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Abstract: In this paper, focusing on 4-dimensional space, we extend our previous results of solving
linear tensor equations. In particular, we consider a 30-parameter linear tensor equation for the
unknown tensor component Nαµν in terms of the known component (source) Bαµν. The extension
also included the parity even linear terms in Nαµν (and the associated traces), which are formed
by contracting the latter with the 4-dimensional Levi-Civita pseudotensor. Assuming generic non-
degeneracy conditions and following a step-by-step procedure, we show how to explicitly solve for
the unknown tensor field component Nαµν and, consequently, derive its unique and exact solution in
terms of the component Bαµν.
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1. Introduction

Extending the results we obtained in [1], we consider the most general linear tensor
equation in four dimensions, in which all of the possible parity odd (i.e., contractions
with the Levi-Civita pseudotensor) combinations of a third-rank tensor1 are included on
top of the even combinations. As we show in the proceeding discussion, this general
linear tensor equation involved 30 parameters and consisted of 15 distinct combinations of
the unknown third-rank tensor field Nαµν. The task is to prescribe a method for solving
the aforementioned tensor field in terms of a given (known) component2. These linear
tensor equations appear in quadratic metric-affine gravity theories [6,7] and their solutions
produce a distortion tensor3 in terms of a hypermomentum tensor. Having solved the
distortion, spacetime torsion and non-metricity can then be readily computed.

By solving the distortion in terms of the connection, we can then see exactly how the
microscopic properties of matter (encoded in the hypermomentum tensor) produce the
non-Riemannian degrees of freedom of torsion and non-metricity. Therefore, it is of great
importance to have a prescribed method for solving equations of this kind, since direct
physical implications can be drawn from the solutions4.

Here, we only present a simple application of the results, which could possibly be
applied to other branches of physics as well. We start with some basic definitions and,
subsequently, state and prove our theorem.

2. Definitions

We now present some basic definitions that are used throughout this paper. We
consider a 4-dimensional differentiable manifold endowed with a metric g and an affine
connection ∇, namely (g,∇,M). The signature of the metric is denoted by s. In addi-
tion, Nαµν denotes the component of an arbitrary third-rank tensor field and εαβκλ is the
component of the 4-dimensional Levi-Civita pseudotensor.
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Definition 1. We define the first, second and third contractions of Nαµν, respectively, according to:

N(1)
µ := Nαβµgαβ , N(2)

µ := Nαµβgαβ , N(3)
µ := Nµαβgαβ (1)

Definition 2. By contracting Nαµν with the Levi-Civita pseudotensor, three parity odd combina-
tions are formed, as follows:

M(1)
λαβ := Nµνλε

µν
αβ , M(2)

ναβ := Nµνλε
µλ

αβ , M(3)
µαβ := Nµνλενλ

αβ (2)

Note that by this construction, last pair of indices of each M(i) value was antisymmetric. In addition,
a fourth pseudotrace could be constructed as:

Mα = N(4)α := εαµνλNµνλ (3)

Note also that further contractions of the M(i) values did not produce any new traces since
gµν M(1)

µνα = −gµν M(2)
µνα = gµν M(3)

µνα = −Mα and the rest are either identically vanishing or
proportional to the latter. Using the above definitions, we now state and prove the main results of
this paper.

3. The Theorem

Theorem 1. In a 4-dimensional space of signature s, we consider the 30-parameter tensor equation:

a1Nαµν + a2Nναµ + a3Nµνα + a4Nανµ + a5Nνµα + a6Nµαν +
3

∑
i=1

(
a7i N

(i)
µ gαν + a8i N

(i)
ν gαµ + a9i N

(i)
α gµν

)
+b11M(1)

αµν + b12M(1)
ναµ + b13M(1)

µνα + b21M(2)
αµν + b22M(2)

ναµ + b23M(2)
µνα + b31M(3)

αµν + b32M(3)
ναµ + b33M(3)

µνα

+εραµν

(
b1N(1)ρ + b2N(2)ρ + b3N(3)ρ

)
+ c1Mµgαν + c2Mνgαµ + c3Mαgµν = Bαµν (4)

where ai, aji i = 1, 2, ..., 6, j = 7, 8, 9 are scalars, bkl , cm are pseudoscalars, Bαµν is a given (known)
tensor and Nαµν is the component of the unknown tensor5 N. We define the matrices:

A :=



α11 α12 α13 α14 α15 α16 α17 α18 α19 α1,10 α1,11 α1,12 α1,13 α1,14 α1,15
α21 α22 α23 α24 α25 α26 α27 α28 α29 α2,10 α2,11 α1,12 α2,13 α2,14 α2,15
α31 α32 α33 α34 α35 α36 α37 α38 α39 α3,10 α3,11 α1,12 α1,13 α1,14 α1,15
α41 α42 α43 α44 α45 α46 α47 α48 α49 α4,10 α4,11 α4,12 α4,13 α4,14 α4,15
α51 α52 α53 α54 α55 α56 α57 α58 α59 α5,10 α5,11 α5,12 α5,13 α5,14 α5,15
α61 α62 α63 α64 α65 α66 α67 α68 α69 α6,10 α6,11 α6,12 α6,13 α6,14 α6,15
α71 α72 α73 α74 α75 α76 α77 α78 α79 α7,10 α7,11 α7,12 α7,13 α7,14 α7,15
α81 α82 α83 α84 α85 α86 α87 α88 α89 α8,10 α8,11 α8,12 α8,13 α8,14 α8,15
α91 α92 α93 α94 α95 α96 α97 α98 α99 α9,10 α9,11 α9,12 α9,13 α9,14 α9,15

α10,1 α10,2 α10,3 α10,4 α10,5 α10,6 α10,7 α10,8 α10,9 α10,10 α10,11 α10,12 α10,13 α10,14 α10,15
α11,1 α11,2 α11,3 α11,4 α11,5 α11,6 α11,7 α11,8 α11,9 α11,10 α11,11 α11,12 α11,13 α11,14 α11,15
α12,1 α12,2 α12,3 α12,4 α12,5 α12,6 α12,7 α12,8 α12,9 α12,10 α12,11 α12,12 α12,13 α12,14 α12,15
α13,1 α13,2 α13,3 α14,4 α14,5 α14,6 α14,7 α14,8 α14,9 α1,10 α1,11 α1,12 α1,13 α1,14 α1,15
α11 α12 α13 α14 α15 α16 α17 α18 α19 α1,10 α14,11 α14,12 α14,13 α14,14 α14,15

α15,1 α15,2 α15,3 α15,4 α15,5 α15,6 α15,7 α15,8 α15,9 α15,10 α15,11 α15,12 α15,13 α15,14 α15,15



(5)

and

Γ :=


γ11 γ12 γ13 γ14
γ21 γ22 γ23 γ24
γ31 γ32 γ33 γ34
γ41 γ42 γ43 γ44

 (6)
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where the αij and γij values are linear combinations of the original ai, aji, bj and ck values (see
Appendix B). Then, given that both of these matrices are non-singular, i.e., when

det(A) 6= 0 and det(Γ) 6= 0 (7)

holds true, then the general and unique solution of (4) reads:

Nαµν = α̃11B̂αµν + α̃12B̂ναµ + α̃13B̂µνα + α̃14B̂ανµ + α̃15B̂νµα + α̃16B̂µαν + α̃17B̆αµν + α̃18B̆µνα + α̃19B̆ναµ

+α̃1,10B̄αµν + α̃1,11B̄µνα + α̃1,12B̄ναµ + α̃1,13B̊αµν + α̃1,14B̊µνα + α̃1,15B̊ναµ (8)

where the α̃1i values are the first-row elements of the inverse matrix A−1 and

B̂αµν = Bαµν −
4

∑
i=1

4

∑
j=1

(
a7iγ̃ijB

(j)
µ gαν + a8iγ̃ijB

(j)
ν gαµ + a9iγ̃ijB

(j)
α gµν

)
− ε

ρ
αµν

3

∑
i=1

4

∑
j=1

biγ̃ijB
(j)
ρ (9)

B̆αµν = ε
βγ

αµ B̂βγν − 2(−1)s
4

∑
j=1

[
(b21 + b23 + b31 + b33)γ̃1j + (b11 + b13 − b31 − b33)γ̃2j − (b11 + b13 + b21 + b23)γ̃3j

]
B(j)
[α

gµ]ν (10)

B̄αµν := ε
βγ

αν B̂βµγ − 2(−1)s
4

∑
j=1

[
(b21 + b22 + b31 + b32)γ̃1j + (b11 + b12 − b31 − b32)γ̃2j − (b11 + b12 + b21 + b22)γ̃3j

]
B(j)
[α

gµ]ν (11)

B̊αµν := ε
βγ

µν B̊αβγ − 2(−1)s+1
4

∑
j=1

[
(b22 + b23 + b32 + b33)γ̃1j + (b12 + b13 − b32 − b33)γ̃2j − (b22 + b23 + b12 + b13)γ̃3j

]
B(j)
[µ

gν]α (12)

where γ̃ij values are the elements of the inverse matrix Γ−1.

