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Abstract: Starting from an effective Hamiltonian modeling, of a baryon made of N identical quarks in
the large-N approach of QCD, we obtain analytical formulas, allowing to estimate the contributions
of multiquark interactions to the baryon mass. The cases of vanishing (mass spectrum) and non-
vanishing (baryon melting) temperatures are treated.
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1. Introduction

If quantum chromodynamics (QCD) is, indisputably, the theory of strong interaction,
many different approaches must be explored, to study this theory in the domain of hadron
spectroscopy. Among the most efficient and popular ones are the constituent models
and the large-N picture. In the first models, constituent quarks appear, such as “dressed”
current quarks, and interact via potentials, simulating the exchanges of virtual gluons and
quark–antiquark pairs [1]. The recent detection of baryons made of one or two heavy (c or
b) quarks has led to a revived interest in constituent models, such as, e.g., the hypercentral
Constituent Quark Model [2,3]. Note that such models are relevant in the field of light
baryon spectroscopy as well [4]. In the large-N picture, the SU(3) group of QCD is replaced
by SU(N), allowing an expansion for the properties of the theory in powers of 1/N, which
is treated as a small parameter [5]. It appears quite natural to try to combine these two
different methods, to gain new insights about the hadron physics.

It has been shown in [6–11] that constituent models were able to match the arbitrary
coefficients, appearing in the large-N baryon mass formulas, which shows the comple-
mentarity of both frameworks. However, the analysis of the latter works focuses on one-
and two-body interactions. In this work, such a methodology is used to study multiquark
interactions, within the baryon. Simple models, with baryons made only of identical quarks,
are used to highlight the main effects.

Various large-N versions of QCD exist, in which quarks can be in different colour
representations [12,13]; we, here, consider quarks in the fundamental representation, i.e.,
‘t Hooft limit [14]. It is known, from the SU(2N f ) symmetry of baryons at large-N, that the
mass formula is of the form [15]

M = N
N

∑
h=0

ch

NhOh, (1)

with Oh. an h-quark spin-flavour operator, whose eigenvalue is of order 1, and, also, ch a
number of order 1. Spin-dependent h-quark interactions are suppressed, at least in 1/Nh,
and will not be investigated in the present work, where we focus on spin-independent
h-quark interactions, i.e., interactions bringing a contribution to c0. In a spin-flavour
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independent approach, the ground-state mass of a baryon made of N quarks of the same
flavour can, a priori, be expressed as

M = NK +
hmax

∑
h=1

(
N
h

)
Eh, (2)

where K is the average kinetic energy of one quark (including its rest energy), and where
Eh is the average potential energy of an interaction involving h quarks (with hmax finite),

this energy is being weighted by the binomial coefficient
(

N
h

)
.

It has been said that three (or more)-quark interactions “simply renormalise the
average Hartree potential” in a mean field approximation for two-body interactions only [5]:
the necessary technical complications for their inclusion in a quark model can, thus, be
avoided, in principle, since they can be absorbed in a redefinition of the parameters.
Nevertheless, it has been shown in [16], for N = 3, that three-quark interactions, going
beyond one-gluon-exchange (OGE), have relevant physical features, such as increasing
the mass gap between colour-singlet baryonic states and unphysical coloured ones, or
lifting mass degeneracies in tetraquarks. Only a few works have addressed the problem of
three-quarks interactions in quark models [16–18], while, to our knowledge, the question of
multiquark interactions in large-N QCD has only been studied in [19]. In this last work, it
is concluded that h-quark interactions (h > 2) are suppressed by a relative factor h! and can,
then, be neglected. This result is obtained with a wave function computed in the Hartree
approximation, as in [5]. We want to reconsider this problem by using the envelope theory
(ET), which is a method to compute approximate but reliable solutions for many-body
quantum systems [20–22]. It is quite easy to implement, if all the particles are identical, and
the computation cost is independent of the number of particles. Moreover, analytical upper
or lower bounds can be obtained in favourable situations [23]. This will be the case for the
systems considered here.

The Hamiltonian, for baryons in the large-N approach, is given in Section 2. The
dependence on N for the parameters are fixed in Section 3. One-gluon exchange and
three-quark interactions are, respectively, treated in Section 4 and Section 5. While in these
sections, baryons are, always, considered at vanishing temperature, their behaviour above
the deconfinement temperature Tc is examined in Section 6. Concluding remarks are given
in Section 7.

