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Abstract: The maximal kinematical invariance group of the Euler equations of fluid dynamics
for the standard polytropic exponent is larger than the Galilei group. Specifically, the inversion
transformation (Σ : t → −1/t, ~x → ~x/t) leaves the Euler equation’s invariant. This duality has
been used to explain the striking similarities observed in simulations of the supernova explosions
and laboratory implosions induced in plasma by intense lasers. The inversion symmetry extends to
discontinuous fluid flows as well. In this contribution, we provide a concise review of these ideas and
discuss some applications. We also explicitly work out the implosion dual of the Sedov’s explosion
solution.
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1. Introduction

Surprises lurk in unexpected corners of physics. This review summarises a body of
results that ensue from one such surprise, viz. the striking similarity between the earlier sim-
ulations of supernova explosions and the experimental evolution of an imploding plasma
contained in a fusion capsule bombarded by high-intensity lasers [1]. It was hoped [1]
that, over time, laser experiments would become more in line with actual supernovae
behaviour. Hence, considerable efforts were devoted to simulating astrophysical systems in
the laboratory. Modern supernova simulations have become much more complex; several
new physical effects and numerical techniques are incorporated [2]. At the present stages
of development, it is not clear how much one can learn about the astrophysical systems
in the laboratory setting. However, the observations mentioned above have led to some
intriguing theoretical developments. In this paper we concentrate on discussing the the-
oretical explanation [3–5] for the observed similarity [1], and some ramifications of the
resulting analysis [6]. We limit our considerations mostly to references [3–6].

Earlier computational studies of the evolution of a supernova remnant (as cited in [1])
usually used initial conditions of dense pressure-free ejecta expanding ballistically outwards
from the site of the explosion, taken for convenience to be the origin, and interacting with a
stationary ambient medium of much lower density and negligible pressure. At early times,
the bulk of the ejecta expands ballistically, except for a thin interaction region on the outside
consisting of a forward shock running into the ambient medium, a zone of hot-shocked
ambient medium, a contact discontinuity, a zone of shocked ejecta, and a reverse shock
propagating into the ejecta. At later times, when the mass of the swept-up ambient medium
becomes comparable with the ejecta mass, the reverse shock detaches itself from the contact
discontinuity and implodes on the origin.

In the laboratory plasma, we have, initially, a stationary sphere of high density material
surrounded by a low density converging flow. The inflowing gas has to decelerate at the
shock front, building up pressure and driving a reverse shock which leads to an implosion.
From an experimental point of view, a perfectly spherically symmetric explosion is not
realistic. The ejecta emerging from a supernova explosion is also highly nonuniform on a
wide range of scales making it computationally challenging to calculate its evolution.
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From a theoretical point of view, it is interesting to study the underlying symmetry
that enables one to map an explosion to an implosion. One can straightaway rule out
time-reversal as an answer because the supernova explosions occur over astronomical
time-scales, while the plasma implosions happen in a few nano-seconds.

Both an exploding star and an imploding plasma can be modelled by the equations
of a perfect fluid, as we are taught in standard textbooks [7,8]. The explanation offered in
Refs. [3,4] for the observed explosion–implosion duality stems from a hitherto unnoticed
nonlinear symmetry of these equations, which we expand upon in the next section.

This analysis of ref. [4] highlights that the maximal kinematical invariance group
of the Euler equations of fluid dynamics for the standard polytropic exponent is larger
than the Galilei group. The techniques required to establish this find applications in other
situations, viz. fluid flows in non-inertial frames. The Earth’s oceans and atmosphere
are important examples of fluid flows in non-inertial reference frames, where the Earth’s
rotation provides the underlying non-inertial frame. In order to describe oceanic and
atmospheric fluid flows, it is natural to analyse fluid phenomena in the Earth’s frame. This
requires adding Coriolis forces to the right hand side of the fluid equations. The Coriolis
force terms lead to surprising phenomenon: weather storms and ocean’s currents. Going to
the non-inertial reference frame allows us to separate out the rotational component of the
fluid flows. We can then concentrate on the parts of flow patterns that matter the most.

Related situations arise when fluid flows are characterised by a large degree of expan-
sion or contraction. Poludnenko and Khokhlov [6] considered the formulation of Euler
equations of fluid dynamics in an expanding or contracting or possibly rotating reference
frame. The motivation being that by going to an appropriately chosen frame we can discard
the expanding or contracting or rotating nature of the fluid flows. The frame motion is ad-
justed to minimise the local fluid velocities. This method allows to accommodate efficiently
large degrees of change in the flow extent, such as those encountered in astrophysical flows:
supernovae, contracting stars, etc. Their work investigated numerical computations in such
non-inertial reference frames.

As in the case of rigidly rotating reference frames, going to an expanding or contracting
reference frame requires adjustments of the fluid flow equations. Ref. [6] argued that these
adjustments do not come at any additional numerical cost: the new equations can be as
easily implemented numerically using any of the standard numerical schemes. However,
by separating out the global component of the fluid flow, it leads to significant improvement
in the physical understanding of the fluid flows, which would be difficult to extract in
inertial reference frame simulations. (More precisely, in numerical work it is important
to work with smaller local fluid velocities. If a fluid flow is dominated by the global
component associated with expansion or contraction or rotation, then it is inefficient to
model such flows in inertial frames.) They carried out extensive numerical testing of the
method for a variety of reference frames representative of realistic applications.

