy to see that we
obtain the same integrand as the one for LS(s+−)g but with the contour encircling z = 0 and

in the opposite direction. In other words, the conjugate contribution LS(s−+)
g is given by

LS(s+−)g with the replacement S1
∞ → −S1

0. Finally, enclosing one of the poles produced by
the quadratic factors in the denominator will produce the associated box topologies.

The leading singularity associated with the triangle topology is then given by

LS(s)4g = LS(s+−)4g + LS(s−+)
4g + LS(s++)

4g + LS(s−−)4g (83)
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where

LS(s+−)4g + LS(s−+)
4g = −g4 m

2
√−t

1√
4− t/m2

(
N2 + 2

4N2 δmnδij +
(N2 − 4)

4N
δmiδjn

)(
−2 +

t
m2

)
− g4

8m
√−t

(s− u)
(4− t/m2)3/2 (Nδmiδjn − δijδmn)

(
−6 +

t
m2

)
(84)

and the configurations with equal helicities will not contribute, since

LS(s++)
4g =

x1

4m2
(
1− x2

1
) 1

2πi

∮
(S1

∞−S1
0)

dz
z

A3(1′j, `,−`+1 )A3(−`, 1i,−`+3 )A4(2m, `−3 , `−1 , 2′n)

=
g4m2

2
x1(

1− x2
1
)Tc

jkTd
ki

1
2πi

∮
(S1

∞−S1
0)

dz

[
Td

mlT
c
ln

[(k̄ · p′2)z2 + r(x1)(p3 − x1 p4) · p′2z− x1r(x1)2k · p′2]

+
Tc

mlT
d
ln

[(k̄ · p2)z2 + r(x1)(p3 − x1 p4) · p2z− x1r(x1)2k · p2]

]
(85)

and it is clear that this expression has zero residue at both z = 0, ∞. A similar result is also
valid for h1 = h3 = −1. Observe the emergence of non-analytic factors in Equation (84)—the
second term arises due to the non-Abelian nature of the interaction, which leads to the
existence of a physical t-channel massless pole in the Compton amplitude involving gluons.
The standard physical interpretation of the two branch points t = 0 and t = 4m2 is that
they correspond to the threshold for production of massless and massive states. This result
agrees with the fact that triangle topology leading singularity is the double discontinuity
across the t-channel [55].

As for the box topology, we write

LS(s+−)�g = LS(s+−)1�g + LS(s+−)2�g (86)

with the following definition:

LS(s+−)1�g =
2g4

t
x2

1(
1− x2

1
) r(x1)

1
4

[
δijδmn

(
1 +

1
N2

)
− 2

N
δmiδjn

]
1

2πi

∮
S1

y0

dy
y2

(
− E4

4(1−x1)2 y2 + (p3 − p4) · p2 y− 1
)2

− E4

4(1−x1)2 y2 + (p3 − x1 p4) · p2 y− x1
(87)

and LS(s+−)2�g can be obtained from LS(s+−)1�g by swapping p2 ↔ p′2 and c ↔ d in the
Compton amplitude. In the above expression, we performed the change in the variables
z = r(x1)(q · p2)y = −r(x1)(q · p′2)y and we used the definition of E. We also used the
Fierz identity again in SU(N). By choosing y0 to be one of the roots of the denominator,
we finally find that

LS(s+−)1�g =
g4

16

[(
1 +

1
N2

)
δijδmn −

2
N

δjnδmi

]
(u− 2m2 +

√
E4 − tu)2

t
√

E4 − tu

LS(s+−)2�g =
g4

16

[
1

N2 δijδmn +
N2 − 2

N
δjnδmi

]
(s− 2m2 +

√
E4 − ts)2

t
√

E4 − ts
. (88)

One can prove that the reverse helicity configuration can be obtained from the previous
expression by taking the other root of the denominator; therefore, with a similar decompo-
sition, we find that

