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Abstract: In this paper, focusing on 4-dimensional space, we extend our previous results of solving
linear tensor equations. In particular, we consider a 30-parameter linear tensor equation for the
unknown tensor component Ny, in terms of the known component (source) Byyv- The extension
also included the parity even linear terms in Ny, (and the associated traces), which are formed
by contracting the latter with the 4-dimensional Levi-Civita pseudotensor. Assuming generic non-
degeneracy conditions and following a step-by-step procedure, we show how to explicitly solve for
the unknown tensor field component Ny, and, consequently, derive its unique and exact solution in
terms of the component By

Keywords: tensor equations, parity odd, metric-affine

1. Introduction

Extending the results we obtained in [1], we consider the most general linear tensor
equation in four dimensions, in which all of the possible parity odd (i.e., contractions
with the Levi-Civita pseudotensor) combinations of a third-rank tensor! are included on
top of the even combinations. As we show in the proceeding discussion, this general
linear tensor equation involved 30 parameters and consisted of 15 distinct combinations of

the unknown third-rank tensor field Ny,,. The task is to prescribe a method for solving

the aforementioned tensor field in terms of a given (known) componentz. These linear
tensor equations appear in quadratic metric-affine gravity theories [6,7] and their solutions
produce a distortion tensor’ in terms of a hypermomentum tensor. Having solved the
distortion, spacetime torsion and non-metricity can then be readily computed.

By solving the distortion in terms of the connection, we can then see exactly how the
microscopic properties of matter (encoded in the hypermomentum tensor) produce the
non-Riemannian degrees of freedom of torsion and non-metricity. Therefore, it is of great
importance to have a prescribed method for solving equations of this kind, since direct
physical implications can be drawn from the solutions*.

Here, we only present a simple application of the results, which could possibly be
applied to other branches of physics as well. We start with some basic definitions and,
subsequently, state and prove our theorem.

2. Definitions

We now present some basic definitions that are used throughout this paper. We
consider a 4-dimensional differentiable manifold endowed with a metric ¢ and an affine
connection V, namely (g, V, M). The signature of the metric is denoted by s. In addi-
tion, N,y denotes the component of an arbitrary third-rank tensor field and P2 i the
component of the 4-dimensional Levi-Civita pseudotensor.
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Definition 1. We define the first, second and third contractions of Ny, respectively, according to:
1 2 3
N;(t )= Naﬁyg"‘ﬁ , NP(‘ )= wﬁglxﬁ , Nl(‘ )= chﬁgaﬁ )

Definition 2. By contracting Nyy,y with the Levi-Civita pseudotensor, three parity odd combina-
tions are formed, as follows:

HA
xp 7

®)

2
M2L = Nyype M) = Nypet g )

1 . n
M/\aﬁ = Nuwa& (2.7

ﬁ 7

Note that by this construction, last pair of indices of each M®) value was antisymmetric. In addition,
a fourth pseudotrace could be constructed as:

M* = NW#* = AN, &)

Note also that further contractions of the M values did not produce any new traces since
gVVM;(ﬁ,),X = — gVVM;(ﬁ/),X = gWM,(ﬁ/),X = —M, and the rest are either identically vanishing or
proportional to the latter. Using the above definitions, we now state and prove the main results of
this paper.

3. The Theorem

Theorem 1. In a 4-dimensional space of signature s, we consider the 30-parameter tensor equation:

3 . . .
a1 Nayy + a2 Nyay + 43Ny + a4 Nawy + 45Ny + agNyay + Z <a7iN;(tl)gm/ + aSiNy)gtw + a9iNv(cl)gﬂv>
i=1

+b11 Mz%t)v + bpM

a11
21
31
X4
51
Xe61
a71
ag1
X91
10,1
x11,1
X12,1
X13,1
a11
X15,1

1(/1134);1 + blaMSv)a + b Mﬁf + bZZMI(/i)y + b23M;(42v)a + b3 Mzﬁ)v + bazMSi)y + b33M£L?/)l¥

+€papv (blN(l)p + sz(2)p + b3N(3)P> + ClMygoa/ + Cszgay + C3Mag;w = th;u/ 4)