The rest of the article is organised as follows. In Section 2, we review the maximal kine-
matical invariance group of fluid dynamics, based on the original work of O’ Raifeartaigh
and one of the authors [4]. In Section 3, we discuss the symmetries of discontinuous
flows, based on our original work with Oliver Jahn [5]. In Section 4, we review the work
of Poludnenko and Khokhlov [6], who considered the formulation of Euler equations
of fluid dynamics in non-inertial reference frames. In Section 5, we present the conclu-
sions. Appendix A explicitly works out the implosion dual of Sedov’s explosion solution.
Throughout the review we will be concise, referring the reader to original references for
further details.
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2. The Fluid Equations

This section is based on the original work of O’Raifeartaigh and one of the authors [4].
The general fluid dynamic equations in n-dimensional space are (see, e.g., textbooks [7,8])

Dρ = −ρ∇ · u, (1)

ρDu = −∇p + V, (2)

Dε = −(ε + p)∇ · u, (3)

where the convective derivative D and the viscosity terms V are defined by

D =
∂

∂t
+ u · ∇, (4)

Vi = ∇j
(
η(∇jui +∇iuj −

2
n

δij∇kuk)
)
+∇i(ζ∇kuk), (5)

respectively. In the above equations ρ, u, p, ε stand for the density, the velocity vector
field, the pressure, and the energy density respectively, and η and ζ are the bulk and shear
viscosity fields. These partial differential equations are augmented by an algebraic condition
called the equation of state that relates the pressure and energy density. According to the
polytropic equation of state

p = (γ0 − 1)ε =⇒ p + ε = γ0ε, (6)

where the constant γ0 is called the polytropic exponent. This equation can be used to
eliminate p from the fluid equations. Further, by making the substitution

ε = χργ0 (7)

the equations can be rewritten in the form

Dρ = −ρ∇ · u, (8)

ρDu = −(γ0 − 1)∇(χργ0) + V, (9)

Dχ = 0. (10)

2.1. Action Formulation

The fluid equations may be given an action formulation by switching off the viscosity
fields, i.e., η = ζ = 0. Such fluids are called inviscid, or perfect fluids, and the equations
are called Euler’s equations. We next set χ = 1 without loss of consistency, representing
the isentropicity condition. Further, the Clebsch parametrisation [9–11]

u = ∇φ− ν∇θ, (11)

allows us to isolate the irrotational parts by setting ν = θ = 0. The resulting action for
inviscid, isentropic, irrotational flows in three dimensions is given by,

S =
∫

d3xdt
[

ρ

(
φ̇− 1

2
(∇φ)2

)
− ργ0

]
. (12)

It may be mentioned in passing that the terms contained in the parentheses represent
the Hamilton–Jacobi function for a free particle.

The symmetries of the aforementioned special flows, represented by the action, follow
from the requirement of its form-invariance. The transformation properties of the fields in
the general fluid equations may be extracted from these transformation properties once
again by requiring the equations to transform covariantly.
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2.2. Symmetries

We begin a priori with the most general transformations involving the coordinates
and fields. The transformed coordinates ξ and τ are defined by

~ξ = ~ξ(~x, t), τ = τ(~x, t), φ̃ = φ̃(ξ, τ, φ), ρ̃ = ρ̃(ξ, τ, ρ). (13)

Substituting the transformations and demanding the form-invariance of the action
produces a set of equations which can be solved exactly to yield [4],

~ξ = f (t) (R~x +~a +~vt), (14)

ρ̃ = f−3(t)ρ, (15)

φ̃ = φ + λ(ξ, τ), (16)

where

τ =
αt + β

γt + δ
, f (t) =

1
γt + δ

, αδ− βγ = 1, (17)

∂λ

∂τ
− 1

2

(
∂λ

∂ξ

)2
= 0. (18)

In the above, R represents the usual rotation matrix,~a the translations, ~v the boosts,
and f (t), a time-dependent scale parameter. The α, β, γ, δ represent parameters of the
SL(2, R) group, a non-relativistic remnant of the special conformal group, to be discussed
in Section 2.4. For details on λ(ξ, τ), we refer the reader to the original reference [4]. We
note that the following discrete symmetries are permitted:

(α, β, γ, δ) ∼ (α,−β,−γ, δ) ∼ (−α, β, γ,−δ) ∼ (−α,−β,−γ,−δ). (19)

2.3. Transformation Functions for General Flows

The transformation functions for general flows may be obtained by requiring the
general fluid equations to transform covariantly. It is straightforward to see that for
general non-isentropic flows, the equations transform covariantly if χ is a scalar under the
coordinate transformations.

The velocity vector transforms inhomogeneously as,

~̃u = (γt + δ)~u− γ~x (20)

We note that these transformations do not preserve the condition ∇ · u = 0, im-
plying that unlike Galilean symmetry, the above symmetry is valid only when the fluid
is compressible.

The viscosity fields transform similar to scalar densities [4]. This implies that the
symmetry we are discussing is broken in the case of Navier–Stokes equations which
approximate the viscosity to be constant.

2.4. The Maximal Invariance Group

Let g be a general element of the symmetry group G obtained by setting β = γ =
0, α = 1. It follows

~ξ = R~x +~vt +~a, τ = t (21)

In this case,
ρ̃ = ρ and ~̃u = ~u +~v (22)

We notice that these correspond to the static Galilei transformations.
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Let σ denote an element of the SL(2, R) group obtained by setting~a = ~v = 0. In this
case,

~ξ = f (t)~x, τ =
αt + β

γt + δ
, (23)

ρ̃ = (γt + δ)3ρ and ~̃u = (γt + δ)~u− γ~x. (24)

This represents a combination of dilatations and inversions, which are a nonrelativistic
limit of the special conformal group.

It is a straightforward exercise to check that G is an invariant subgroup:

σ−1 · g(R,~a,~v) · σ = g(R,~aσ,~vσ), (25)

where (
~aσ

~vσ

)
=

(
δ β
γ α

)(
~a
~v

)
. (26)

It therefore follows that the full group under which the fluid equations are invariant
under the specified transformation properties for the coordinates and the fields is a semi-
direct product

G = SL(2, R) ∧ G.

A special element of the group viz. Σ : (α, β, γ, δ) = (0,−1, 1, 0) corresponds to
a composition of an inversion and reversal of time, and plays an important role in the
explosion–implosion duality discovered by Drury and Mendonça in [3]. A curious result
follows immediately: Σ2 = P, where P is the parity operator.