LS(s−+)
1�g =

g4

16

[(
1 +

1
N2

)
δijδmn −

2
N

δjnδmi

]
(u− 2m2 −

√
E4 − tu)2

t
√

E4 − tu

LS(s−+)
2�g =

g4

16

[
1

N2 δijδmn +
N2 − 2

N
δjnδmi

]
(s− 2m2 −

√
E4 − ts)2

t
√

E4 − ts
. (89)
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Analogous decompositions and calculations for configurations with equal helicity yield

LS(s++)
1�g =

g4

4

[(
1 +

1
N2

)
δijδmn −

2
N

δjnδmi

]
m4

t
√

E4 − tu

LS(s++)
2�g =

g4

4

[
1

N2 δijδmn +
N2 − 2

N
δjnδmi

]
m4

t
√

E4 − ts
. (90)

It is easy to see that the minus configuration produces the same result. Notice that the
box topology yields a pole 1/t, which would enable one to extend the computation to an
r-loop ladder, just as in the gravitational case [55]. Such outcomes are in agreement with
the fact that the box topology leading singularity can be envisaged as the discontinuity
in the t-channel of the function derived from the calculation of the discontinuity in the
s-channel of the one-loop amplitude [55].

Now, let us calculate the one-loop leading singularity with only Merlins in the loop.
By using the same method as before, we find that

LS(s)M =
x1

4m2
1

(2πi)3

∮
−Γ

zdzdAdB
−1(

(2−M2/m2)x1 + z(Ax1 + B)
) −1(

(2−M2/m2)x1 − z(A + Bx1)
)

× A3(1′j, `,−`1)A3(−`, 1i,−`3)A4(2m, `3, `1, 2′n) (91)

so that the contour integrations in the A, B planes should be carried out along contours
with the opposite direction as the ones taken in the gluon case. Such contour integrations
over A, B fix

A = −B =
(2−M2/m2)x1

z(1− x1)
(92)

which yields

LS(s)M =
x1

4m2(1− x2
1)

1
(2πi)

∮
Γ

dz
z

A3(1′j, `,−`1)A3(−`, 1i,−`3)A4(2m, `3, `1, 2′n). (93)

The product of the amplitudes can be evaluated using the results listed above. We choose
Γ = S1

∞ to evaluate the triangle leading singularity. We find that

LS(s)4M = − g4

16m
1√−t

1√
4− t/m2

[(
N2 − 2

N
δjnδmi +

1
N2 δijδmn

)
2M2u + 2s2 − st− 2u(t + u)

(s + u)

+

(
N2 + 1

N2 δijδmn −
2
N

δjnδmi

)
2M2s + 2u2 − ut− 2s(t + s)

(s + u)

+ (Nδmiδjn − δijδmn)

(
2M2 + t

)
(s− u)

(
−2M2 + 2s + t + 2u

)
2(s + u)

(
1
t
− 2

t−M2

)
− 1

2

(
N2 − 4

N
δmiδjn +

N2 + 2
N2 δijδmn

)
(t− 8m2 + 2M2)

]
(94)

where we used SU(N) identities given above, and the results are

(p3 − x1 p4) · p2 =
r(x1)

2
u

(p3 − x1 p4) · p′2 =
r(x1)

2
s

p4 − p3 =
p1 − p′1
(1− x1)

. (95)

Observe the emergence again of non-analytic factors; there is, however, an important
difference here: We verify the presence of the pole at t = M2 due to the presence of the
Merlin modes in the t-channel of the Compton amplitude.
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As discussed above, the box topology is obtained by considering the poles associated
with the roots of the quadratic factors in the denominators. In this case again, we use the
definition of E. We obtain

LS(s)�M = − g4

16
1√−t


(

N2 − 2
N

δjnδmi +
1

N2 δijδmn

) (
4m2 −M2 − 2s

)2√
(E4 − st)

(
u− (t + u)

(
1− 2M2

t+u

)2
)

+

(
N2 + 1

N2 δijδmn −
2
N

δjnδmi

) (
4m2 −M2 − 2u

)2√
(E4 − ut)

(
s− (t + s)

(
1− 2M2

t+s

)2
)
. (96)

One interesting thing to observe is that the terms associated with the t-channel and the
contact term of the Compton amplitude do not contribute to the box leading singularity,
only to the triangle one. On the other hand, notice the appearance of the non-analytic factor√−t; this is not present in the box topology involving only gluons (which instead develops
a pole 1/t) and is clearly due to the presence of the Merlin modes. Thus, the Merlin particle
modifies in a non-trivial way the analytic structure of the amplitude, the crucial difference
being the presence of an additional branch cut.