Proof. The first step consists of removing the traces (and pseudotraces) of N and expressing
them in terms of the corresponding traces of the known tensor B. To this end, we perform
four distinct operations on (4), i.e., we contract the latter with gαµ, gαν, gµν and ελαµν, which
(after some renaming of the indices) produces the system:

γ11N(1)
µ + γ12N(2)

µ + γ13N(3)
µ + γ14N(4)

µ = B(1)
µ (13)

γ21N(1)
µ + γ22N(2)

µ + γ23N(3)
µ + γ24N(4)

µ = B(2)
µ (14)

γ31N(1)
µ + γ32N(2)

µ + γ33N(3)
µ + γ34N(4)

µ = B(3)
µ (15)

γ41N(1)
µ + γ42N(2)

µ + γ43N(3)
µ + γ44N(4)

µ = B(4)
µ (16)

where γij values are linear combinations of the initial 27 parameters, the exact form of

which we present in the Appendix A. We also used the notation Mµ = N(4)
µ . The above is a

system of four equations with four unknowns, which we could express in matrix form as:

ΓX = Y (17)

where we define the columns X := (N(1)
µ , N(2)

µ , N(3)
µ , N(4)

µ )T and Y := (B(1)
µ , B(2)

µ , B(3)
µ ,

B(4)
µ )T along with the matrix:

Γ :=


γ11 γ12 γ13 γ14
γ21 γ22 γ23 γ24
γ31 γ32 γ33 γ34
γ41 γ42 γ43 γ44

 (18)

Now, given that the matrix Γ is not degenerate, i.e., when

det(Γ) 6= 0 (19)
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then its inverse Γ−1 exists. Then, multiplying (17) with the latter, we obtained:

X = Γ−1Y (20)

which relate the unknown traces N(i)
µ to the known traces (B(i)

µ ). More specifically, the
component form of the above matrix equation produces the relationship:

N(i)
µ =

4

∑
j=1

γ̃ijB
(j)
µ (21)

where γ̃ij values are the elements of the inverse matrix Γ−1. As a result, we have fully
eliminated the traces of N in terms of the traces of B. We could then substitute the last
equation back into (4) to obtain:

a1Nαµν + a2Nναµ + a3Nµνα + a4Nανµ + a5Nνµα + a6Nµαν

+b11M(1)
αµν + b12M(1)

ναµ + b13M(1)
µνα + b21M(2)

αµν + b22M(2)
ναµ + b23M(2)

µνα + b31M(3)
αµν + b32M(3)

ναµ + b33M(3)
µνα = B̂αµν (22)

where

B̂αµν = Bαµν −
4

∑
i=1

4

∑
j=1

(
a7iγ̃ijB

(j)
µ gαν + a8iγ̃ijB

(j)
ν gαµ + a9iγ̃ijB

(j)
α gµν

)
− ε

ρ
αµν

3

∑
i=1

4

∑
j=1

biγ̃ijB
(j)
ρ (23)

and we renamed c1 = a74, c2 = a84 and c3 = a94 in order to obtain a more compact form.
However, this only solved 4 of the 19 unknown combinations as they appear in (4), with 15
more remaining; thus, we need 15 more equations in order to fully solve for N. To this end,
we then consider the five possible independent permutations of (22), which (including (22)
itself and using shorthand sum notation)6 read:

a1Nαµν + a2Nναµ + a3Nµνα + a4Nανµ + a5Nνµα + a6Nµαν +
3

∑
i=1

(
bi1M(i)

αµν + bi2M(i)
ναµ + bi3M(i)

µνα

)
= B̂αµν (24)

a1Nναµ + a2Nµνα + a3Nαµν + a4Nµαν + a5Nανµ + a6Nνµα +
3

∑
i=1

(
bi1M(i)