Cosets defined using these elements, gΣ(R,~a,~v) = Σ · g(R,~a,~v) have the interesting
property that they are fourth roots of Galilean transformations,

g4
Σ(R,~a,~v) = g

(
R4, (R2 − 1)(R~a−~v), (R2 − 1)(R~v +~a)

)
(27)

Since (R~a−~v) and (R~v−~a) are linearly independent, it follows that every Galilean
transformation is a fourth power of a coset transformation [4].

2.5. Conservation Laws

Euler’s equations for a perfect fluid can be expressed in the form of conservation laws
for mass, momentum, and energy, as follows:

∂ρ

∂t
= − ∂

∂xj
(ρuj), (28)

∂

∂t
(ρui) = −

∂

∂xj
(ρuiuj + δij p), (29)

∂

∂t

(
1
2

ρ~u2 + ε

)
= − ∂

∂xj

[(
1
2

ρ~u2 + ε + p
)

uj

]
. (30)

These equations can be expressed succinctly as follows:

∂µ Jµ
ρ = ∂µ Jµ

~P
= ∂µ Jµ

H = 0. (31)

The zeroth components of the above currents namely, ρ, ρ~u, 1
2 ρ~u2 + ε, give the charge

densities which, when integrated over all space, give the conserved charges. The corre-
sponding current densities are

J j
ρ = ρuj, (32)
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J j
Pi
= (ρuiuj + δij p), (33)

J j
H =

(
1
2

ρ~u2 + ε + p
)

uj. (34)

The conservation laws corresponding to rotations (δxi = ωijxj), boosts (δxi = vit),
dilatations (δxi = λxi, δt = 2λt), and expansions (δxi = −µtxi, δt = −µt2) can be stated
similarly,

∂µ Jµ
~L
= ∂µ Jµ

~K
= ∂µ Jµ

D = ∂µ Jµ
A = 0, (35)

where the appropriate charge densities are [5],

~L = ~P×~x, ~K = ~Pt− ρ~x, D = −2tH +~x · ~P, A = t2H − t~x · ~P +
ρ2

2
~x2. (36)

The corresponding current densities can also be written down in a straightforward
manner

~JLi = εikl xk~JPl , (37)
~JKi = tJPi − xi~Jρ, (38)
~JD = xi~JPi − 2t~JH , (39)

~JA =
1
2
~x2~Jρ − txi~JPi + t2~JH . (40)

These laws follow as a direct consequence of Noether’s theorem. They will be useful
in studying flows with discontinuities, a topic to which we now pass.

3. Discontinuous Flows

This section is based on our original work with Oliver Jahn [5]. As long as the flows
are smooth, i.e., the functions ρ,~u, p, ε are smooth functions of ~x, t, Equations (1)–(3) and
(31) are equivalent. Real flows, however, may develop discontinuities as they evolve. Such
flows are described by weak solutions of differential Equations [12]. A weak solution is
generally piecewise smooth. The smooth parts satisfy the differential equations in the
usual strong form. The entire solution required to specify the course of motion of the initial
conditions is obtained by supplementing the strong solutions by jump conditions. The jump
conditions are derived from the conservation laws. We briefly review these concepts in
the next two subsections. For pedagogical discussions on these topics we refer the reader
to [7,8,13].

3.1. Weak Solutions and Jump Conditions

By definition, any, possibly non-smooth, function Jµ(~x, t) that satisfies∫
∂µω(~x, t)Jµ(~x, t)d3xdt = 0, (41)

for all test functions ω(~x, t) is called a weak solution of the differential equation ∂µ Jµ = 0.
Suppose Jµ(~x, t) has a jump discontinuity across a hypersurface S in ~x, t space while

otherwise being continuously differentiable in some neighbourhood N of S ; see Figure 1.
Let ω(~x, t) be a test function with support in region N . Let R be the part of the region
N that lies on one side of S , say to the right. We take ω(~x, t) = 0 on the boundary of R,
except on S . Then by Gauss’s theorem,∫

R
∂µω Jµd3xdt +

∫
R

ω ∂µ Jµd3xdt =
∫
R

∂µ(ω Jµ)d3xdt =
∫
S

ωnµ JµdS , (42)

since ω(~x, t) = 0 on the boundary ofR, except on S . Here nµ is the outward normal to the
hypersurface S . The second integral on the left hand side is zero because the conservation
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law holds in the strong sense in the interior ofR. If we integrate similarly over the left part
of the support ω(~x, t), and add the two results we obtain for a weak solution

0 =
∫
S

ω nµ∆JµdS , (43)

where ∆ f denotes the difference of the two limiting values of the the function f on the two
sides of the hypersurface S , i.e., the jump of the function. This result follows as the normal
which points outwards by convention, flips its sign when we move from the right to the
left side of the hypersurface. Since ω(~x, t) is an arbitrary function, it follows that

nµ∆Jµ = 0 on S . (44)

This equation is the jump condition we mentioned earlier.

S
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Figure 1. Diagram for the jump condition.

3.2. Rankine–Hugoniot Conditions

The general expression for the jump condition derived above can be applied to the
conservation laws derived earlier. The conservation laws associated with mass, momentum,
and energy yield

nµ∆Jµ

(ρ)
= 0, (45)

nµ∆Jµ

(~P)
= 0, (46)

nµ∆Jµ

(H)
= 0, (47)

and are called the Rankine–Hugoniot conditions in the fluid dynamics literature [7,8,13,14].
Similar equations can be derived for the other conservation laws, viz.

nµ∆Jµ

(~L)
= 0, (48)

nµ∆Jµ

(~K)
= 0, (49)

nµ∆Jµ

(D)
= 0, (50)

nµ∆Jµ

(A)
= 0. (51)

These new jump conditions are associated with angular momentum, boosts, dilata-
tions, and expansions.
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3.3. Dual Rankine–Hugoniot Conditions

The new set of jump conditions are identically true because the current densities
associated with angular momentum, boosts, dilatations, and expansions are linear combina-
tions of the current densities associated with mass, momentum and energy conservation as
shown in Equation (40). This suggests that the Rankine–Hugoniot conditions are invariant
under the full kinematical invariance group of smooth flows including the SL(2, R) part.
We examine this point in what follows.

