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Abstract: The 4+1 formalism in general relativity (GR) prescribes field equations for the spacetime
metric γµν(x, τ) which is local in the spacetime coordinates x and evolves according to an external
“worldtime” τ. This formalism extends to GR the Stueckelberg Horwitz Piron (SHP) framework,
developed to address the various issues known as the problem of time as they appear in electrody-
namics. SHP field theories exhibit a formal 5D symmetry on (x, τ) that is strategically broken to
4+1 representations of the Lorentz group, resulting in a manifestly covariant canonical formalism
describing the τ-evolution of spacetime structures as an initial value problem. Einstein equations for
γµν(x, τ) are found by constructing a 5D pseudo-manifold (combining 4D geometry and τ-dynamics)
and performing the natural foliation under broken 5D symmetry. This paper discusses weak grav-
itation in the 4+1 formalism, demonstrating the natural decomposition of the field equations into
first-order evolution equations for the unconstrained 4D metric, and the propagation of constraints
associated with the Bianchi identity.

Keywords: general relativity; numerical relativity; Stueckelberg Horwitz Piron (SHP) framework

1. Introduction

The “problem of time” most commonly refers to the difficulty of quantizing canonical
formulations of general relativity (GR) in which time x0 is both the parameter of system evo-
lution for initial value problems and a dynamical coordinate of the spacetime to be found
as a solution of such problems. The Stueckelberg Horwitz Piron (SHP) framework [1–8]
in relativity seeks to overcome these difficulties, as they find expression in classical elec-
trodynamics, introducing a chronological time τ as a physical quantity distinct [9] from
coordinate time x0. Particles and fields, defined locally with respect to some coordinate
description of spacetime, evolve under the monotonic advance of τ, a quantity external
to the spacetime manifold. A classical event xµ(τ) or a quantum state ψ(x, τ) is observed
at spacetime location xµ but occurs at chronological time τ, characterizing the temporal
ordering of events. Fields and potentials, including the electromagnetic field fαβ(x, τ) and
metric gαβ(x, τ), are made invariant under gauge transformations depending on both x
and τ, indices in the first half of the Greek alphabet take values α, β, γ, δ = 0, 1, 2, 3, 5 and
the remaining Greek letters take values λ, µ, ν = 0, 1, 2, 3. These field theories will exhibit a
formal 5D symmetry containing O(3,1)—possibly O(4,1) or O(3,2)—but matter terms break
any higher symmetry to 4+1 representations of Lorentz symmetry.

Building on the insights of SHP electrodynamics, the 4+1 formalism for gravitation [10]
was constructed by conflating the 4D geometry of spacetimeM with its evolution under
τ to form a 5D pseudo-spacetime [11], writing 5D Einstein equations for the resulting
manifold, and strategically breaking the 5D symmetry when setting the Einstein tensor
(geometry) equal to the O(3,1) covariant energy–momentum tensor (matter). The decompo-
sition of the symmetry-broken Einstein equations to 4+1 results in first-order differential
equations for the metric γµν(x, τ) and the extrinsic curvature Kµν(x, τ) ofM. In this paper,
we discuss the linearized equations for weak gravitation in the 4+1 formalism, leading to a
straightforward derivation of the 4+1 differential equations and offering a directly intuitive
interpretation of their meaning.
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Section 2 provides a brief overview of the SHP framework for electrodynamics and
gravitation. In section 3 we obtain wave equations for the weak field approximation in SHP
and modify the field equations to break the 5D symmetry. Section 4 summarizes the 4+1
formalism for GR obtained by projection onto the spacetime as a 4D hypersurface of a 5D
pseudo-spacetime. In section 5 we specify the 4+1 formalism for weak fields and discuss
the relationship between the wave equations and the first order evolution equations and
their constraints.