ναµ + bi2M(i)
µνα + bi3M(i)

αµν

)
= B̂ναµ (25)

a1Nµνα + a2Nαµν + a3Nναµ + a4Nνµα + a5Nµαν + a6Nανµ +
3

∑
i=1

(
bi1M(i)

µνα + bi2M(i)
αµν + bi3M(i)

ναµ

)
= B̂µνα (26)

a1Nανµ + a2Nµαν + a3Nνµα + a4Nαµν + a5Nµνα + a6Nναµ +
3

∑
i=1

(
bi1M(i)

ανµ + bi2M(i)
µαν + bi3M(i)

νµα

)
= B̂ανµ (27)

a1Nνµα + a2Nανµ + a3Nµαν + a4Nναµ + a5Nαµν + a6Nµνα +
3

∑
i=1

(
bi1M(i)

νµα + bi2M(i)
ανµ + bi3M(i)

µαν

)
= B̂νµα (28)

a1Nµαν + a2Nνµα + a3Nανµ + a4Nµνα + a5Nναµ + a6Nαµν +
3

∑
i=1

(
bi1M(i)

µαν + bi2M(i)
νµα + bi3M(i)

ανµ

)
= B̂µαν (29)

In this way, we gather six equations but still have nine more to go. Continuing, we
then contract (22) with ε

αµ
βγ and by using the identity εαµβγεκλρσ = (−1)s4!δκ

[α
δλ

µ δ
ρ
βδσ

γ]
, its

contractions and some long calculations, we finally arrive at (some useful identities are
given in Appendix C):

(a1 − a6)M(1)
νβγ + (a4 − a3)M(2)

νβγ + (a2 − a5)M(3)
νβγ + 2(−1)s+1(b21 + b23 + b31 + b33)N(1)

[β
gγ]ν

+2(−1)s+1(b11 + b13 − b31 − b33)N(2)
[β

gγ]ν − 2(−1)s+1(b11 + b13 + b21 + b23)N(3)
[β

gγ]ν

+2(−1)s
[
− (b11 + b13) + 2b12

]
N[βγ]ν + 2(−1)s

[
− (b21 + b23) + 2b22

]
N[β|ν|γ] + 2(−1)s

[
− (b31 + b33) + 2b32

]
Nν[βγ]

= ε
αµ

βγ B̂αµν (30)
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We then rename the indices β → α, γ → µ and use (21) to remove the traces of N. After
some rearranging, we end up with:

(−1)s(2b12 − b11 − b13)Nαµν + (−1)s(2b32 − b31 − b33)Nναµ − (−1)s(2b22 − b21 − b23)Nµνα

+(−1)s(2b22 − b21 − b23)Nανµ − (−1)s(2b32 − b31 − b33)Nνµα − (−1)s(2b12 − b11 − b13)Nµαν

+(a1 − a6)M(1)
ναµ + (a4 − a3)M(2)

ναµ + (a2 − a5)M(3)
ναµ = B̆αµν (31)

where we set

B̆αµν = ε
βγ

αµ B̂βγν − 2(−1)s
4

∑
j=1

[
(b21 + b23 + b31 + b33)γ̃1j + (b11 + b13 − b31 − b33)γ̃2j − (b11 + b13 + b21 + b23)γ̃3j

]
B(j)
[α

gµ]ν (32)

Next, we consider the index permutation α→ µ→ ν→ α in (31), firstly once and then two
successive times to obtain two more equations:

(−1)s(2b12 − b11 − b13)Nµνα + (−1)s(2b32 − b31 − b33)Nαµν − (−1)s(2b22 − b21 − b23)Nναµ

+(−1)s(2b22 − b21 − b23)Nµαν − (−1)s(2b32 − b31 − b33)Nανµ − (−1)s(2b12 − b11 − b13)Nνµα

+(a1 − a6)M(1)
αµν + (a4 − a3)M(2)

αµν + (a2 − a5)M(3)
αµν = B̆µνα (33)

(−1)s(2b12 − b11 − b13)Nναµ + (−1)s(2b32 − b31 − b33)Nµνα − (−1)s(2b22 − b21 − b23)Nαµν

+(−1)s(2b22 − b21 − b23)Nνµα − (−1)s(2b32 − b31 − b33)Nµαν − (−1)s(2b12 − b11 − b13)Nανµ