If an (abstract) symmetry generator Tr transforms under the SL(2, R) transformation
σ as

T
′
r = σ−1Trσ = ∑

s
Mrs(σ)Ts, (52)

then the corresponding currents transform as [5]

Jµ′
r (x

′
) = det

(
∂x
∂x′

)
∂xµ′

∂xν ∑
s

Mrs(σ)Jν
s (x). (53)

The fact that the currents transform similar to vector densities can be appreciated by
looking at the temporal components, which pick up the multiplicative factor (γt + δ)3.

Arranging the currents in a column Jµ =
(

Jµ

(ρ)
, Jµ

(~K)
, Jµ

(~P)
, Jµ

(A)
, Jµ

(D)
, Jµ

(H)

)T
, one has

the following transformation matrix

M =



1 0 0 0 0 0
0 α β 0 0 0
0 γ δ 0 0 0
0 0 0 α −αβ β2

0 0 0 −2αγ (βγ + αδ) −2βγ
0 0 0 γ2 −γδ δ2

. (54)

Using αδ− βγ = 1, it is easy to check that the matrix M has unit determinant.
The temporal components transform according to the transformations,

ρ′ = (γt + δ)3ρ, (55)
~P′ = (γt + δ)3(δ~P + γ~K), (56)

H′ = (γt + δ)3(γ2 A− δγD + δ2H). (57)

Thus, ρ transforms under the singlet representation of SL(2, R) as a scalar density.
The translations and boosts constitute the doublet representation and transform similar
to vector densities. Likewise the Hamiltonian, and the generators of dilatations and
expansions transform similar to densities under the triplet (adjoint) representation of
SL(2, R). The transformation properties of the spatial components of the current can
similarly be read off from the above matrix.

The dual Rankine-Hugoniot conditions are now easily obtained. The normal vector
nµ appearing in the jump condition (44) transforms like a covector

n
′
µ =

∂xν

∂xµ′ nν. (58)

Thus, the transformed jump conditions for the currents are

n
′
µ∆Jµ′

r ∝ det
(

∂x
∂x′

)
∑

s
Mrs(σ)nµ∆Jµ

s (x) = 0 on S . (59)

Since the determinant is smooth across the hypersurface S , the factor in front can
be omitted, and the transformed jump condition is a linear combination of the original
jump conditions.
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In particular, the transformed conditions for Jµ

(ρ)
, Jµ

(~P)
, Jµ

(H)
(the Rankine–Hugoniot

conditions), become linear combinations of the jump conditions of Jµ

(ρ)
, Jµ

(~P)
, Jµ

(H)
, Jµ

(~K)
, Jµ

(D)

and Jµ

(A)
. Specifically,

n
′
µ∆Jµ′

(ρ)
∝ nµ∆Jµ

(ρ)
(60)

n
′
µ∆Jµ′

(~P)
∝ nµ(γ∆Jµ

(~K)
+ δ∆Jµ

(~P)
) (61)

n
′
µ∆Jµ′

(H)
∝ nµ(δ

2∆Jµ

(H)
− γδ∆Jµ

(D)
+ γ2∆Jµ

(A)
) (62)

The original Rankine-Hugoniot conditions, in conjunction with the new conditions
(48)–(51), imply that the right hand sides of the above equations are identically zero, i.e.,
the Rankine-Hugoniot conditions are form-invariant [5].

In particular, this holds for the Drury–Mendonça transformation [3] t→ −1/t,~x →
~x/t used to relate the explosion and implosion problems. This corresponds to the choice
(α, β, γ, δ) = (0,−1, 1, 0). We conclude that, if an explosion is described by the standard
Rankine–Hugoniot conditions, the corresponding implosion is described by the dual
Rankine–Hugoniot conditions.

3.4. Physical Conditions

As already mentioned, for a polytropic gas, ε = χργ0 , which enables us to write the
third of Euler’s Equation (3) as Dχ = 0. χ transforms similar to a scalar. For a polytropic
gas, it is well known [14] that χ is related to the specific entropy (entropy per unit mass) as
follows:

S− S0 = CV log[χ(ρ, V)γ0 ], (63)

where CV = R/(γ0 − 1), R being the universal gas constant divided by the molecular
weight, V, the volume, and S0, an appropriate constant. Since χ transforms similar to a
scalar, it follows that the specific entropy of a moving particle remains constant under
an SL(2, R) transformation. Hence a physical shock is mapped to a physical shock under
the transformation.

The requirement that the transformation preserves the physicality of a shock puts
a condition on the viscosity viz. that its positivity is preserved. As already pointed out,
the viscosity fields transform as scalar densities, similar to ρ. It follows that the total
viscosity, such as mass, is an invariant under the transformation.

4. Fluid Equations in Non-Inertial Frames

In this section, we review the work of Poludnenko and Khokhlov [6], who considered
the formulation of Euler equations of fluid dynamics in non-inertial reference frames. We
start with the inertial reference frame Euler Equations (1)–(3)

∂tρ + ∂i(ρui) = 0, (64)

∂t(ρui) + ∂j(ρuiuj) + ∂i p = 0, (65)

∂tε + ∂i((ε + p)ui) = 0, (66)

where ρ is the density, ui the fluid velocity, p the pressure, and ε the total energy density.
The total energy ε is related to the internal energy per unit mass e as,

ε = eρ +
1
2

ρu2. (67)
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Consider a non-inertial reference frame {x̃i, τ} that expands or contracts with respect
to the inertial frame {t, xi}:

x̃i =
xi

a(t)
, τ =

∫ t

0

dt
a(t)β+1 , (68)

where β is a constant and the scale factor a(t) is a smooth non-vanishing function of time.
(Poludnenko and Khokhlov [6] also considered additional rotational terms in transforma-
tion (68).) For simplicity we do not consider such terms; essential ideas are all captured
by the simplified transformation). We use quantities with tilde signs to refer to quanti-
ties in the non-inertial reference frame {x̃i, τ}. Time t is the physical time, and τ is the
computational time.