12
22
32
(L)
52
X6
X7
g
X9
10,2
X11,2
X122
X132
12
X15,2

x13
23
x33
43
X53
63
&73
g3
x93
X10,3
®11,3
12,3
X133
x13
X15,3

where a;, aji i=1,2,.,6,j=7,89arescalars, b, cy, are pseudoscalars, By, is a given (known)
tensor and Nyyy is the component of the unknown tensor” N. We define the matrices:

K14 X15 X16 x17 X18 X19 X110 X111 41,12 X113 X114 K115
K24 X25 X26 a7 28 X9  &2710 X211 &1,12 42,13 X214  A215
X34 X35 36 37 38 X39  &310 X311  &1,12 &1,13 X114 K115
K44 Q45 46 K47 48 K49 K410 X411 K412 K413 X414 K415
K54 X55 X56 57 K58 X59  @&510 X511 K512 A&513 X514 X515
Xe4 Xe65 K66 Xe7 K68 Xe9 X610 X611 K612 R6,13 X614 K15
X74 &75 XA76 77 X78 X79 X710 X711 K712 @&713 X714 K715
g4 g5 g6 ng7  Xgg Xgg  Xg10 X811 K812 X813 X814 K815 5)
X94 X95 X96 X9y X9g K99 X910 X911 K912  &9,13 X914 K975
X104 ®105 ®106 @107 &10,8 &10,9 10,10 &10,11 &10,12 %1013 &10,14 &10,15
X114 ®115 %116 %117 ©%11,8 &11,9 &11,10 &11,11  X11,12 %1113 &X11,14  &11,15
X124 Q125 Q126 (12,7 Q12,8 Q129 &12,10 Q12,11 12,012 &12,13  &12,14  &12,15
X144 Q145 K146 (K147 K148 Q149 X110 &1,11 &1,12 &1,130 X1,14 0 X115
K14 X15 X16 a1y 18 X19 X110 Q14,11 &14,12 X1413 X144 X14,15
X154 Q155 Q156 (157 Q158 Q159 &1510 Q1511 ©&1512 &1513 &15,14 &15,15

and
Y11 Y12 Y13 Y14
= Y21 Y22 Y23 Y24 ©)
Y31 Y32 Y33 Y34
Y41 Y42 V43 V44
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where the a;j and vy;j values are linear combinations of the original a;, aj;, b and cy values (see
Appendix B). Then, given that both of these matrices are non-singular, i.e., when

det(A) # 0 and det(T') #0 (7)
holds true, then the general and unique solution of (4) reads:

Na;u/ = 5611Ba;w + 5‘1231/«;4 + 5‘13B;th + 5‘143041/;4 + 5‘1531/;404 + 5416Bytw + 5‘17Ba;w + 5‘18Bw0¢ + 5‘19Bw¢;4
+5‘1,1OBIW1/ + 5‘1,113ym + 5‘1,1231/1:(]4 + 5‘1,13th]41/ + 5‘1,14Byv1x + &1,15Bvu¢y (8)

where the &; values are the first-row elements of the inverse matrix A~ and

Bayy = Bayw — 21 Z (umz] o + a5i7iiBY gy + a0 BY gw) & aw Z% Z biiBY ©)
i=1j= i=1j=
Bupw = €4 Bgyy —2(~1)° i [(b21 + bz + b3y + baz)¥1j + (b1 + b1z — bs1 — b33)Foj — (b11 + b1z + bag + b23)'?3j} Bfi)gy]v (10)
=
By := Smavgﬁm —2(=1) i {(bﬂ + bop + b3t + ba2)¥1j + (b11 + b1z — b1 — baz)¥aj — (b11 + b1ia + by + bzz)%j] Bfi)gy]v (11)
=
Baw = € Bupy —2(— i [ (b2 + b3 + bap + b33) 1) + (b12 + b1z — bsg — b33)Toj — (baa + bz +b1p + b13)73;] B[(’];)gv]zx (12)

where ;; values are the elements of the inverse matrix r-.