Now, let us calculate the crossed terms. Using the same technique, we find that

LS(s)gM = ∑
h=±

x1

4m2
1

(2πi)3

∮
−Γ

zdzdAdB
1(

2x1 + z(Ax1 + B)
) −1(

(2−M2/m2)x1 − z(A + Bx1)
)

× A3(1′j, `,−`h
1)A3(−`, 1i,−`3)A4(2m, `3, `−h

1 , 2′n) (97)

and

LS(s)Mg = ∑
h=±

x1

4m2
1

(2πi)3

∮
−Γ

zdzdAdB
−1(

(2−M2/m2)x1 + z(Ax1 + B)
) 1(

2x1 − z(A + Bx1)
)

× A3(1′j, `,−`1)A3(−`, 1i,−`h
3)A4(2m, `−h

3 , `1, 2′n). (98)

Carrying out the contour integrations over A and B (taking care to consider proper orienta-
tions for the contours as discussed above) yields

LS(s)gM = − x1

4m2
(
1− x2

1
) ∑

h=±

1
(2πi)

∮
Γ

dz
z

A3(1′j, `,−`h
1)A3(−`, 1i,−`3)A4(2m, `3, `−h

1 , 2′n) (99)

with

AgM =
x1
(

M2 − 2m2(x1 + 1)
)

m2
(
x2

1 − 1
)
z

BgM = − x1
(

M2x1 − 2m2(x1 + 1)
)

m2
(
x2

1 − 1
)
z

(100)

and

LS(s)Mg =
x1

4m2
(
1− x2

1
) ∑

h=±

1
(2πi)

∮
Γ

dz
z

A3(1′j, `,−`1)A3(−`, 1i,−`h
3)A4(2m, `−h

3 , `1, 2′n) (101)

with

AMg =
x1
(

M2x1 − 2m2(x1 + 1)
)

m2
(
x2

1 − 1
)
z

= −BgM

BMg = − x1
(

M2 − 2m2(x1 + 1)
)

m2
(
x2

1 − 1
)
z

= −AgM. (102)
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The results presented above allow us to easily calculate the associated product of amplitudes
that appear in our expression for the leading singularity associated with the crossed terms.
After tedious algebraic manipulations, and again choosing Γ = S1

∞ to evaluate the triangle
leading singularity, we find that

LS(s)4gM =
g4

8m
1√−t

1√
4− t/m2

[(
N2 − 2

N
δjnδmi +

1
N2 δijδmn

)(
s− 2m2

)
+

(
N2 + 1

N2 δijδmn −
2
N

δjnδmi

)(
u− 2m2

)
− (Nδmiδjn − δmnδji)

(
M4(u− s) + M2(s + u)(s− t− u) + t(s− u)(2s + t + 2u)

2(s + u)

)
1

t−M2

− 1
2

(
N2 − 4

N
δmiδjn +

N2 + 2
N2 δijδmn

)(
t− 4m2 + M2

)]
(103)

and

LS(s)4Mg = − g4

8m
1√−t

1√
4− t/m2

[(
N2 + 1

N2 δijδmn −
2
N

δjnδmi

)(
u− 2m2

)
+

(
N2 − 2

N
δjnδmi +

1
N2 δijδmn

)(
s− 2m2

)
− (Nδmiδjn − δmnδji)

(
M2(s2 + u(2t− u)

)
+ t(s− u)(2s + t + 2u)

2(s + u)

)
1

t−M2

− 1
2

(
N2 − 4

N
δmiδjn +

N2 + 2
N2 δijδmn

)(
t− 4m2

)]
(104)

where we used

(p4 − p3x1) · p′2 =
r(x1)

2
u.