For the density, pressure, and energy density fields we introduce the scaling,

ρ̃(x̃, τ) = aαρ(x, t), (69)

p̃(x̃, τ) = aα + 2βp(x, t), (70)

ẽ(x̃, τ) = a2βe(x, t), (71)

where α and β are constant scaling exponents. A short calculation shows that

ui =
d
dt

xi(t) = a−β d ln a
dτ

x̃i + a−βũi, (72)

and

ä =
1

a2β+1

[
d2 ln a

dτ2 − β

(
d ln a

dτ

)2
]

. (73)

As a result, the mass conservation Equation (64) in the non-intertial frame (68) become,

∂τ ρ̃ + ∂̃i(ρ̃ ũi) = (α− n)
d ln a

dτ
ρ̃, (74)

where ∂̃i are partial derivatives with respect to x̃i and n is the dimension of space. The
momentum conservation Equation (65) becomes

∂τ(ρ̃ ũi) + ∂̃j(ρ̃ ũiũj) + ∂̃i p̃ = (α− n + β− 1)
d ln a

dτ
ρ̃ ũi − a2β+1 ä ρ̃ x̃i. (75)

The transformation of the energy Equation (66) to the non-intertial frame (68) is quite
tedious. When the dust settles one finds,

∂τ ε̃ + ∂̃i((ε̃ + p̃)ũi) =
d ln a

dτ
[(α− n + 2β)ε̃− np̃− ρ̃ ũi ũi]− a2β+1 ä ρ̃ ũi x̃i. (76)

4.1. Conditions for Invariance of the Fluid Equations

There is subclass of transformations (68) that preserve the form of the Euler’s equation.
Let us look at this subclass in relation to the discussion of the previous sections. For the
form invariance of mass conservation Equation (64) we require α = n from Equation (74).
For the invariance of momentum and energy conservation (65) and (66), we require from
Equations (75) and (76), ä = 0, together with

α = n, β = 1, (77)

and
ε =

n
2

p +
1
2

ρu2. (78)
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Recalling that the total energy ε is related to the internal energy e via (67), we have

e =
np
2ρ

(79)

This is a restriction on the equation of state. For a polytropic gas p = χργ0 we have
the general relation,

e =
p

(γ0 − 1)ρ
. (80)

Thus, we conclude that the form invariance of Equations (74)–(76) singles out a special
value of the polytropic index,

γ0 = 1 +
2
n

. (81)

For n = 3, γ0 = 5/3. Low mass white-dwarf stars are well approximated by this
polytropic index. These results are perfectly consistent with [4] reviewed in the previous
sections. ä = 0 implies,

a(t) = ct + d. (82)

Thus, transformation (68) becomes

xi →
xi

ct + d
, t→ − 1

c(γt + d)
. (83)

Comparing this with general SL(2, R) transformations [4]

xi →
xi

ct + d
, t→ at + b

ct + d
, ad− bc = 1, (84)

we have a = 0, b = −1/c. The scaling of density, pressure, and energy density (69)–(71) are
also compatible with the scalings in [4], and so is the value of the polytropic index.

4.2. Non-Invariant Terms as Sources

Poludnenko and Khokhlov argue that the above formulation based on general scaling
of the fluid variables provides a degree of flexibility, provided we treat the non-invariant
terms as sources. They consider values of exponents other than in Equation (77) that do not
leave the form of the equations invariant. For example, a set of exponents can be obtained
by demanding the invariance of the first law of thermodynamics. For isentropic flows, the
first law of thermodynamics in inertial frames take the form

ds = 0 =⇒ de = −pd
(

1
ρ

)
, (85)

which for fluid flows implies,

∂te + ui∂ie =
p
ρ2 (∂tρ + ui∂iρ). (86)

In non-inertial frames (68), Equation (86) becomes

∂τ ẽ + ũi ∂̃i ẽ =
p̃
ρ̃2 (∂̃τ ρ̃ + ũi ∂̃i ρ̃)− (α p̃− 2β ẽ ρ̃)

1
ρ̃

d ln a
dτ

. (87)

Using the polytropic equation of state (80), it simplifies to

∂τ ẽ + ũi ∂̃i ẽ =
p̃
ρ̃2 (∂̃τ ρ̃ + ũi ∂̃i ρ̃) + (2β− α(γ0 − 1))

d ln a
dτ

ẽ . (88)
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The choice of exponents

α = n, β =
n(γ0 − 1)

2
, (89)

ensures the invariance of the first law of thermodynamics together with the mass conserva-
tion for all values of the polytropic index. The momentum conservation equation no longer
takes the conservative form, however. With this choice of exponents (89), the first of the
source terms of the momentum conservation Equation (76),

(α− n + 2β)ε̃− np̃− ρ̃ ũi ũi (90)

simplifies to
(β− 1)ρ̃ ũi ũi. (91)

This source term is proportional to the kinetic energy. This new set of exponents may
be a preferred choice in numerical simulations if the thermal energy dominates the local
kinetic energy in the non-inertial frame.

4.3. Primitive Fields as Simulation Variables

The key drawback in working with exponents (77) or (89) is the fact that they modify
the primitive fields (69)–(71). From the general transformed equations (74)–(76), we imme-
diately note that the homogeneous part of the equations is form-invariant. This allows for
straightforward numerical implementations of the transformed equations for any value
of the scaling exponents α and β treating the right hand side terms in Equations (74)–(76)
as sources. The equations no longer take the form of conservation laws, but this is not
a problem. In most practical situations this is a necessity. For example, if systems are
governed by a non-polytropic equation of state, then we must work with source terms
irrespective of the choice of the scaling exponents. We may as well work with the primitive
fields as simulation variables, that is, we choose

α = 0, β = 0. (92)

The use of primitive fields as simulation variables has the advantage of direct interpre-
tation.