Proof. The first step consists of removing the traces (and pseudotraces) of N and expressing
them in terms of the corresponding traces of the known tensor B. To this end, we perform
four distinct operations on (4), i.e., we contract the latter with g, ¢V, ¢*" and e**V, which
(after some renaming of the indices) produces the system:

’YnN;(zl) + ’Y12N;Sz) + ’YlsN;(:B) + ’)/14N]/(l4) = Bﬁl) (13)
721N;Sl) + ’YzzN;(lz) + 723N;(¢3) + ’724Np(l4) = B;SZ) (14)
1N + NP + 43N + 93N = BY (15)
741N;SU + 742NP(¢2) + ’743N;S3) + ’Y44N;54) = B;(f) (16)

where 7;; values are linear combinations of the initial 27 parameters, the exact form of

which we present in the Appendix A. We also used the notation M, = NP(f). The above is a
system of four equations with four unknowns, which we could express in matrix form as:

TX=Y (17)

where we define the columns X := (N,S ),N(z) N( ) N(4))T and Y = (Bl(ll),Bﬁ,z),B,(;’),

B§,4) )T along with the matrix:

Y11 Y12 Y13 Y14

= |7 722 723 724 (18)
Y31 Y32 Y33 V34
Y41 Y42 V43 V44

Now, given that the matrix I is not degenerate, i.e., when

det(T) # 0 (19)
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+b11 M,

(1)

xpv

then its inverse I ! exists. Then, multiplying (17) with the latter, we obtained:
X=TI"ly (20)
(i)

which relate the unknown traces Ny to the known traces (B( )) More specifically, the
component form of the above matrix equation produces the relationship:

4 .
X (21)
j=1

where 7;; values are the elements of the inverse matrix Il As a result, we have fully
eliminated the traces of N in terms of the traces of B. We could then substitute the last
equation back into (4) to obtain:

alNac]u/ + a2N1/zxy + a3Nyva =+ a4Nm/]4 + a5va1x + aéNyocv

+ bleﬁ)y + b13M;(111/)ac +bx M,gi)v + b22M1(/%c)y + bz3M£¢2u)a + b31M§¢?;l)u + b32M1(/3c)y + 533M£§/)a = Buw (22)

where
Bapw = B B}/ BY BY b 23
o o Z 2 a7iVijByi §av + a8iYijBy” Qan + 49iVijBa v —¢ apv Z Z z')’z] (23)
i=1j=1 i=1j=1

and we renamed c¢1 = ay4, 3 = ag4 and c3 = ag4 in order to obtain a more compact form.
However, this only solved 4 of the 19 unknown combinations as they appear in (4), with 15
more remaining; thus, we need 15 more equations in order to fully solve for N. To this end,
we then consider the five possible independent permutations of (22), which (including (22)
itself and using shorthand sum notation)® read:

3
a1 Nayy + a2 Nyay + 3Ny + a4 Novy + 45 Nypa + a6 Npaw + Z (blerngv + szMvay + szM]u/a) Bayw (24)
i=1
3 ()
alew + azNywx + QBNaw/ + a4Ny¢w + QSNavy + a6vatX + Z (blev:xy + blZMyvrx + blBMtxyv) = (25)
i=1
° () (i)
alN;u/a + QZNayv + uBway + a4Nv;ux + QSN;MV + a6Nawy + Z (ble;u/zx + szMtx;u/ + bz3M1/1x;4) = (26)
i=1
- () 0
a1 Ny + 112N],ux1/ + a3Nyua + ‘14Ntxyu + asNyya + a6way + Z (bleowy +b; 2M v + bz3nya) = (27)
i=1
- ()
a1 Nypa + a2 Navy + a3Nyav + a4 Nyay + a5 Naw + a6 Nywa + Z (blevyzx + szszvy + szM]uxv) = (28)
i=1
3 i)
alNyav + aszya + QBNM/;( + a4Nywx + ﬁSNvay + a6Nayv + 2 (bleym/ + blZnyrx + szMm/y) = (29)

In this way, we gather six equations but still have nine more to go. Continuing, we
then contract (22) with &' By and by using the identity sayms“)‘w = (- )54'(5f oAl (5‘7], its
contractions and some long calculations, we finally arrive at (some useful 1dent1t1es are
given in Appendix C):