2. Baryon Mass Formula

We aim at deriving the mass formula (2), which is based on intuitive mean-field
arguments, from an effective theory based on constituent quarks. A generic quark model
of baryon, made of N identical quarks at vanishing temperature, including one- and h-
quark interactions, may be defined by the Hamiltonian (as usual, u and d quarks can be
considered as two projections of the same quark, through isospin)

H =
N

∑
i=1

[
K(|~pi|) + U(|~xi − ~R|)

]
+

N

∑
{i1,...,ih}

Vh(r{i1,...,ih}) (3)

with K the kinetic energy, U the one-body interaction simulating the confinement (with ~R
being the centre of mass position) and Vh a h-body potential. ~xi and ~pi are the individual
conjugate variables. The h-body variables are defined by

r{i1,...,ih} =

√√√√{i1,...,ih}

∑
i<j

r2
ij and rij = |~xi −~xj|, (4)

where the symbol {i1, . . . , ih} denotes a set of h quarks among the N quarks in the baryon,
with i1 < . . . < ih. The sum ∑N

{i1,...,ih} runs over the different sets {i1, . . . , ih} , while the
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sum ∑
{i1,...,ih}
i<j runs over the different pairs in a particular set {i1, . . . , ih}. We assume that

h is finite, that is, not of order N. This kind of many-body interaction may not be the
most general h-body interaction allowed by symmetry arguments, but it has, already,
been used in hadronic physics [16,17] and for systems of cold atoms [24]. As is usual in
constituent models and in large-N QCD, baryons are treated as stable clusters of quarks, in
first approximation [1,5].

As shown in [25], by resorting to the ET, an approximate mass formula may be found,
by solving the following set of Equations (h̄ = c = 1):

M = N K
(

Q
Nx0

)
+ N U(x0) +

(
N
h

)
Vh(ψhx0),

Q
Nx0

K′
(

Q
Nx0

)
= x0 U′(x0) +

(
N
h

)
ψh
N

x0V′h(ψhx0), (5)

where a prime denotes the derivative of the functions K(z), U(z) and Vh(z), with respect
to their real argument z. x0 is a parameter specific to ET and has to be eliminated from
the second equation (5), then injected in the mass formula. It is linked to the size of the
system [22,23,25]. If the parameter x0 can be, analytically, extracted from its defining
equation, a closed form is obtained for M, as a function of the global quantum number Q.

The global quantum number reads

Q =
N−1

∑
j=1

(
2nj + `j +

3
2

)
, (6)

and

ψh = N

√
h(h− 1)

N(N − 1)
. (7)

The formula for M in (5) is of the form (2), as expected, and it is valid for the ground state
as well as for the excited states, a particular state being defined by the global quantum
number Q. The quantum numbers {nj, `j} are associated with the N − 1 internal Jacobi
coordinates, and the form of Q originates from the exact solutions of translation-invariant
N-body harmonic oscillator Hamiltonians, on which the ET relies [26,27]. Quark spin is,
obviously, neglected, but, since the singlet-colour wave function is totally antisymmetric,
quarks can be seen as “quasi-bosons”, with a totally symmetric spatial-spin-flavour part.
For instance, the ground state is a totally symmetric wave function, and the spin-flavour
part must, also, be totally symmetric. For u and d quarks, all states, with the same value for
the spin and the isospin, from 1/2 to N/2, can be built.

For excited states, the situation is trickier, as the orbital wave function is not sym-
metrical. One way this was, previously, dealt with is by building a mixed-symmetric
spatial-wave function, which has to be coupled with a mixed-symmetrical spin-flavour
function [28–31]. To build an N-body internal spatial wave function, with a definite sym-
metry,is a difficult task, even in the case of N = 3 [32]. For instance, in the framework of the
ET, it is necessary to determine what values of the global quantum number Q are allowed,
taking into account a fixed symmetry.

Confinement in baryons has been, extensively, studied within quark models, since the
celebrated work [1]. For N = 3, the confinement potential is a Y-junction, i.e., a potential
of the form σ ∑3

i=1 |~xi −~xJ |, where σ is the string tension, and where ~xJ is the position of
the string junction, located at the Steiner (or Toricelli) point of the triangle made by the
quarks. ~xJ can be identified with the center of mass ~R, in good approximation [33]. We,
therefore, perform this replacement at arbitrary N, also, and use a potential of the form
σ ∑N

i=1 |~xi − ~R|, as in [5]. In other words, we use the one-body form of the confinement in
Hamiltonian (3), with U(x) = σ x. Explicit (h ≥ 2)-quark interactions will be discussed,
later. Our ansatz for Vh is a scaling of the form
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Vh = Ch ghvh, (8)

with gh, a coupling constant a priori depending on the strong coupling constant g (see next
section), Ch, a colour factor involving SU(N) Casimir operators and vh, the space part of the
average potential energy.