4.4. Numerical Results

In numerical work, source terms are frequently treated. Depending on the problem
under consideration, source terms representing gravitational forces, electromagnetic forces,
energy release due to radiation, etc are routinely added. Therefore, numerical computation
in a moving frame can be performed at virtually no extra technical complication and at
no extra computational cost. Poludnenko and Khokhlov mostly focus on tests of moving
frame formulation of the fluid flow Equations (74)–(76) with zero exponents (92). They
only briefly discuss other choices of scaling parameters. They perform their numerical
simulations in a variety of frames for diverse physical problems. The details can be found
in their paper. The key points are summarised as follows:

• They consider several types of non-inertial reference frames: accelerating, expanding,
contracting, oscillating (sinusoidal) reference frames, etc.

• They treat in detail simulations of blast solutions (e.g., Sedov solution), converging
shock solutions (e.g., Guderley blast wave solution), problems involving expansion of
a gas sphere in vacuum, etc. They work in different reference frames best suited for
the problem at hand.

• They note that the computation in moving frames does not introduce systematic
errors. Numerical solutions properly converge to the exact ones when they are known,
e.g., the Sedov solution.
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• The method accuracy is valid even when solving the fluid equations for non-zero
values of the exponents α and β.

There are some problems for which numerical simulations in non-inertial frames
are not ideally suited. Such problems typically involve stationary regions of fluids in an
inertial frame. The canonical example being the strong explosion in an otherwise stationary
environment. (Expanding or collapsing environments where the ambient conditions are
vacuous or dynamically unimportant can be optimally treated in non-inertial frames.
In such problems, the ambient fluid can be set to be stationary in the computational–non-
inertial–frame.) However, the demonstration in [6] that the numerical solution converges
to the correct analytic Sedov solution is a crucial test of the method. The success of the
simulation clearly shows that the non-conservative nature of the method does not introduce
systematic errors and the Rankine–Hugoniot conditions are valid in the transformed
reference frame too. The Rankine–Hugoniot conditions were shown to be valid in a subclass
of transformed reference frames with scaling exponents Equation (77) in [5], as reviewed
above. Further generalisation for different scaling exponents has not yet been carried out;
however, given the numerical results it is likely that a useful formulation exists in more
general situations.

5. Conclusions

In this article, we reviewed that the maximal kinematical invariance group of the Euler
equations of fluid dynamics is larger than the Galilei group. Specifically, the inversion
transformation (Σ : t→ −1/t, ~x → ~x/t) leaves the Euler equations invariant. This duality
has been used to explain the striking similarities observed in simulations of the supernova
explosions and laboratory implosions induced in plasma by intense lasers. It is quite
remarkable that the inversion symmetry extends to discontinuous fluid flows as well. We
also reviewed how this comes about.

We summarised the work of Poludnenko and Khokhlov [6]. They presented methods
for computation of fluid flows characterised by large degree of expansion or contraction.
The key idea is the transformation to a non-inertial reference frame. The scaling transforma-
tion of the primitive fluid variables provides a degree of flexibility. The use of non-inertial
frames often leads to non-conservative formulation of the fluid equations, however, this
does not affect the accuracy of the numerical work. For many problems of astrophysical
and geophysical interests, going to an appropriate non-inertial frame allows for a cleaner
extraction of relevant physics. We focused on [6] because of its close connection to the
invariance properties of fluid equations.

There are several other papers addressing these issues, see, for example [15,16] and
references therein. Similar ideas are frequently used in simulations of galaxies and the
large-scale structure in an expanding universe and in atmospheric simulations.
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Appendix A. Implosion Dual of the Sedov Explosion Solution

In this appendix we write down the explicit implosion solution dual of the Sedov
explosion solution. To the best of our knowledge this has not been carried out before.
(Drury and Mendonça in [3] have made some elementary remarks. They comment that
Dwarkadas and Drury would publish details on the implosion solution dual to the Sedov
solution in a separate paper. However, we are unable to locate the relevant references.
Perhaps the results were not communicated to a journal. We will be glad if someone can
point out relevant references to us.) We start with a brief review of the Sedov solution. We
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then apply the duality transformation to write the dual implosion solution. Some properties
of the dual solution are presented. For the Sedov solution our presentation closely follows
([7], Section 99).

Appendix A.1. Sedov Solution

Sedov solution refers to an exact solution of compressible fluid dynamics equations in
which spherical shock of great intensity propagates radially outwards as a result of a strong
explosion. Strong explosion is characterised by the instantaneous release of energy E at the
center. The equation of fluid dynamics in spherical symmetric situations take the form

∂ρ

∂t
+

∂(ρu)
∂r

+
2ρu

r
= 0,

∂u
∂t

+ u
∂u
∂r

+
1
ρ

∂p
∂r

= 0,
∂s
∂t

+ u
∂s
∂r

= 0, (A1)

where s = ln (p ρ−γ). The last equation is the conservation of entropy. For the Sedov
solution, the pressure discontinuity is very large: the pressure behind the shock is p1
is much larger than the pressure in front of the shock p0. Sedov solution neglects p0
everywhere (more on this later). The flow pattern is completely determined by the energy
released E and the ambient density ρ0. The ratio of densities just behind and front of the
shock is obtained by the Rankine–Hugoniot condition,

ρ1 =
γ + 1
γ− 1

ρ0, (A2)

assuming p1 � p0. The shock front is defined by

R(t) = ξ0

(
E
ρ0

)1/5
t2/5. (A3)

The propagation velocity of the shock is

D =
dR
dt

=
2
5

R
t

. (A4)

Now, using the other two Rankine–Hugoniot conditions, which determine the gas
velocity u1 and pressure p1 immediately behind the shock front, we obtain

p1 =
2

γ + 1
ρ0D2, u1 =

2
γ + 1

D. (A5)

Note that as the shock expands p1 and u1 also change as a function of time. We define