2. Overview of the Stueckelberg Horwitz Piron Framework

The standard Feynman-Stueckelberg interpretation of antiparticles as particles trav-
eling backward in time required Stueckelberg to introduce [1,2] two closely related in-
novations. Clearly the evolution of such particles cannot be parameterized by the time
coordinate which is now allowed to reverse direction, and so Stueckelberg introduced an
evolution parameter we designate τ. Writing ẋµ = dxµ/dτ for indices µ, ν, λ = 0, 1, 2, 3, an
event trajectory is observed as a particle when E = Mcẋ0 > 0, or as an antiparticle when
E = Mcẋ0 < 0. Thus, a continuous pair creation/annihilation process entails two sign
changes of the squared interval

c2 ds2(τ) = −ηµνdxµdxν = −ẋ2(τ) dτ2 ηµν = diag(−1, 1, 1, 1) . (1)

Stueckelberg’s interpretation of antiparticles requires that ds2 be unconstrained, thus de-
moting the notion of fixed mass shells mc2 ds2(τ) from a priori constraint to a posteriori
conserved quantity relevant to τ-independent interactions. Since ds2 is not positive definite,
Stueckelberg concluded that τ cannot be identified with the proper time of the motion.

Horwitz and Piron [3] took a similar approach in their canonical relativistic mechanics
for the many-body problem, leading to solutions for relativistic generalizations of the
classical central force problems, quantum mechanical potential scattering and bound
states [12–17]. Stueckelberg found that classical particle/antiparticle processes require that
electromagnetic field Fµν must be supplemented by a vector field strength Gµ. Such a field
is also required in accounting for known phenomenology in the radiative transitions of the
bound states found by Horwitz and Arshansky [18–20]. Sa’ad, Horwitz, and Arshansky [4]
derived the vector interaction from the gauge theory associated with the canonical system.
Beginning with the action for a free particle

S =
∫

dτ
1
2

Mẋµ ẋµ (2)

which leads to

Mẍµ = 0 pµ =
∂L
∂ẋµ = Mẋµ − p2

2M
= Mẋ2 = constant (3)

the action is made maximally U(1) gauge invariant (see also [21]) by writing

SSHP =
∫

dτ
1
2

Mẋµ ẋµ +
e
c

ẋµaµ(x, τ) +
e
c

c5a5(x, τ) (4)

=
∫

dτ
1
2

Mẋµ ẋµ +
e
c

ẋβaβ(x, τ) (5)

where α, β, γ = 0, 1, 2, 3, 5, and x5 = c5τ in analogy to x0 = ct. This theory recovers
Maxwell electrodynamics [22] when c5 � c and we will generally neglect (c5/c)2. Notice
that for a pure gauge potential aα = ∂αΛ(x, τ), the interaction is just a total τ-derivative.
The Lorentz force [23] found from this action is
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Mẍµ =
e
c
(
ẋν fµν + c5 fµ5

)
=

e
c

ẋβ fµβ (6)

d
dτ

(
−1

2
Mẋµ ẋµ

)
= c5

e
c

ẋβ f5β (7)

with field strength
fαβ(x, τ) = ∂αaβ − ∂βaα . (8)

The mass term in (5) breaks the apparent 5D symmetry of the interaction term ẋβaβ(x, τ)
and the SHP action leads to an electrodynamics that differs from a 5D Maxwell theory.
We notice that (7) describes mass exchange between particles and fields, determining the
condition for non-conservation of proper time. Nevertheless, the total mass, energy, and
momentum of particles and fields are conserved [23]. The kinetic term for the field is of the
general form

Sfield =
∫

dτ d4x f αβ(x, τ) fαβ(x, τ) (9)

in which we raise the five-index of fαβ suggesting a metric element η55. However, if we
view the Lagrangian density as

f αβ(x, τ) fαβ(x, τ) = f µν(x, τ) fµν(x, τ) + 2σ f µ
5(x, τ) fµ5(x, τ) (10)

then η55 = σ = ±1 is merely the choice of sign for the vector-vector term. The notation
η55 is a purely formal convenience, with 5-components denoting O(3,1) scalars, not to
be treated as elements of a 5D tensor. Similarly, x5 is an external parameter and not a
timelike coordinate or a dynamical variable; ẋ5 = c5 is a constant scalar. Nevertheless, it is
convenient to write