+(a1 − a6)M(1)
µνα + (a4 − a3)M(2)

µνα + (a2 − a5)M(3)
µνα = B̆ναµ (34)

In the same manner, we contract (22) once with εαν
βγ and another time with ε

µν
βγ and

again, after performing one and two successive permutations of the indices for each case,
we gather six more equations:

(−1)s(b21 + b22 − 2b23)Nαµν − (−1)s(b11 + b12 − 2b13)Nναµ − (−1)s(b31 + b32 − 2b33)Nµνα

+(−1)s(b11 + b12 − 2b13)Nανµ − (−1)s(b21 + b22 − 2b23)Nνµα + (−1)s(b31 + b32 − 2b33)Nµαν

+(a4 − a2)M(1)
µαν + (a1 − a5)M(2)

µαν + (a6 − a3)M(3)
µαν = B̄αµν (35)

(−1)s(b21 + b22 − 2b23)Nµνα − (−1)s(b11 + b12 − 2b13)Nαµν − (−1)s(b31 + b32 − 2b33)Nναµ

+(−1)s(b11 + b12 − 2b13)Nµαν − (−1)s(b21 + b22 − 2b23)Nανµ + (−1)s(b31 + b32 − 2b33)Nνµα

+(a4 − a2)M(1)
νµα + (a1 − a5)M(2)

νµα + (a6 − a3)M(3)
νµα = B̄µνα (36)

(−1)s(b21 + b22 − 2b23)Nναµ − (−1)s(b11 + b12 − 2b13)Nµνα − (−1)s(b31 + b32 − 2b33)Nαµν

+(−1)s(b11 + b12 − 2b13)Nνµα − (−1)s(b21 + b22 − 2b23)Nµαν + (−1)s(b31 + b32 − 2b33)Nανµ

+(a4 − a2)M(1)
ανµ + (a1 − a5)M(2)

ανµ + (a6 − a3)M(3)
ανµ = B̄ναµ (37)

(−1)s(2b31 − b32 − b33)Nαµν − (−1)s(2b21 − b22 − b23)Nναµ + (−1)s(2b11 − b12 − b13)Nµνα

−(−1)s(2b31 − b32 − b33)Nανµ − (−1)s(2b11 − b12 − b13)Nνµα + (−1)s(2b21 − b22 − b23)Nµαν

+(a3 − a5)M(1)
αµν + (a6 − a2)M(2)

αµν + (a1 − a4)M(3)
αµν = B̊αµν (38)

(−1)s(2b31 − b32 − b33)Nµνα − (−1)s(2b21 − b22 − b23)Nαµν + (−1)s(2b11 − b12 − b13)Nναµ

−(−1)s(2b31 − b32 − b33)Nµαν − (−1)s(2b11 − b12 − b13)Nανµ + (−1)s(2b21 − b22 − b23)Nνµα

+(a3 − a5)M(1)
µνα + (a6 − a2)M(2)

µνα + (a1 − a4)M(3)
µνα = B̊µνα (39)
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(−1)s(2b31 − b32 − b33)Nναµ − (−1)s(2b21 − b22 − b23)Nµνα + (−1)s(2b11 − b12 − b13)Nαµν

−(−1)s(2b31 − b32 − b33)Nνµα − (−1)s(2b11 − b12 − b13)Nµαν + (−1)s(2b21 − b22 − b23)Nανµ

+(a3 − a5)M(1)
ναµ + (a6 − a2)M(2)

ναµ + (a1 − a4)M(3)
ναµ = B̊ναµ (40)

where we set

B̄αµν := ε
βγ

αν B̂βµγ − 2(−1)s
4

∑
j=1

[
(b21 + b22 + b31 + b32)γ̃1j + (b11 + b12 − b31 − b32)γ̃2j − (b11 + b12 + b21 + b22)γ̃3j

]
B(j)
[α

gµ]ν (41)

and

B̊αµν := ε
βγ

µν B̊αβγ − 2(−1)s+1
4

∑
j=1

[
(b22 + b23 + b32 + b33)γ̃1j + (b12 + b13 − b32 − b33)γ̃2j − (b22 + b23 + b12 + b13)γ̃3j

]
B(j)
[µ

gν]α (42)

We then place Equations (24)–(29) and (31)–(40) into that exact order and express the system
of the above 15 equations in matrix form as:

AN = B (43)

where A is the 15× 15 matrix of coefficients (see Appendix B). We also define the columns:

N =
(

Nαµν, Nναµ, Nµνα, Nανµ, Nνµα, Nµαν, M(1)
αµν, M(1)

ναµ, M(1)
µνα, M(2)

αµν, M(2)
ναµ, M(2)

µνα, M(3)
αµν, M(3)

ναµ, M(3)
µνα

)T
(44)

as well as

B =
(

B̂αµν, B̂ναµ, B̂µνα, B̂ανµ, B̂νµα, B̂µαν, B̆αµν, B̆µνα, B̆ναµ, B̄αµν, B̄µνα, B̄ναµ, B̊αµν, B̊µνα, B̊ναµ

)T
(45)

Then, given that the matrix A is non-singular, namely

det(A) 6= 0 (46)

we can formally multiply the above matrix equation with A−1 to obtain:

N = A−1B (47)

Finally, by equating the first elements of the latter column equation, we arrive at the stated
result:

Nαµν = α̃11B̂αµν + α̃12B̂ναµ + α̃13B̂µνα + α̃14B̂ανµ + α̃15B̂νµα + α̃16B̂µαν + α̃17B̆αµν + α̃18B̆µνα + α̃19B̆ναµ

+α̃1,10B̄αµν + α̃1,11B̄µνα + α̃1,12B̄ναµ + α̃1,13B̊αµν + α̃1,14B̊µνα + α̃1,15B̊ναµ (48)

where α̃ij values are the elements of the inverse matrix A−1. The matrix is the exact and
unique solution of (4), provided that the non-degeneracy conditions (19) and (46) were
satisfied.

Evidently, when Bα = 0 and det(A) 6= 0, along with det(Γ) 6= 0, the unique solution of
(4) is always Nαµν = 0. More precisely, we showed the following.

Corollary 1. When Bαµν = 0 and both matrices A and Γ are non-singular, then the unique solution
of (4) is Nαµν = 0.

4. Conclusions

We considered the most general linear tensor equation of a third-rank tensor N in
terms of a given source B in four dimensions. The latter was a 30-parameter tensor equation,
as given by (4). By following a step-by-step procedure and given two rather general non-
degeneracy conditions among the parameters, we provided the unique and exact solution
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of the component Nαµν in terms of the known component Bαµν, its dualizations and its
contractions. The solution is given by the expression (48). An immediate conclusion is that,
provided the non-degeneracy conditions hold and in the absence of sources (i.e., when
Bαµν = 0), Nαµν = 0 is the only (unique) solution of the 30-parameter tensor equation. As a
final remark, let us note that our results have a natural application in metric-affine theories
of gravity (see Appendix D) but could also be applied to other physical situations just as
well.
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Appendix A. The γij Values

The relationships between the elements of Γ and the 30 initial parameters read:

γ11 = a1 + a3 + a71 + 4a81 + a91 , γ12 = a2 + a4 + a72 + 4a82 + a92 , γ13 = a5 + a6 + a73 + 4a83 + a93

γ21 = a2 + a5 + 4a71 + a81 + a91 , γ22 = a1 + a6 + 4a72 + a82 + a92 , γ23 = a3 + a4 + 4a73 + a83 + a93

γ31 = a5 + a6 + a71 + a81 + 4a91 , γ32 = a3 + a4 + a72 + a82 + 4a92 , γ31 = a1 + a2 + a73 + a83 + 4a93

γ41 = −2(−1)s
(

b21 + b22 + b23 + b31 + b32 + b33 − 3b1

)
, γ42 = −2(−1)s

(
b11 + b12 + b13 − b31 − b32 − b33 − 3b2

)
γ43 = 2(−1)s

(
b11 + b12 + b13 + b21 + b22 + b23 + 3b3

)
, γ44 = a1 + a2 + a3 − a4 − a5 − a6

γ14 = c1 + 4c2 + c3 − b12 − b13 − b21 − b23 − b31 − b33 , γ24 = 4c1 + c2 + c3 + b11 + b22 − b12 − b21 − b31 − b32

γ34 = c1 + c2 + 4c3 + b12 − b13 − b22 + b23 + b32 − b33 (A1)

These were the elements of the 4× 4 matrix Γ.