ξ =
r

R(t)
(A6)

and define

p(r, t) =
8ρ0

25(γ + 1)
· r2

t2 · p̌(ξ), (A7)

u(r, t) =
4

5(γ + 1)
· r

t
· ǔ(ξ), (A8)

ρ(r, t) = ρ0
γ + 1
γ− 1

· ρ̌(ξ). (A9)

Variables p̌, ǔ, ρ̌ are dimensionless pressure, velocity, and density. These are functions
of the dimensionless variable ξ. The Rankine–Hugoniot jumps conditions in terms of these
functions become

p̌ = ǔ = ρ̌ = 1 at ξ = ξ0. (A10)
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These are the new boundary conditions. We warn the reader that there is a huge
variation in the literature on the use of dimensionless variables for pressure, density,
and velocity.

Using self-similarity of the solution one can argue that energy contained in a sphere
of constant ξ remains constant in time. This gives an integral of motion. The argument
proceeds as follows. For more details see [7]. Consider a spherical volume size r at constant
ξ. It expands at the rate 2r

5t . The energy exiting the sphere in time dt due to the motion of
the fluid is

4πr2 · ρvs.
(

h +
1
2

v2
)
· dt. (A11)

This energy must be equal to the increase in the internal energy of the sphere in time
dt due to its expansion

4πr2 · ρ
(

ε +
1
2

v2
)
· 2r

5t
· dt. (A12)

Equating the two expressions give the first integral,

p̌(ξ)
ρ̌(ξ)

=
γ + 1− 2ǔ(ξ)

2γǔ(ξ)− γ− 1
ǔ2(ξ). (A13)

We obtain the remaining equations from the mass and entropy conservation equations.
These equations simplify in the form

dǔ
d ln ξ

+

(
ǔ− γ + 1

2

)
d ln ρ̌

d ln ξ
= −3ǔ, (A14)

and
d

d ln ξ

(
ln

p̌
ρ̌γ

)
=

5(γ + 1)− 4ǔ
2ǔ− (γ + 1)

. (A15)

These equations can be integrated to give implicitly the functions p̌(ξ), ǔ(ξ), ρ̌(ξ).
They take the form(

ξ0

ξ

)5
= ǔ2

(
5(γ + 1)− 2(3γ− 1)ǔ

7− γ

)ν1
(

2γǔ− γ− 1
γ− 1

)ν2

, (A16)

ρ̌ =

(
2γǔ− γ− 1

γ− 1

)ν3
(

5(γ + 1)− 2(3γ− 1)ǔ
7− γ

)ν4
(

γ + 1− 2ǔ
γ− 1

)ν5

, (A17)

where

ν1 =
13γ2 − 7γ + 12
(3γ− 1)(2γ + 1)

, (A18)

ν2 = −5(γ− 1)
2γ + 1

, (A19)

ν3 =
3

2γ + 1
, (A20)

ν4 =
13γ2 − 7γ + 12

(2− γ)(3γ− 1)(2γ + 1)
, (A21)

ν5 =
2

γ− 2
. (A22)

Here we have corrected a few typos from [7] (the ν5 there has a typo). The parameter
ξ0 is determined by the requirement that the total energy of the gas up to radius R(t) is
E. Other details of the solution can be found in [7,13]. Although reference [13] does not
discuss the explicit solution, the discussion on the physical properties of the solution is
very thorough and lucid.
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Appendix A.2. Duality in Spherical Coordinates

In order to work out the implosion dual it is instructive to first work out the invariance
of the simplified fluid Equation (A1) in spherical coordinates. To this end, we define the
new time (now we use the notation t̃ for the new time as opposed to τ) and the new radial
variable r̃

r̃ =
r

a(t)
, t̃ =

∫ t

0

dt
a(t)β+1 , (A23)

and rescale pressure and density as,

ρ̃(r̃, t̃) = aαρ(r, t), (A24)

p̃(r̃, t̃) = aα + 2βp(r, t). (A25)

These transformations give

u = a−β

(
ũ + r̃

d ln a
dt̃

)
. (A26)

As for the derivatives we need to use

∂tX =
∂X
∂t̃
· ∂t̃

∂t
+

∂X
∂r̃
· ∂r̃

∂t
= a−β−1 ∂X

∂t̃
− r̃a−β−1 d ln a

dt̃
∂X
∂r̃

, (A27)

and
∂rX =

∂X
∂r̃
· ∂r̃

∂r
= a−1 ∂X

∂r̃
. (A28)

Now it is not difficult to verify that:

1. The continuity equation is form invariant for α = 3.
2. The momentum equation is form invariant provided ä = 0 and β = 1.
3. The entropy equation is form invariant for γ = 5/3.

Appendix A.3. Implosion Dual

We choose a(t) = t. Then,

r̃ =
r
t
, t̃ = −1

t
. (A29)

Since the radial variable does not undergo an inversion, the interior Sedov solution is
mapped to an interior solution, and the exterior solution is mapped to an exterior solution.
Due to this, the dual solution does not satisfy any physically interesting boundary condi-
tions, i.e., it cannot be compared with standard implosion solutions of the sort discussed in
say, chapter XII of [13]. For a simple physically interesting laboratory realisable implosion
solution, one would require the interior to be stationary at fixed density and negligible
pressure. This is certainly not the case for the dual solution. On the contrary the exterior
solution is at zero pressure (hence there the speed of sound is zero) and the fluid is moving.