(a1 — ag) MUy, + (ay — a3) M3, + (2 — as) ML)

vey T 2(=1)5TY(byy + bos + bay + b33)N[(ﬁ1>g7]V

+2(=1)" 1 (b1y + byz — b3y — 1733)N[(/§)27]v —2(=1)*" b1y + brz + by + 523)N[(2)8y]v

+2(-1 ){ (b11+bl3)+2b1z]N[m]v+2( )[ (b21+b23)+2b22} Nigjyjy] +2(= )[ (1731+b33)+2b32} yB7]

& B (30)
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We then rename the indices § — «, v — p and use (21) to remove the traces of N. After
some rearranging, we end up with:

(=1)°(2b12 = b1y — b13) Ny + (=1)°(2b32 — b3t — b3z) Nyay — (—1)°(2b22 — by — b23) Ny
+(—1)°(2bg — b1 — bo3) Nawy — (—1)°(2b32 — b1 — b3z) Nypa — (—1)°(2b12 — b1 — b13) Nyaw

+(a1 - %)M.(/?y + (a4 — ﬂa)MﬁL + (a2 — ﬂ5)M1</i)y = Buw (1)
where we set
R 4 ()
Buw = &0y Bpyy — 2(—1)° Z% [(b21 + bz + ba1 + baz) ¥1j + (11 + b1z — bs1 — baz)Faj — (b11 + b1z + bay + b23)73]} B[i &y (32)
=

Next, we consider the index permutation « — y — v — « in (31), firstly once and then two
successive times to obtain two more equations:

(=1)*(2b12 — b1y — b13) Nyva + (—1)°(2b32 — b3y — b33) Nayw — (—1)°(2b22 — ba1 — b23) Nyay
+(—1)%(2b22 — b1 — b23) Nyyay — (—1)°(2b32 — b3y — b33) Nawy — (—1)°(2b12 — b11 — b13) Nypa
+(a1 — ﬂe)M,gly)v + (a4 — ﬂs)M,%)u + (a2 — ﬂs)Mg?)u = Bua (33)

(=1)*(2b12 — b1y — b13) Nyay + (—1)°(2b32 — b3y — b33) Nywa — (—1)°(2b22 — bo1 — b23) Ny
+(=1)°(2b22 — ba1 — bp3) Nyua — (—1)°(2b3p — b1 — b33) Nyaw — (—1)°(2b12 — b11 — b13) Nawy
+(a1 — a6)M§t%/)a + (ag — a3)M£I%/)1x + (a2 — QS)M;S?/& = way (34)

In the same manner, we contract (22) once with ¥ By and another time with " By and
again, after performing one and two successive permutations of the indices for each case,
we gather six more equations:

(—=1)%(ba1 + b2 — 2b23) Ny — (—1)°(b11 + b1z — 2b13) Nyay — (—1)%(ba1 + b2 — 2b33) Ny
+(=1)%(b11 + b1z — 2b13) Nawy — (—1)° (b1 + bap — 2b23) Nypa + (—1)°(b31 + b3z — 2b33) Ny

+(ag — a) Mg, + (a1 — as) M, + (a6 — a3) My = Bau (35)

(=1)°(ba1 + b2 — 2b23) Nyya — (—1)°(b11 + bia — 2b13) Nayw — (—1)%(b31 + bzp — 2b33) Nyap
+(=1)°(b11 + b1a — 2b13) Nyaw — (—1)°(bp1 + bap — 2b23) Nawy + (—1)%(b31 + bz — 2b33) Nyjua
+(ag — QZ)MI(/?& + (a1 — a5)Ml(/%l)0¢ + (a6 — a3)M1(/i¢)a = E;woc (36)
(—=1)°(ba1 + b2 — 2b23) Nyay — (—1)°(b11 + b1z — 2b13) Nywa — (—1)%(ba1 + b3z — 2b33) Ny
+(=1)°(b11 + b1o — 2b13) Nyya — (—1)%(bp1 + baz — 2b23) Nyaw + (—1)°(b31 + b3 — 2b33) Ny
+(as — az) Miay + (a1 — as) M), + (a6 — a3) My = Buag (37)