Appendix B. The αij Values

By placing Equations (24)–(29) and (31)–(40) one after another in that exact order,
the coefficients of the combinations of the tensor N in each equation represent the rows
of matrix A (with the system of equations written in matrix form AN = B), i.e., the
coefficients in (24) were the first-row elements of A, namely:

α11 = a1 , α12 = a2 , α13 = a3 , α14 = a4 , α15 = a5 , α16 = a6 , α17 = b11 , α18 = b12, α19 = b13

α1,10 = b21 , α1,11 = b22, α1,12 = b23 , α1,13 = b31 , α1,14 = b32 , α1,15 = b33 (A2)

Of course, the same goes for every other row, with the last one being (the coefficients of the
row corresponding to (40)):

α15,1 = (−1)s(2b11 − b12 − b13) , α15,2 = (−1)s(2b31 − b32 − b33) , α15,3 = −(−1)s(2b21 − b22 − b23)

α15,4 = (−1)s(2b21 − b22 − b23) , α15,5 = −(−1)s(2b31 − b32 − b33) , α15,6 = −(−1)s(2b11 − b12 − b13)

α15,7 = 0 , α15,8 = a3 − a5 , α15,9 = 0 , α15,10 = 0 , α15,11 = a6 − a2 , α15,12 = 0

α15,3 = 0 , α15,14 = a1 − a4 , α15,15 = 0 (A3)
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Appendix C. Details on the Derivations

We now provide some additional information regarding the calculations that we used
for the proof. Firstly, using the asymmetry of ε and the last pair of indices of the M(i)

αµν

values, we trivially find:

ε
αµ

βγ M(i)
αµν = ε

αµ
βγ M(i)

µνα , ∀ i = 1, 2, 3 (A4)

Continuing, we computed:

ε
αµ

βγ M(1)
αµν = 2(−1)s+1

[(
N(2)
[β
− N(3)

[β

)
gγ]ν + N[βγ]ν

]
(A5)

ε
αµ

βγ M(2)
αµν = 2(−1)s+1

[(
N(1)
[β
− N(3)

[β

)
gγ]ν + N[β|ν|γ]

]
(A6)

ε
αµ

βγ M(3)
αµν = 2(−1)s+1

[(
N(1)
[β
− N(2)

[β

)
gγ]ν + Nν[βγ]

]
(A7)

The identity εµαβγεµκλρ = (−1)s3!δκ
[α

δλ
β δ

ρ

γ]
was of great use here. In the same manner, we

find:
ε

αµ
βγ M(1)

ναµ = 4(−1)sN[βγ]ν (A8)

ε
αµ

βγ M(2)
ναµ = 4(−1)sN[β|ν|γ] (A9)

ε
αµ

βγ M(3)
ναµ = 4(−1)sNν[βγ] (A10)

which were useful for proving our theorem.

Appendix D. Application of the Theorem

Here, we illustrate how our theorem can be applied to physics. Probably the most
natural place to apply the theorem is in metric-affine gravity theories. In particular, in any
given metric-affine theory, the affine-connection plays a fundamental role, along with the
metric, and its exact form has to be found in order to study the dynamics of the theory. To
appreciate the usefulness of our results, we considered the full quadratic (parity even +
parity odd) metric-affine gravity theory, as given by the 17-parameter action:

S[g, Γ, Φ] =
1

2κ

∫
d4x
√
−g
[

R + b1SαµνSαµν + b2SαµνSµνα + b3SµSµ

a1QαµνQαµν + a2QαµνQµνα + a3QµQµ + a4qµqµ + a5Qµqµ

+c1QαµνSαµν + c2QµSµ + c3qµSµ

+a6εαβγδQαβµQ µ
γδ + b5Sµtµ + b6εαβγδSαβµS µ

γδ

c4Qµtµ + c5qµtµ + c6εαβγδQαβµS µ
γδ

]
+ SM[g, Γ, Φ] (A11)

The connection field equations for the above theory read (see [9] for details):(
Qλ

2
+ 2Sλ

)
gµν −Q µν

λ − 2S µν
λ +

(
qµ − Qµ

2
− 2Sµ

)
δν

λ + 4a1Qνµ
λ + 2a2(Q

µν
λ + Q µν

λ ) + 2b1Sµν
λ

+2b2S [µν]
λ + c1

(
Sνµ

λ − S νµ
λ + Q[µν]