We ask in what sense is the solution an implosion solution. Does it satisfy expected
properties, specifically the Rankine–Hugoniot jumps conditions? We take 0 < r̃ < ∞ and
−∞ < t̃ < 0. For the initially stationary exterior region the velocity transformation gives

ũ(r̃, t̃) =
r̃
t̃
. (A30)
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Since t̃ is negative, the velocity of the exterior fluid is directed inwards; an implosion.
The location of the shock is

R̃(t̃) =
R(t)

t
= −t̃ R(t) = ξ0

(
E
ρ0

)1/5
(−t̃)3/5. (A31)

As t̃ increases from negative value towards zero, R̃(t̃) decreases, i.e., it represents an
implosion. The velocity of the shock surface is

dR(t̃)
dt̃

=
3
5

R̃(t̃)
t̃

. (A32)

Since the inward velocity of the shock surface is smaller than the inward velocity of
ambient fluid just outside, the fluid is injected into the interior region through the shock
surface. Thus, in this set-up the exterior fluid of low (zero) pressure is getting compressed
at the shock surface into the interior region.

Let us now calculate the velocity of the fluid just behind the shock surface. Recall
ξ = r

R(t) . It follows that,

ξ =
r̃

R̃(t̃)
, (A33)

so the interpretation of ξ as a dimensionless variable remains the same. We have

ũ(r̃, t̃) = − 4
5(γ + 1)

· r̃
t̃
· ǔ(ξ) + r̃

t̃
, (A34)

for the interior region. Similarly, other variable can be constructed. At the shock surface,

ũ = − 4
5(γ + 1)

R̃
t̃
+

R̃
t̃
=

1 + 5γ

5(1 + γ)

R̃
t̃

. (A35)

the frame of the shock, we can confirm that these velocities satisfy the Rankine–Hugoniot
conditions. The other Rankine–Hugoniot conditions can also be checked similarly. The post-
shock pressure increases as (−t̃)−19/5. These results are all consistent with the comments
in Drury and Mendonça in [3].

References
1. Remington, B. Supernova Hydrodynamics Upclose. Science and Technology Review. Lawrence Livermore Library. 2000.

Available online: https://str.llnl.gov/content/pages/past-issues-pdfs/2000.01.pdf (accessed on 31 March 2022).
2. Available online: https://www.mpa-garching.mpg.de/84411/Core-collapse-supernovae (accessed on 31 March 2022).
3. Drury, L.O.; Mendonça, J.T. Explosion implosion duality and the laboratory simulation of astrophysical systems. Phys. Plasmas

2000, 7, 5148. [CrossRef]
4. O’Raifeartaigh, L.; Sreedhar, V.V. The Maximal kinematical invariance group of fluid dynamics and explosion–implosion duality.

Ann. Phys. 2001, 293, 215–227. [CrossRef]
5. Jahn, O.; Sreedhar, V.V.; Virmani, A. Symmetries of discontinuous flows and the dual Rankine–Hugoniot conditions in fluid

dynamics. Ann. Phys. 2005, 316, 30–43. [CrossRef]
6. Poludnenko, A.Y.; Khokhlov, A.M. Computation of fluid flows in non-inertial contracting, expanding, and rotating reference

frames. J. Comput. Phys. 2007, 220, 678–711. [CrossRef]
7. Landau, L.; Lifshitz, E. Fluid Mechanics. In Course of Theoretical Physics; Pergamon Press: Oxford, UK, 2013; Volume 6.
8. Thorne, K.S.; Blandford, R.D. Modern Classical Physics; Princeton University Press: Princeton, NJ, USA, 2017.
9. Lamb, H. Hydrodynamics; Cambridge University Press: Cambridge, UK, 1942.
10. Deser, S.; Jackiw, R.; Polychronakos, A.P. Clebsch (string) decomposition in d=3 field theory. Phys. Lett. A 2001, 279, 151–153.

[CrossRef]
11. Jackiw, R.; Nair, V.P.; Pi, S.Y. Chern-Simons reduction and nonAbelian fluid mechanics. Phys. Rev. D 2000, 62, 085018. [CrossRef]
12. Richtmeyer, R.D. Principles of Advanced Mathematical Physics; Springer: New York, NY, USA, 1978; Volume 1.
13. Zel’dovich, Y.B.; Raizer, Y.P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena; Hayes, W.D., Probstein, R.F.,

Eds.; Dover Publication: Mineola, NY, USA, 2002.
14. Courant, R.; Friedrichs, K.O. Supersonic Flow and Shock Waves; Interscience Publishers: New York, NY, USA, 1948.

https://str.llnl.gov/content/pages/past-issues-pdfs/2000.01.pdf
https://www.mpa-garching.mpg.de/84411/Core-collapse-supernovae
http://doi.org/10.1063/1.1327620
http://dx.doi.org/10.1006/aphy.2001.6176
http://dx.doi.org/10.1016/j.aop.2004.08.003
http://dx.doi.org/10.1016/j.jcp.2006.05.024
http://dx.doi.org/10.1016/S0375-9601(00)00851-3
http://dx.doi.org/10.1103/PhysRevD.62.085018


Universe 2022, 8, 319 18 of 18

15. Trac, H.; Pen, U.L. A moving frame algorithm for high Mach number hydrodynamics. New Astron. 2004, 9, 443–465. [CrossRef]
16. Gledhill, I.M.A.; Roohani, H.; Forsberg, K.; Eliasson, P.; Skews, B.W.; Nordström, J. Theoretical treatment of fluid flow for

accelerating bodies. Theor. Comput. Fluid Dyn. 2016, 30, 449–467. [CrossRef]

http://dx.doi.org/10.1016/j.newast.2004.02.002
http://dx.doi.org/10.1007/s00162-016-0382-0

	Introduction
	The Fluid Equations
	Action Formulation
	Symmetries
	Transformation Functions for General Flows
	The Maximal Invariance Group
	Conservation Laws

	Discontinuous Flows
	Weak Solutions and Jump Conditions
	Rankine–Hugoniot Conditions
	Dual Rankine–Hugoniot Conditions
	Physical Conditions

	Fluid Equations in Non-Inertial Frames
	Conditions for Invariance of the Fluid Equations
	Non-Invariant Terms as Sources
	Primitive Fields as Simulation Variables
	Numerical Results

	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2
	Appendix A.3

	References