ηαβ = diag(−1, 1, 1, 1, σ) (11)

in the form of a 5D flat space metric.
In this framework xµ(τ) is an irreversible event, occurring at time τ with spacetime

coordinates xµ, and we denote byM(τ) the 4D block universe consisting of all spacetime
events occurring at τ. The evolution of these events is generated by a scalar Hamiltonian K,
so thatM(τ) occurring at τ evolves to an infinitesimally close 4D block universeM(τ + dτ)
occurring at τ + dτ. This permits the configuration of spacetime, including the past and
future of x0 = ct, to change infinitesimally from moment to moment in τ, and so the metric
γµν(x, τ) ofM(τ) must evolve with τ. A τ-independent metric would play the role of
an absolute background field in this framework, inconsistent with the goals of general
relativity.

To find field equations for γµν(x, τ) we extend the methods of SHP electrodynamics
and generalize the 3+1 formalism as applied in Arnowitt Deser Misner (ADM) geometro-
dynamics [24]. That is, we interpret the electrodynamic action (5) as exhibiting a symmetry
breaking in the matter term

S5D =
∫

dτ
1
2

Mẋβ ẋβ +
e
c

ẋβaβ −→ SSHP =
∫

dτ
1
2

Mẋµ ẋµ +
e
c

ẋβaβ(x, τ) (12)

and approach the metric in a similar way, by posing 5D Einstein equations whose en-
ergy/matter terms, when joined to the geometrical field terms, break the higher sym-
metry to 4+1 representations of the Lorentz group. The metric gαβ(x, τ) determines the
squared interval

dX2 = gαβ(x, τ)dXαdXβ dX = (x2, τ2)− (x1, τ1) (13)

in a pseudo-spacetimeM5 =M× R formed by embedding the 4D hypersurfacesM(τ).
Unlike a 5D spacetime with symmetry O(4,1) or O(3,2), the symmetries ofM5 can be seen
by taking

δX = (x2(τ1 + δτ)− x1(τ1), δτ) ≈ (δx(τ1) + ẋ1δτ, δτ) (14)
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representing the 4D spacetime geometry of δxµ(τ) ∈ M(τ) and the canonical evolution
between the points X1 = (x1, τ1) ∈ M(τ1) and X2 = (x2, τ2) ∈ M(τ2). After posing 5D
Einstein equations onM5 and breaking the 5D symmetry to O(3,1), the natural foliation
(see also [25,26]) recovers the embedded spacetime hypersurfacesM(τ), decomposing the
field equations into a τ-evolution problem for the spacetime metric γµν(x, τ) and intrinsic
curvature Kµν(x, τ).

Direct application of the Euler–Lagrange equations to the free particle Lagrangian

L =
1
2

Mgαβ(x, τ)ẋα ẋβ (15)

leads to equations of motion

0 =
Dẋµ

Dτ
= ẍµ + Γµ

αβ ẋα ẋβ 0 =
Dẋ5

Dτ
= ẍ5 + Γ5

αβ ẋα ẋβ (16)

where Γγ
αβ is the 5D Christoffel symbol found from gαβ(x, τ). However, because x5 is not a

dynamical variable in the SHP framework, the equation on the right must be replaced by
x5(τ) ≡ c5τ −→ ẍ5 ≡ 0, a first example of breaking 5D symmetry to 4+1. In τ-equilibrium,
where γµν(x) becomes τ-independent and gα5 = 0, (16) reduces to

0 =
Dẋµ

Dτ
= ẍµ + Γµ

λρ ẋλ ẋρ (17)

which has been studied extensively by Horwitz [7,8] and will not be discussed here.
For simplicity, we treat matter as a non-thermodynamic (zero-pressure) dust of events

evolving geodesically under (16). Denoting by n(x, τ) the number of events per spacetime
volume, the five-component event current is

jα(x, τ) = ρ(x, τ)ẋα(τ) = Mn(x, τ)ẋα(τ) (18)

the mass–energy–momentum tensor [4,27] is

Tαβ = Mnẋα ẋβ = ρẋα ẋβ −→

 Tµν = Mnẋµ ẋν = ρẋµ ẋν

T5β = ẋ5 ẋβρ = c5 jβ .
(19)