3. Large-N Scaling

The large-N behaviour of our model can, now, be investigated. In the following, the
symbol ∼ is used for a quantity evaluated for N → ∞ (possibly up to a multiplicative
constant). For states with finite quantum numbers {nj, `j}, Q/N ∼ 3/2 (Q = 3(N − 1)/2
for the fully symmetrical ground state). Moreover, ψh ∼

√
h(h− 1). As h is finite, it is

useful to recall that
(

N
h

)h
≤
(

N
h

)
≤ Nh

h!
. Hence,

(
N
h

)
∼ ah Nh where ah does not

depend on N.
Assuming the Casimir scaling [34–37], which follows from a strong coupling expansion

in lattice QCD, one has σ = N2−1
2N g2Ω with Ω a constant [38,39]. Since g2 = λ/N with λ

the ’t Hooft coupling, σ is constant at large-N.
The power in N of the coupling constant gh may be found, as follows. Any Feynman

diagram involving h > 2 quarks must contain h quark–antiquark–gluon vertices, so that
each quark emits a gluon line: a gh factor is present. Then, the quarks have to be “linked”.
Linking two quarks, by the exchange of one gluon, costs at least one quark–antiquark–
gluon vertex or a three-gluon vertex with one outgoing gluon line, i.e., a factor g. There
are at least h− 2 such links, so the dominant Feynman diagrams are proportional to g2h−2,
in agreement with [5,40]. One can, therefore, state that the h-quark coupling constant is
such that

gh ∼ g2h−2 ≡ ḡh N1−h (9)

for the leading-order diagrams. By definition, ḡh does not depend on N. Notice that two
consecutive three-gluon vertices may be replaced by a single four-gluon vertex, which does
not change the order in g. Equation (9) is, thus, valid for any leading-order diagram.

Gathering all these results, when N → ∞, Equations (5) become

M
N
∼ K

(
3

2x0

)
+ σx0 + ah Ch ḡhvh

(√
h(h− 1)x0

)
,

3
2x0

K′
(

3
2x0

)
∼ σx0 + ah

√
h(h− 1) x0Ch ḡhv′h

(√
h(h− 1)x0

)
. (10)

It follows form Equations (10), that Ch has to be constant at large-N, at leading order, for the
baryon mass to be of order N. The criterion Ch ∼ 1, being a sufficient condition to recover
the expected baryon mass scaling at large N, may actually be seen as a selection criterion in
model building: h-quark interactions leading to a different scaling have to be ruled out.

We will, now, check that known explicit interactions are consistent with that require-
ment. Recall that 1

hh ≤ ah ≤ 1
h! . The fact that h-quark one-gluon exchange interactions

bring a contribution of order N/h! to the baryon mass was, already, suggested in [19], for
heavy baryons. Here, we extend this result to arbitrary baryons made of identical quarks
and show that the actual suppression is even stronger than 1/h!.

4. Two-Body Interactions

At leading order in N, two-quark interactions are OGE processes, typically associated
with a Coulomb potential of the form

C2 OGE

N

∑
i<j

αs

|~xi −~xj|
with C2 OGE =

1
2

(
C2

2 − 2C1
2

)
, (11)
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where αs =
g2

4π and where Ck
p is the eigenvalue of the SU(N) Casimir operator of order p,

for the totally (anti)symmetric representation, with k indices. Explicit formulas for Ck
p are

given in Appendix A.
For colour-singlet baryons, two quarks are always in the antisymmetrical representa-

tion and, according to Equation (A2),

C2 OGE = −N + 1
2N

. (12)

This interaction is of order 1 at large-N, as required. Its iteration between h quarks, as
sketched in Figure 1, does, obviously, not change the order of the contribution.

Figure 1. One-gluon exchange process involving h quarks.

One- and two-quark interactions bring a contribution of order N to the baryon mass,
as it has been checked within a Hamiltonian approach, with relativistic quark kinetic energy
and linear plus Coulomb potential in [7]. It is worth mentioning that one-gluon exchange
processes, also, lead to hyperfine corrections (spin-orbit, spin-spin, etc.). It has been shown,
in [8], that spin-spin corrections, only, bring a contribution of order 1/N to the baryon
mass, in agreement with (1), and can, then, be neglected in a first approximation.

5. Three- and More-Quark Interactions

We now focus on three-quark interactions, beyond OGE; an example is shown in
Figure 2. The natural choice made in [16,17], for such interactions between quarks q1,
q2 and q3, involves the colour operator dabcTa

q1
Tb

q2
Tc

q3
, where dabc are the fully symmet-

rical coefficients of SU(N). For colour-singlet baryons, three quarks are always in the
antisymmetrical representation and, according to Equation (A4),

C3 =
(N + 2)(N + 1)

2N2 . (13)

which is of order 1 at large-N, as required.