(=1)°(2b31 — b3y — b33) Nayw — (—1)°(2ba1 — bop — b23) Nyap + (—1)°(2b11 — b12 — b13) Njwa
—(=1)%(2b31 — bzp — b33)Nawy — (—1)%(2b11 — b2 — b13) Nypa + (—1)°(2b21 — boz — b23) Ny
+(a3 — as) Mg + (a6 — a2) M3, + (a1 — a) Mily = Buy (38)

(=1)°(2b31 — b3y — b33) Nyva — (—=1)°(2bo1 — bop — b23) Ny + (—1)°(2b11 — b12 — b13) Nyap
—(=1)%(2b31 — b3p — b33) Nyay — (—1)%(2b11 — b12 — b13) Nawy + (—1)°(2b1 — boo — b23) Nyjua

+(a3 — as) Mun + (a6 — a2) Miiy + (a1 — 24) Mih, = By (39)
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(—=1)(2b31 — b3p — b33) Nyay — (—1)°(2b21 — b2 — b23) Ny + (—1)°(2b11 — b1 — b13) Naguw
—(=1)%(2b31 — bzp — b33) Ny — (—1)°(2b11 — b12 — b13) Nyaw + (—1)°(2b21 — bao — b23) Ny
+ (a3 — ﬂs)MSx)y + (ag — QZ)Ml(/%c)y + (a1 — 614)M1(/i);4 = Buay (40)

where we set

thyv = 8/S'ylva\ﬁ}¢7 — 2(—1)5

4
j=

{(bm + bap + b3t + ba2)¥1j + (b11 + b1z — bar — ba2)¥aj — (b11 + b2 + by + b22)'73j} Bfi)gy]v (41)
1

and

1 ,
Baw = SM;WBMSW —2(-1) Y [(bzz + bo3 + b3z + b33)¥1j + (b12 + b1z — baz — ba3)¥aj — (b2 + bz + b1n + bla)%;} Bf{fgu]a (42)
=1

We then place Equations (24)—(29) and (31)-(40) into that exact order and express the system
of the above 15 equations in matrix form as:

AN =B (43)
where A is the 15 x 15 matrix of coefficients (see Appendix B). We also define the columns:
N = (Nugass Noagir Nuves Navsr Nojis Ny Mg, Mighs M, Migi, Mz, Mi, MG, M2}, M) T
as well as
8 = (Bues Buss By B Bus Brses By B, Busy B, B Bosgs B By, o) (45)
Then, given that the matrix A is non-singular, namely
det(A) #0 (46)
we can formally multiply the above matrix equation with A~ to obtain:
N=AB (47)

Finally, by equating the first elements of the latter column equation, we arrive at the stated
result:

Ntx;u/ = ‘illex;w + 5‘1231/&;4 + 5‘13Bywx + 5‘143041/;1 + &15vax + 5416By1xv + 5‘17Bzx;w + 5‘183141/0( + 5‘19va<;t
+5‘1,1OBIX]41/ + 5‘1,113141/& + 5‘1,12311044 + 5‘1,13304;11/ + 5‘1,143;41/0( + 5‘1,15ch;¢ (48)

where @jj values are the elements of the inverse matrix A~!. The matrix is the exact and
unique solution of (4), provided that the non-degeneracy conditions (19) and (46) were
satisfied. [

Evidently, when B, = 0 and det(A) # 0, along with det(T') # 0, the unique solution of
(4) is always N,y = 0. More precisely, we showed the following.

Corollary 1. When By = 0 and both matrices A and T are non-singular, then the unique solution
of (4) is Nyyw = 0.

4. Conclusions

We considered the most general linear tensor equation of a third-rank tensor N in
terms of a given source B in four dimensions. The latter was a 30-parameter tensor equation,
as given by (4). By following a step-by-step procedure and given two rather general non-
degeneracy conditions among the parameters, we provided the unique and exact solution
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of the component Ny, in terms of the known component By, its dualizations and its
contractions. The solution is given by the expression (48). An immediate conclusion is that,
provided the non-degeneracy conditions hold and in the absence of sources (i.e., when
By = 0), Nyyy = 0 is the only (unique) solution of the 30-parameter tensor equation. As a
final remark, let us note that our results have a natural application in metric-affine theories
of gravity (see Appendix D) but could also be applied to other physical situations just as
well.
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Appendix A. The v;; Values
The relationships between the elements of I and the 30 initial parameters read:

Y11 = a1 +az+ay +4ag +ag , Y12 =do +ag+azp +4agy +agy , Y13 = ds +de + azz + 4agz + a3
Y21 = ap +as +4az +agy +agr , Yy = a1 +ae+4ay; +agy +ag , Y3 = az +ay +4az3 + asgz + ags
Y31 = a5 + ag +az +agy +4agr , Y = az+ag+ayp +asy +4agy , y31 = a1 +ax +azz + asz + 4ags

Y1 = —2(—-1)° (b21 + by + by3 + b3y + b3y + bzz — 3171) ;a2 = —2(-1)° (bn + bip + b1z — b3y — bz — bzz — 3172)

Y3 = 2(=1)° (bll + b1z + b1z + bog + bap + bz + 3b3) ;Y44 =01+ ax+az—ag —as —ag

Y14 = C1 +4cp +c3 — b1y — b1z — byy —byz — b3y — b3z , o4 = 4c1 + o+ 3+ byg + by — by — by — bz — bx
Y34 = C1 + Cp +4c3 + b1y — bz — by + by3 + b3y — ba3 (A1)

These were the elements of the 4 x 4 matrix I'.

Appendix B. The «;; Values

By placing Equations (24)—-(29) and (31)-(40) one after another in that exact order,
the coefficients of the combinations of the tensor N in each equation represent the rows
of matrix A (with the system of equations written in matrix form AN = B), ie., the
coefficients in (24) were the first-row elements of A, namely:

w1 =ay , app=4ay , &3 =43 , X4 =4a4 , X5 =45 , A6 =14 , X7 = b1 , a183 = b2, a19 = by3
a1,10 = ba1 , w101 = by, a0 =">03 , a1,13=">b31 , w114 =bx , w115 ="b33 (A2)

Of course, the same goes for every other row, with the last one being (the coefficients of the
row corresponding to (40)):

w151 = (=1)%(2b11 — b1z — b13) , w152 = (=1)°(2b31 — bsa — b33) , w153 = —(—1)°(2ba1 — bap — bo3)
w154 = (—1)°(2021 — by —b23) , a1s5 = —(=1)°(2b31 — bz — b33) , @156 = —(—1)°(2b11 — b1z — b13)
w57 =0, asg =az—as , w159 =0, ay510=0, w1511 =d¢ —az , a1512 =0
w153 =0, w514 =a1 —4ag , a1515 =0 (A3)
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Appendix C. Details on the Derivations

We now provide some additional information regarding the calculations that we used
for the proof. Firstly, using the asymmetry of € and the last pair of indices of the M,EZ;Z,,
values, we trivially find:

Mi‘gathgc;)w = gayﬁ,yM;ngtx , Vi=1,23 (A4)

Continuing, we computed:

(1) (2) ®)
e Mign = 21 (NG = NB) g0 + Nig ] (A5)
! (2) _ s+1 (1) ®)
e g Majy = 2(=1)° [(N[,; — N )37]1/ + N[mvwﬂ (A6)
(3) N (2)
WﬁvMWV =2(-1)"! [( I3 N[ﬁ )gw]v +Nv{ﬁ7]] (A7)
The identity ewmsl"‘ P = (—1)%!(5@53(5% was of great use here. In the same manner, we
find:
e g Miz), = 4(—=1)"Nigy), (A8)
€ gy i = 4(=1)'Nigiy (A9)
e Ml = 4(=1)° Ny, (A10)

which were useful for proving our theorem.