Again observe the appearance of a pole at t = M2.
Now, let us choose a contour encircling one of the poles associated with the roots of

the quadratic factors in the denominators. The non-vanishing contribution reads

LS(s)�gM =
g4

4

√
(4m2 − t)2
√

4m2 − t

[(
N2 − 2

N
δjnδmi +

1
N2 δijδmn

) (
s− 2m2)2√

m2s(M2 − t)2(−st− 4u)

+

(
N2 + 1

N2 δijδmn −
2
N

δjnδmi

) (
u− 2m2)2√

m2u(M2 − t)2(−ut− 4s)

]
(105)

and

LS(s)�Mg = − g4

4

√
(4m2 − t)2
√

4m2 − t

[(
N2 + 1

N2 δijδmn −
2
N

δjnδmi

) (
u− 2m2)2√

m2u(M2 − t)2(−4s− tu)

+

(
N2 − 2

N
δjnδmi +

1
N2 δijδmn

) (
s− 2m2)2√

m2s(M2 − t)2(−4u− ts)

]
. (106)

Observe that in principle the crossed terms for the box topology also present non-analytic
terms instead of the standard pole 1/t; however, it is trivial to see that the sum of both
contributions vanish, which implies that only the triangle leading singularity is important
for such crossed terms—even for the triangle topology, we observe non-trivial cancellations
when we sum the two terms above.

4.2. Quadratic Gravity
4.2.1. Graviton Scattering

Now, let us consider the associated gravity leading singularities. We consider a specific
one-loop graviton–graviton scattering h++h++ → h++h++. With gravitons running in the
loop, we find that the leading singularity is given by
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LS(h)h = ∑
h1,h3,h=++,−−

∮
Γ

d4`

(2π)4
1

`2(`+ p′1)
2(`− p1)2 M3(1′++, `−h,−`h1

1 )M3(−`h, 1++,−`h3
3 )M4(2++, `−h3

3 , `−h1
1 , 2′++). (107)

For Merlins running in the loop, we find that

LS(h)M =
∮
−Γ

d4`

(2π)4
−1

(`2 −M2)

−1
[(`+ p′1)

2 −M2]

−1
[(`− p1)2 −M2]

M3(1′++, `,−`1)M3(−`, 1++,−`3)M4(2++, `3, `1, 2′++). (108)

The double-copy prescription allows us to recycle the gluon results derived previously,
and we find that LS(h)h = 0. Essentially the reason is the same as before: A similar
supersymmetric decomposition allows one to see that the the one-loop scattering am-
plitude M1−loop

4 [1′++, 1++, 2++, 2′++] consists of purely rational terms, which are cut-
free in four dimensions [146]. Hence, the associated leading singularity must be zero in
four dimensions.

For the case of Merlins running in the loop, we will need the double-copy results
presented above, and will also need to take the adequate orientation for the associated
contours; proceeding as in the analogous gauge-theory case, we find that

LS(h)M = − 1
8(p1 · p′1)

1
(2πi)

∮
Γ

dz
z

M3(1′++, `,−`1)M3(−`, 1++,−`3)M4(2++, `3, `1, 2′++)

= −
(

δ
(I
I δJ

J δK
K δ

L)
L

) 2iM8

(p1 · p′1)

[
22′
]2

〈22′〉2
[
11′
]2

〈11′〉2
1

(2πi)

∮
Γ

dz
z

(
1

2p′2 · `1
+

1
2p2 · `1

)

= iM8
(

δ
(I
I δJ

J δK
K δ

L)
L

) [22′
]2

〈22′〉2
[
11′
]2

〈11′〉2
1

(2πi)

∮
Γ

dz
z

(
2z

−2(p1 · p′1)(q̄ · p′2)z2 − 2(p1 · p′1)(p′1 · p′2)z + M2q · p′2
+

2z
−2(p1 · p′1)(q̄ · p2)z2 − 2(p1 · p′1)(p′1 · p2)z + M2q · p2

)
. (109)