The current satisfies the continuity equation

∇α jα =
∂jα

∂xα
+ jγΓα

γα =
∂ρ

∂τ
+∇µ jµ = 0 (20)

which relates the event density as a function of τ to the flow of the event 4-current into
spacetime. Similarly, Tαβ is conserved by virtue of (16) and (20), suggesting that the 4D
Einstein equations be extended to

Rαβ −
1
2

gαβR =
8πG

c4 Tαβ (21)

with 5D Ricci tensor Rαβ and Ricci scalar R obtained from gαβ. To approach the breaking
of the 5D symmetry exhibited in (21), we first consider insights from the linearized weak
field theory.
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3. Linearized Field Equations for Weak Fields

Up to a certain stage, linearization of the Einstein equations for SHP requires no more
than replacement of 4D indices λ, µ, ν with 5D indices α, β, γ in the standard derivation.
Posing the local metric as a small perturbation of the flat metric

gαβ = ηαβ + hαβ −→ ∂γgαβ = ∂γhαβ

(
hαβ

)2 ≈ 0 (22)

ηαβ = diag(−1, 1, 1, 1, σ) (23)

the Ricci tensor reduces to linear terms in hαβ

Rαβ ≈
1
2

(
∂β∂γhγ

α + ∂α∂γhγ
β − ∂γ∂γhαβ − ∂α∂βh

)
. (24)

Invariance of the Ricci tensor under a translation x′α = xα + Λα(x, τ) permits us to apply
the 5D Lorenz gauge condition

∂β h̃αβ = ∂β

(
hαβ −

1
2

ηαβh
)
= 0 −→ ∂βhαβ =

1
2

∂αh (25)

leading to the Einstein tensor in the form

Gαβ = Rαβ −
1
2

ηαβR = −1
2

∂γ∂γ

(
hαβ −

1
2

ηαβh
)
= −1

2
∂γ∂γ h̃αβ (26)

and providing the 5D wave equation

− ∂γ∂γ h̃αβ = −
(

∂µ∂µ + ∂5∂5

)
h̃αβ =

16πG
c4 Tαβ . (27)

This equation has the Green’s function [28]

G(x, τ) =
1

2π
δ(x2)δ(τ) +

c5

2π2
∂

∂x2 θ(−η55gαβxαxβ)
1√

−η55gαβxαxβ
(28)

in which the first term is instantaneous in τ and dominates at long distance for many
problems, leading to the generic approximate solution

h̃αβ(x, τ) ≈ 4G
c4

∫
d3x′

Tαβ

(
t− |x−x′ |

c , x′, τ
)

|x− x′| =
4G
c4 ẋα ẋβ

∫
d3x′

ρ
(

t− |x−x′ |
c , x′, τ

)
|x− x′| (29)

for known mass density ρ(x, τ) and event velocity ẋα freely falling under (16). Choosing a
spacetime event density ρ(x− q(τ)) centered on a trajectory qµ(τ), and writing ξα = ẋα/c
the mass–energy–momentum tensor is

Tαβ = mρ(x, τ)q̇α q̇β = mc2ξαξβρ(x− q(τ)) (30)

producing the metric perturbation

h̃αβ(x, τ) =
4Gm

c2r(τ)
ξαξβ (31)

where

1
r(τ)

=
∫

d3x′
ρ
(

t− q0(τ)
c − |x−x′+q(τ)|

c , x′ − q(τ)
)

|x− x′ + q(τ)| (32)
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has units of inverse distance. In particular, taking q(τ) = (cτ, 0, c5τ) and ρ(x) = δ3(x),
describing an event distributed around the t-axis in its rest frame, we have ξ = (1, 0, c5/c)
and

h̃αβ(x, τ) =
4Gm
c2|x| ξαξβ =

4Gm
c2r

(
δ0

α + ξ5δ5
α

)(
δ0

β + ξ5δ5
β

)
. (33)