Figure 2. Typical three-quark interaction, beyond OGE.

The dynamics of three-quark interactions can be appraised, through a generalisation of
the model proposed in [17,18], which is an attempt to study a nonperturbative three-body
interaction, of the confining type. We, first, chose a kinetic energy of the form

K(p) = µα pα + m, (14)
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that can accommodate for both massless (α = 1, µ1 = 1) and massive (α = 2, µ2 = 1
2m )

quarks. We can expect that the most dramatic effect of three-quark interaction will manifest
itself in confinement. So, we set V3(z) = C3g3 z, in agreement with the choice U(z) = σ z.
In this case, one finds from (5) that an upper bound for the mass per quark is given by

M
N

= m + (1 + α)

[
µ1/α

α

α
σ3

Q
N

]α/(1+α)

, (15)

with

σ3 = σ +

(
N
3

)
C3

N
g3ψ3. (16)

Note that upper bounds for three massless quarks interacting via linear and Coulomb
potentials are computed, in the framework of the ET, with relative errors around 15% [23].
It appears, clearly, that the three-quark interaction can be absorbed in a shift of σ, with this
shift being of order 1 at large N: σ3 ∼ σ + ḡ3

2
√

6
. The mass formula (15), although being

approximate, predicts baryon Regge trajectories for light quarks, i.e., m = 0 and α = 1.
If h > 3, a great number of different structures are possible for the colour operator Ch.

All can be built from various combinations of the algebra structure constants fabc and the
symmetric coefficients dabc. The equivalent of Equation (15) with the ansatz Vh(z) = Chghz,
mimicking a h-body confinement, is, then, obtained by replacing σ3 by σh with

σh = σ +

(
N
h

)
Ch
N

ghψh. (17)

If we assume that for all values of h, Ch ∼ 1, as is the case for h = 2 and 3, the string tension
σ is, simply, modified by a quantity ∼ ah

√
h(h− 1) ḡh. With the peculiar choice Vh(z) ∼ z,

the effect of multiquark interactions can, always, be absorbed in a redefinition of σ.

6. Baryon Melting at Finite Temperature

Up to now, we focused on baryons at T = 0. The existence of baryons above the
deconfinement temperature Tc has been suggested in [41], as well as the relevance of
many-body force in nucleon clustering, near the QCD critical point [42]. Starting from a
Hamiltonian, with nonrelativistic kinetic energy and a finite-range two-body potential,
fitted on SU(3) lattice QCD, it has been shown that baryons may exist up to 1.6 Tc. May
three (or more) quark interactions favour the binding of baryons, above Tc? Although this
topic deserves calculations that include, properly, the continuum sector, our framework
may provide some indications. Above the deconfinement temperature, it can be assumed
that all quarks are massive, since they gain a thermal mass that can be computed using
hard-thermal-loop theory, for example, [43]. In this last work, the thermal quark mass mq,

at a temperature T, is found to be m2
q = N2−1

2N2 λT, i.e., independent of N, at dominant order.
In a quark–gluon plasma, many colour channels are possible for a baryon. However,

C2 ∼ 1 and C3 ∼ 1, for all possible representations (see Appendix A). Let us consider a
nonrelativistic Hamiltonian, with a particular h-quark interaction

H =
N

∑
i=1

~p2
i

2m
− |Ch|N1−h ḡh

N

∑
{i1,...,ih}

vh(r{i1,...,ih}), (18)

where the N-dependence (9) of gh has been used. We assume that ḡh > 0 and that vh
is a monotonic globally positive function, with vh(x → ∞) = 0, to mimic finite-range
interactions, above Tc. It is not relevant to consider massless quarks with short-range
attractive potentials, which cannot bind such particles. Moreover, as mentioned above,
it is physically expected that light quarks are dressed with a constituent mass, by the
surrounding bath of free quarks, antiquarks and gluons [41,43].
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Starting from (18), it can be obtained from [25] that the upper bounds of critical
coupling constants—the values of ḡh below, which a bound state with quantum number Q
melts [44]—for such potentials are given by

ḡh =
Q2

2m|Ch|x2
0vh(x0)

Nh(
N
h

) h(h− 1)
N(N − 1)

, (19)

where the quantity x2
0vh(x0) depends only on the form of vh and is determined by the

relation x0v′h(x0) + 2vh(x0) = 0. Note that the accuracy of the ET, for nonrelativistic
systems with two-body attractive Gaussian potentials, has been tested as very good, until
N = 20 [23]. Since Q2 ∼ N2, it is, readily, seen that the criterion |Ch| ∼ 1 leads to
ḡh ∼ 1, hence, to the conclusion that the melting temperature does not depend on N, at
dominant order.