In [87] a similar product of amplitudes was considered, except that the result in there
lacks the above overall factor given by a (non-normalized) symmetric product of the delta
functions, so this expression slightly corrects the analogous one in such a reference. As in
previous case, we see that LS(h)4M = 0. The box topology can be easily calculated by relying
on the results derived above:

LS(h)�M =
(

δ
(I
I δJ

J δK
K δ

L)
L

) iκ4M8

4

(
ut

〈11′〉〈1′2〉〈22′〉〈2′1〉

)2( 1√
s2u2 + 4M2stu

+
1√

t2u2 + 4M2stu

)
(110)

where the Mandelstam variables are defined as s = (p1 + p2)
2, t = (p1 + p′2)

2 and
u = (p1 + p′1)

2, with s + t + u = 0. We also restored the factors κ/2 coming from the
amplitudes. As in the previous case, in the one-loop amplitude only the box integral is
present [87]—as a result, only the box topology is non-vanishing.

4.2.2. Scalar Scattering

To conclude our exploration, let us now study leading singularities in the scattering of
identical scalar particles φφ→ φφ interacting gravitationally. The associated expressions
are given by

LS(s)h = ∑
h1,h3=++,−−

∮
Γ

d4`

(2π)4(`2 −m2)

1
(`+ p′1)

2(`− p1)2 M3(1′, `,−`h1
1 )M3(−`, 1,−`h3

3 )M4(2, `−h3
3 , `−h1

1 , 2′) (111)

for gravitons running in the loop, whereas for Merlins we find that

LS(s)M =
∮
−Γ

d4`

(2π)4(`2 −m2)

−1
[(`+ p′1)

2 −M2]

−1
[(`− p1)2 −M2]

M3(1′, `,−`1)M3(−`, 1,−`3)M4(2, `3, `1, 2′) (112)
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where m is the mass of the scalar particles. We consider all possible Merlins here—the ones
associated with the graviton, the dilaton and the Kalb–Ramond fields. This amounts to
taking the total Merlin propagator in the form

Dµρ;νσ(p)
∣∣∣∣
Merlin

= − 1
(p2 −M2)

π̃µρπ̃νσ (113)

which would only contract “left” indices with “right” indices. Three-point vertices would
also have to be constructed in this way, as a product of three-point (higher-derivative)
Yang–Mills vertices. Such a factorization would make the double-copy property manifest.
Similar choices for the graviton propagator and the associated three-point vertex were
proposed in [147].

As above, one also has to consider two crossed terms:

LS(s)hM = ∑
h

∮
−Γ

d4`

(2π)4(`2 −m2)

1
(`+ p′1)

2
−1

[(`− p1)2 −M2]
M3(1′, `,−`h

1)M3(−`, 1,−`3)M4(2, `3, `−h
1 , 2′)

LS(s)Mh = ∑
h

∮
−Γ

d4`

(2π)4(`2 −m2)

−1
[(`+ p′1)

2 −M2]

1
(`− p1)2 M3(1′, `,−`1)M3(−`, 1,−`h

3)M4(2, `−h
3 , `1, 2′) (114)

which contain a four-point amplitude with external Merlin and graviton, in addition to
the scalars. Observe that in such crossed terms all degrees of freedom generated by the
double-copy procedure are being taken into account. Concerning the graviton contribution,
this would be equivalent to taking its propagator in the double-copy form [147]

Dµρ;νσ(p)
∣∣∣∣
graviton

=
1
p2 ηµρηνσ (115)

and the terminology “graviton” above could apply to all massless degrees of freedom pro-
duced by the double copy—unless we impose that all vertices in the n-graviton scattering
amplitude should satisfy a rigid left–right interchange symmetry, as explained in [147]. As
in the gauge-theory case, there are also other contributions that can be obtained from those
above by considering 1↔ 2.