λ

)
+ δ

µ
λ

(
4a3Qν + 2a5qν + 2c2Sν

)
+ δν

λ

(
a5Qµ + 2a4qµ + c3Sµ

)
+gµν

(
a5Qλ + 2a4qλ + c3Sλ

)
+
(

c2Q[µ + c3q[µ + 2b3S[µ
)

δ
ν]
λ

+(−2a6 + c6)ε
µναβQαβλ + (2b6 − c6)ε

µναβSαβλ − 2a6ε
ναβ

λ Q µ
αβ − c6ε

ναβ
λ S µ

αβ

+ε
αµν

λ(b5Sα + c4Qα + c5qα) +
( b5

2
+ c5

)
tµδν

λ +
(
− b5

2
+ 2c4

)
tνδ

µ
λ + c5gµνtλ = κ∆ µν

λ (A12)



Universe 2022, 8, 312 9 of 10

where ∆ µν
λ := δSM

δΓλ
µν

is the hypermomentum source and Qαµν = −∇αgµν and S λ
µν := Γλ

[µν]

are the spacetime non-metricity and torsion, respectively. The latter could be expressed in
terms of the distortion tensor Nαµν

7 through the relationships:

Qαµν := −∇αgµν (A13)

S λ
µν := Γλ

[µν] (A14)

Using both of these, we could then express everything on the left-hand side of (A12) in
terms of the distortion and its contractions, thereby ending up with:

(4a1 + b1 − c1)Nαµν +
(
− 1 + 2a2 +

c1 + b2

2

)
Nναµ +

(
− 1 + 2a2 +

c1 + b2

2

)
Nµνα

+(2a2 − b1 + c1)Nανµ +
(

2a2 −
b2

2

)
Nνµα +

(
4a1 −

b2

2
− c1

)
Nµαν

+

(
2a5 + c2 −

b3 + c3

2

)
gναN(1)

µ +

(
2a4 +

b3

2
+ c3

)
gναN(2)

µ +
(

1 + 2a4 +
c3

2

)
gναN(3)

µ

+

(
8a3 − 2c2 +

b3

2

)
gµαN(1)

ν +

(
2a5 + c2 −

c3 + b3

2

)
gµαN(2)

µ +
(

2a5 −
c3

2

)
gµαN(3)

ν

+
(

2a5 −
c3

2

)
gµνN(1)

α +
(

2a4 +
c3

2
+ 1
)

gµνN(2)
α + 2a4gµνN(3)

α

−(−2a6 + c6)ε
µναβNαλβ − (−2a6 + c6)ε

µναβNλαβ + (2b6 − c6)ε
µναβNαβλ

+2a6ε
ναβ

λ

(
N µ

α β + Nµ
αβ

)
− c6ε

ναβ
λ Nµ

αβ + ε
αµν

λ

(
2c4 −

b5

2

)
N(1)

α

+
(

c5 +
b5

2

)
ε

αµν
λN(2)

α + c5ε
αµν

λN(3)
α +

( b5

2
+ c5

)
Mµδν

λ +
(
− b5

2
+ 2c4

)
Mνδ

µ
λ + c5gµν Mλ = κ∆αµν (A15)

It could then be seen that the above equation represents a special case of our master
equation (4) and, therefore, our general results here could prove to be quite useful for
the study of such theories. Using our theorem, we could then go on and write the exact
relationship of Nαµν in terms of the hypermomentum source ∆αµν. However, this goes
beyond the scope of this study and interested readers are referred to ([9]) for a detailed
analysis of the above quadratic 17-parameter theory.

Notes
1 For applications of third-rank tensors in physics, see [2] and [3]. In addition, a good review of tensor calculus is found in [4].
2 Resorting to a decomposition scheme would not work given the complexity of the 30-parameter tensor equation. In addition to

tensors of a rank greater than two, there is no unique irreducible decomposition [5].
3 A distortion tensor is a deviation of the affine connection from the usual Levi-Civita pseudotensor. See, for instance, [7,8].
4 For instance, in the Einstein–Cartan gravity theory, it can be seen that the spin of matter produces spacetime torsion. In this study,

our intention was to generalize these results.
5 Of course, the results hold true even when Nαµν is the component of a tensor density instead a connection because Bαµν is also of

the same kind.
6 See also [1].
7 A distortion tensor measures the difference between the affine connection and the usual Levi-Civita pseudotensor.
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