The more ḡh is small, the more the interaction will lead to a high temperature for
baryon melting, since ḡh is, a priori, a decreasing function of T, from renormalization
arguments (see, e.g., [45], where the temperature T is taken as the energy scale). Let us
compare the critical constants for a given state (Q and m fixed) but for different h and a
common function vh ∀ h. Equation (19) leads to

ḡh+1
ḡh

=
|Ch|
|Ch+1|

N
N − h

(h + 1)2

h− 1
. (20)

As an illustration, one can write that, for baryons in a colour singlet,

ḡ3

ḡ2
= 9

N2

N2 − 4
. (21)

In other words, since ḡ3 is well larger than ḡ2, including three-quark interactions, it is not
expected to significantly increase the baryons melting temperature.

7. Summary

The dependence on N, of some possible many-quark interactions in baryons, are
investigated in the framework of the large-N approach of QCD, with simple constituent
models for quarks, in the fundamental representation. In particular, h-quark interactions,
depending on the quark positions through (4), are considered. Analytical information is
obtained, below and above the deconfinement temperature Tc ,with simple constituent
quark models solved with the envelope theory.

Below Tc, baryons are bound states of N quarks, with mass proportional to N, as
N → ∞ (M ∼ N). This sets’s constraints on the behaviour with N, of the possible colour
h-body operators Ch, can be used in a constituent framework. Computations for h = 2 and
3 show that these operators behave as constants, when N → ∞ (C2 ∼ 1 and C3 ∼ 1), which
is compatible with M ∼ N. Moreover, it is shown that M ∼ N remains true, if Ch ∼ 1 for
h > 3. These are indications that the relevant structures for Ch with h > 3 must be chosen,
in order that Ch ∼ 1. When an h-quark-confining interaction is added to the one-body
confinement, our results suggest that the latter interactions, mostly, result in a rescaling of
the string tension.

Above Tc, our calculations show that the melting temperature of colourless baryons (if
any) is independent of N, at leading order, and that the inclusion of multiquark interactions
does not stabilize deconfined baryons.
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review & editing, F.B., C.T.W. and C.S. All authors have read and agreed to the published version of
the manuscript.
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Appendix A. Casimir Operator for Two and Three Quarks

The eigenvalues Ck
p of the SU(N) Casimir operator of order p, for the totally antisymmetric

and totally symmetric representations with k indices, are given respectively, by [46]

Ck
p =

k(N ± 1)(N ∓ k)
2Np(N ∓ k± 1)

[
(N ± 1)p−1(N ∓ k)p−1 − (−k)p−1

]
, (A1)

with a normalisation, such that C1
2 = 4/3 for N = 3, which is the usual normalisation

in constituent models [1,7,8]. Two quarks can, only, be in two colour representations:
antisymmetric (A), which is the singlet one, and symmetric (S). The corresponding values
for C2 OGE are given by

CA
2 OGE = −N + 1

2N
,

CS
2 OGE =

N − 1
2N

. (A2)

Both colour coefficients are of order 1, when N → ∞.
The procedure presented in [17] for the computation of the Casimir operator for three

quarks in SU(3) can be generalised to SU(N), and one has

C3q = dabcTa
q1

Tb
q2

Tc
q3

=
1
6

[
C3q

3 −
3
2

N2 − 4
N

C3q
2 + 6C1q

3

]
, (A3)

where C3q
3 = dabc ∑3

q1,q2,q3=1 Ta
q1

Tb
q2

Tc
q3

= (C3
3 − C3

2)/2, C1q
3 = dabcTa

1 Tb
1 Tc

1 = (2C1
3 − C1

2)/4

and C3q
2 = δab ∑3

q1,q2=1 Ta
q1

Tb
q2

= C3
2/2 as well as where the values Ck

p are given in (A1).
Three quarks can only be in three colour representations: antisymmetric (A), which is
the singlet one, symmetric (S) and mixed-symmetric (M). The corresponding values are
given by

CA
3q =

(N + 2)(N + 1)
2N2 ,

CS
3q =

(N − 2)(N − 1)
2N2 , (A4)

CM
3q = −N2 − 4

4N2 .

For N = 3, these values are in agreement with the ones obtained in [16–18]. All these colour
coefficients are of order 1, when N → ∞.
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