Let us begin with the case of only gravitons running in the loop. Since this was already
calculated before, we simply quote the result [55]. For the triangle topology, we find that

LS(s)4h = LS(s++,−−)
4h + LS(s−−,++)

4h + LS(s++,++)
4h + LS(s−−,−−)

4h (116)

where

LS(s++,−−)
4h + LS(s−−,++)

4h = i
(κ

2

)4 m√−t
m4

(4− t/m2)5/2
1

2πi

∮
(S1

∞−S1
0)

dz
z3

(
z2(−x1)

1/2 + s−u
E2 z + 1

(−x1)1/2

)4(
1 +

√−t
m

u
E2 z− z2

)(
1−

√−t
m

s
E2 z− z2

) (117)

and the contributions with equal helicities vanish. The box topology can be calculated in
much the same way as was done in the Yang–Mills case; the final result reads

LS(s)�h = LS(s++,−−)
�h + LS(s−−,++)

�h + LS(s++,++)
�h + LS(s−−,−−)

�h (118)

with

LS(s++,−−)
�h = iG2π2 (s− 2m2 +

√
E4 − ts)4

t
√

E4 − ts

LS(s−−,++)
�h = G2π2 (s− 2m2 −

√
E4 − ts)4

t
√

E4 − ts
(119)



Universe 2022, 8, 326 24 of 31

and

LS(s++,++)
�h = LS(s−−,−−)

�h = iG2π2 m8

t
√

E4 − ts
. (120)

Now, let us evaluate the one-loop leading singularity with only gravitational Merlins in the
loop. By using the same technique as above, we find that

LS(s)M =
x1

4m2(1− x2
1)

1
(2πi)

∮
Γ

dz
z

M3(1′, `,−`1)M3(−`, 1,−`3)M4(2, `3, `1, 2′) (121)

with

A = −B =
(2−M2/m2)x1

z(1− x1)
. (122)

Using the double-copy prescription enables one to derive simple expressions for the product
of the amplitudes that enter in the above formula. We stress again that we are taking into
account all the degrees of freedom comprised of the double copy, that is, gravitons, Merlins,
dilatons and Kalb–Ramonds. In order to consider only gravitons and gravitational Merlins,
one must disentangle them from the other contributions—this is achieved by using the
four-dimensional physical state projectors given above. In any case, all terms above will
contribute to the triangle leading singularity. By taking Γ = S1

∞, we find that

LS(s)4M =
iκ4

4m
1√−t

1√
4− t/m2

1
(2πi)

∮
S1

∞

dy
y

−
[(

s− 2m2 − 1
2
(
S(y) + M2))2

+
1
8

(
−8m2 + 2M2 + t

)
S(y)

]2
1

S(y)

−
[(

u− 2m2 − 1
2
(
U(y)−M2))2

+
1
8

(
−8m2 + 2M2 + t

)
U(y)

]2
1

U(y)

+

(
1
8

(
−8m2 + 2M2 + 3t

)(
S(y)−U(y)

)
− t

2
(s− u−M2)

)2(
1
t
− 2

t−M2

) (123)

where

S(y) =
1
y

(
E4r(x1)

2(1− x1)2 y2 +
s
(
2M2 − t

)
s + u

y + 2r(x1)x1

(
1 +

(M2 − 4m2)M2

m2t

))
U(y) =

1
y

(
− E4r(x1)

2(1− x1)2 y2 +
u
(
2M2 − t

)
s + u

y− 2r(x1)x1

(
1 +

(M2 − 4m2)M2

m2t

))
(124)

and we used the change of variables z = r(x1)(q · p2)y = −r(x1)(q · p′2)y. The Mandelstam
variables are now given by Equation (78). The contour integral is not terribly difficult
to solve; however, the explicit result is not particularly enlightening, so we choose to
leave it in such a compact form. Nevertheless, we can check from the above expression
the emergence of the standard non-analytic terms 1/

√−t and 1/
√

4− t/m2 for triangle
topologies, together with the pole at t = M2, which is a typical feature due to the presence
of Merlin modes.