Appendix D. Application of the Theorem

Here, we illustrate how our theorem can be applied to physics. Probably the most
natural place to apply the theorem is in metric-affine gravity theories. In particular, in any
given metric-affine theory, the affine-connection plays a fundamental role, along with the
metric, and its exact form has to be found in order to study the dynamics of the theory. To
appreciate the usefulness of our results, we considered the full quadratic (parity even +
parity odd) metric-affine gravity theory, as given by the 17-parameter action:

S[g/r CD /d4x\/ {R + blstx;wsaw/ + bzsrxyvs‘u 4+ b3s}tsﬂ

“1Qa;¢vQ Y aZQavaV + QSQyQP + ’14%1‘7]/[ + “SQ;lq}
+c1 QMWS’WV + CZQ]JSH + C3‘7]JSH
+a6e"P7° Qupu Q. 5 + bsSyt! + be"P1°5,6,S, "

caQut" + e by + c6e"10 Qg S, 5"} + Slg, T, @] (A11)
The connection field equations for the above theory read (see [9] for details):
%4_25 W AW na WY R S ey vy pv pv pv
( )g Q) —25; +(q 5 2§ )5/\4—4111(2 A +2m2(Q7, +Q, ) +21 ST,
+2b58, " ey (8, = 8, + QM) ) + 8} (450" + 2asq” + 2028 ) + 8% (a5 Q" + 209" + 55" )
+gM (015(2;L +2a4q) + C3S;\) + (czQ[” + caglt + ZbBS[V)‘SX]
+(—2a6 + c6)e" P Qupr + (2bs — c6)e" P Supr — 2”68/\1/04;(2“‘5# - CéfAmﬁsaﬁy

ocyv

b b
(5584 + c4Qu + c5qa) + (35 + C5)t"(5X + ( - 55 + 2c4)tv(5§ + o5ty = kA, (A12)
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where A )f V.= 5‘;SAM is the hypermomentum source and Quyy = —Vguv and SW’\ =T (]
Hv

are the spacetime non-metricity and torsion, respectively. The latter could be expressed in
terms of the distortion tensor Ny,,,” through the relationships:

thw/ = _vtxg;n/ (A13)
Syt =T (A14)

Using both of these, we could then express everything on the left-hand side of (A12) in
terms of the distortion and its contractions, thereby ending up with:

1+ b

1+ b
2

(421 + b1 — 1) Nogay + (= 1420, + WNage + (= 1422, + ) Nywa

b b
+(2a2 — b1+ Cl)NﬂCV]/l + (2‘12 - %)vax + (4{11 - 52 - C1>N;ux1/

b b
+ (2015 +c - 5+ C3>gwx ;(ll) + (2614 + 3 + C3>gvaN;SZ) + (1 +2a4 + %)gvocN;,(l?))

2 2
b3 1) c3+ b3 ) c3 (3)
+( 8as — 2¢cp + > SuaNy’ + | 245 + 2 — 5 SuaNy + (2115 — E)gWNv

C C
+ (205 - 53) N + (204 + 2+ 1) guNe? + 2058, N

—(—2a6 + c6)e"" P Nyrp — (=246 + c6)e" " P Nyup + (2b6 — )" P Nyp»

b
+2a6e/\vaﬁ (Nay B + N}‘aﬁ) - C68/\WX/SNHalB + sa}w/\ (2C4 - ES)N,,(CU

+ <C5 + ?>£“W/\N,£2) + C5E“WAN,§3) + (sz + C5)M”5K + ( - %5 + 2C4) MVJK +c58"" My = KAapy (A15)
It could then be seen that the above equation represents a special case of our master
equation (4) and, therefore, our general results here could prove to be quite useful for
the study of such theories. Using our theorem, we could then go on and write the exact
relationship of Ny, in terms of the hypermomentum source A,;,,. However, this goes
beyond the scope of this study and interested readers are referred to ([9]) for a detailed
analysis of the above quadratic 17-parameter theory.

Notes

For applications of third-rank tensors in physics, see [2] and [3]. In addition, a good review of tensor calculus is found in [4].
Resorting to a decomposition scheme would not work given the complexity of the 30-parameter tensor equation. In addition to
tensors of a rank greater than two, there is no unique irreducible decomposition [5].

A distortion tensor is a deviation of the affine connection from the usual Levi-Civita pseudotensor. See, for instance, [7,8].

For instance, in the Einstein—Cartan gravity theory, it can be seen that the spin of matter produces spacetime torsion. In this study,
our intention was to generalize these results.

Of course, the results hold true even when Ny, is the component of a tensor density instead a connection because By is also of
the same kind.

See also [1].

7 A distortion tensor measures the difference between the affine connection and the usual Levi-Civita pseudotensor.
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