To compute the box topology, we proceed as before; that is, we consider a contour encir-
cling one of the poles associated with the roots of the quadratic factors in the denominators.
We obtain

LS(s)�M = −i
(κ

2

)4 1
4

1√−t


(
4m2 −M2 − 2s

)4√
(E4 − st)

(
u− (t + u)

(
1− 2M2

t+u

)2
) +

(
4m2 −M2 − 2u

)4√
(E4 − ut)

(
s− (t + s)

(
1− 2M2

t+s

)2
)
. (125)

As in the Yang–Mills case, Merlin modes change dramatically the analytic structure of
the amplitude—in the present case, this non-trivial change means that, instead of the 1/t
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pole for the box topology found in the case of gravitons running in the loop, we find the
non-analytic term

√−t.
Now, let us calculate the crossed terms. Using the same technique as above, we

find that

LS(s)hM = − x1

4m2
(
1− x2

1
) ∑

h

1
(2πi)

∮
Γ

dz
z

M3(1′, `,−`h
1)M3(−`, 1,−`3)M4(2, `3, `−h

1 , 2′) (126)

with the associated A and B given by Equation (100) and

LS(s)Mh =
x1

4m2
(
1− x2

1
) ∑

h

1
(2πi)

∮
Γ

dz
z

M3(1′, `,−`1)M3(−`, 1,−`h
3)M4(2, `−h

3 , `1, 2′) (127)

and now A and B are given by Equation (102). In turn, the amplitudes listed above allow
us to calculate the products of the amplitudes that appear in both expressions. As above,
we take Γ = S1

∞ for the calculation of the triangle topology. Performing the same change in
the variables as above, we find that

LS(s)hM = 16i
( κ

2

)4 1
4m

1√−t
1√

4− t/m2

1
(2πi)

∮
S1

∞

dy
y

{[(
s− 2m2 − 1

2
S(y)

)
(s− 2m2) +

(
t− 4m2 + M2)

4
S(y)

]2 1
S(y)

+

[(
u− 2m2 − 1

2
U (y)

)
(u− 2m2) +

(
t− 4m2 + M2)

4
U (y)

]2 1
U (y)

+

[ (
t− 4m2 + M2)

4

(
S(y)−U (y)

)
+

t
2
S(y) + 1

4
t(−3s + t + 3u)

]2 1
t−M2

}
(128)

and

LS(s)Mh = −16i
(κ

2

)4 1
4m

1√−t
1√

4− t/m2

1
(2πi)

∮
S1

∞

dy
y

×
{[(

u− 2m2 − 1
2
U (y)

)(
u− 2m2

)
+

(
t− 4m2)

4
U (y)

]2 1
U (y)

+

[(
s− 2m2 − 1

2
S(y)

)(
s− 2m2

)
+

(t− 4m2)

4
S(y)

]2 1
S(y)

+

[
t
2

(
S(y)−U (y)

)
− 2m2S(y)− 1

4
t(4s + t− 2u)− M2

4

(
t− 4m2

)]2 1
t−M2

}
(129)

where

S(y) =
1
y

(
− (t−M2)

s + u
sy +

E4

2(1− x1)2 r(x1)y2 + 2r(x1)x1

(
t−M2)2

t2

)

U (y) =
1
y

(
− (t−M2)

s + u
uy− E4

2(1− x1)2 r(x1)y2 − 2r(x1)x1

(
t−M2)2

t2

)
. (130)

Again, the emergence of the non-standard pole at t = M2 is manifest.
The box topology for the crossed terms can be calculated in much the same way as

before; we obtain that

LS(s)�hM =
iκ4

4

√
(4m2 − t)2
√

4m2 − t

[ (
s− 2m2)4√

m2s(M2 − t)2(−st− 4u)
+

(
u− 2m2)4√

m2u(M2 − t)2(−ut− 4s)

]
(131)

and

LS(s)�Mh = − iκ4

4

√
(4m2 − t)2
√

4m2 − t

[ (
u− 2m2)4√

m2u(M2 − t)2(−4s− tu)
+

(
s− 2m2)4√

m2s(M2 − t)2(−4u− ts)

]
. (132)

Similar to the gauge-theory case, the sum of both contributions also vanishes.
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5. Summary

Unitarity cut enables one to establish a relationship between the pole structure of the
integrand and the branch-cut structure of the loop integral. This allows one to retrieve the
loop integrand by analyzing different sets of unitarity cuts. It turns out that the problem of
finding functions which can reproduce all such discontinuities can be a daunting endeavor.
We have studied here one special class of such singularities, the leading singularities, which
are the ones with the highest co-dimension. We have investigated leading singularities
in a higher-derivative Yang–Mills theory and quadratic gravity. As shown in previous
sections, this technique can still be a powerful one to address the reconstruction of loop
amplitudes for such theories. Indeed, the applicability of unitarity-based methods to
amplitudes involving unstable particles can be envisaged as a consequence of unitarity. As
proved in [59,64], theories with unstable particles are unitary. Therefore, unitarity methods
must be trustworthy in such cases. This is extensively discussed in [69]. In turn, when
computing leading singularities, the associated contours must enclose one-particle poles so
that the result of the contour integration will represent an on-shell particle carrying positive
energy. In the case of unstable particles, when one is off resonance, one is also away from
the pole of the propagator, and one obtains a vanishing residue. Hence, a finite result is
only warranted when one is close to the resonance region.

The present study is a natural continuation of the investigation initiated in [69,87],
where the analytic properties of scattering amplitudes of higher-derivative field theories
were approached. This is an important point as it is well known that resummed Merlin
propagators do not satisfy standard analyticity properties since the poles are on the physical
sheet, which leads to an unorthodox analytic structure for the associated amplitudes.
Indeed, as shown by the calculations above, the presence of Merlin modes alters the form
of the box leading singularities in a non-trivial way. Our results suggest that a better
understanding of the analytic features of the amplitudes calculated in such theories is a
pressing issue. The use of tools coming from the modern on-shell amplitudes program
seems to be a promising pathway to be explored.

It is unclear whether traditional field-theory techniques agree in their results when
applied to higher-derivative theories. For instance, the equivalence of Euclidean and
Lorentzian formulations has been grounded in standard theories, and it is not clear how
such a correspondence would be possible for higher-derivative theories, particularly bear-
ing mind the unconventional analytic features such theories possess [61]. Perhaps the
traditional representation of loop amplitudes in terms of Feynman diagrams might not
be useful here. It is known that in many situations the Lee–Wick contour is mandatory;
however, one is unsure of the consistency of this prescription to higher orders in pertur-
bation theory [78–83]. In turn, it is also unclear how to include the CLOP prescription
into a Lagrangian, and ambiguities are expected to arise at higher orders [148]. Standard
Feynman diagrams were originally conceived for theories with scattering amplitudes which
are analytic in the first Riemann sheet, and models enjoying one unambiguous arrow of
causality. This is not the case here. An alternative treatment could probe other options;
perhaps recent ideas comprising representations of amplitudes in terms of contour inte-
grals in Grassmannian spaces or geometrizations such as amplituhedrons could be helpful
here [51,149–153]. On the other hand, as discussed, gravitational scattering amplitudes can
be written as an appropriate factorization in terms of gauge-theory amplitudes. The conjec-
ture is that the double copy might be a general imprint of all gravitational theories. The
current study as well as the investigation put forward in [87] were restricted to examining
in detail four-point amplitudes in quadratic gravity; it would be interesting to see more
evidence in favor of a double-copy structure with five- or higher-point amplitudes. These
are certainly explorations worthy of further consideration within the program of quadratic
gravity as a potential UV completion for quantum gravity, and we hope to return to such
considerations in the near future.
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Notes
1 For a much more extensive body of research on unitarity-based methods, please check references within [2,15–50].
2 For this calculation one can make use of the triple-gauge vertex calculated in detail in [87].
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