To obtain the perturbed metric hαβ from h̃αβ we rearrange

hαβ = h̃αβ +
1
2

ηαβh (34)

we find the trace h from

h̃ = ηαβ h̃αβ = ηαβ

(
hαβ −

1
2

ηαβh
)
=

(
1− 1

2
ηαβηαβ

)
h . (35)

However, since ηαβηαβ = 5 −→ h = −(2/3) h̃, we will be led to the solution

h00 = h̃00 −
1
3

η00h̃ =
2
3

4Gm
c2r

h05 = h̃05 −
1
3

η05h̃ =
2
3

σξ5
4Gm
c2r

hij = h̃ij −
1
3

ηij h̃ =
1
3

δij
4Gm
c2r

h55 = h̃55 −
1
3

η55h̃ =
1
3

σ
4Gm
c2r

(36)

where i, j = 1, 2, 3 and we have neglected terms in ξ2
5 ≈ 0. This metric structure, where

h00 = 2hii and h00 = ±2h55, is not consistent with gravitational phenomenology. In
particular we expect |h55| � |h00|.

To obtain a reasonable solution we must break the 5D symmetry in the relationship
between the 5D Einstein tensor and the source term. Writing the linearized Einstein
equations as

Rαβ −
1
2

ηαβR =
8πG

c4 Tαβ (37)

we take the trace

R
(

1− 1
2

ηαβηαβ

)
=

8πG
c4

(
ηµνTµν + η55T55

)
(38)

leading to the trace-reversed form

Rαβ =
8πG

c4

[
Tαβ +

1
2 ηαβ

1− 1
2 ηαβηαβ

(
ηµνTµν + η55T55

)]
. (39)

As in SHP electrodynamics, we treat η55 = σ as a notational device rather than a feature of
physical matter, and so we replace

ηαβ → η̄αβ = diag(−1, 1, 1, 1, 0) (40)

in the source terms on the RHS leading to the O(3,1)-covariant field equations

Rµν =
8πG

c4

(
Tµν −

1
2

ηµνT̄
)

R5α =
8πG

c4 T5α (41)

where T = ηµνTµν. These modified field equations lead to the wave equations

− ∂γ∂γhµν =
16πG

c4

(
Tµν −

1
2

ηµνT̄
)

− ∂γ∂γh5α =
16πG

c4 T5α (42)
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which for the perturbation (33) have the solution

h00 = h̃00 −
1
2

η00h̃ =
2Gm
c2r

h05 = h̃05 = σG[T50] = σξ5
4Gm
c2r

hij = h̃ij −
1
2

ηij h̃ = δij
2Gm
c2r

h55 = h̃55 = σG[T55] = σξ2
5

4Gm
c2r

.

(43)

Writing

1 +
2Gm
c2r
≈
(

1− 2Gm
c2r

)−1
(44)

the spacetime part of the metric becomes

gµν = diag

(
−
(

1− 2Gm
c2r

)
,
(

1− 2Gm
c2r

)−1
δij

)
(45)

while

g55 = σ

(
1 + σξ2

5
2Gm
c2r

)
≈ σ . (46)

As we saw in the equations of motion (16) for an event, this approach respects the 5D
geometry of the fields, as expressed through the Ricci tensor, but breaks the 5D symmetry
of the physics to 4+1 in setting the equality between Rαβ and the source Tαβ.

4. Overview of 4+1 Formalism

The 3+1 formalism, including approaches such as ADM [24], decomposes the Einstein
equations into an initial value problem for the metric and extrinsic curvature of 3-space,
parameterized by the time coordinate t. This decomposition begins by choosing a time
direction in the 4D spacetime M, defining a foliation onto a collection of spacelike 3D
hypersurfaces. By projecting spacetime structures onto this foliation, one finds a pair of
first order differential equations for the t-evolution of space along with a pair of constraints
that must be met by the initial conditions.

For the SHP approach to GR, the 3+1 formalism has been extended to 4+1 by choice of
τ as the time direction, foliation of the pseudo-spacetimeM5, and decomposition of the
symmetry-broken Einstein equations (41) into an initial value problem. In this section we
summarize the 4+1 formalism. A detailed presentation can be found in [10].

The pseudo-spacetimeM5 introduced in Section 2 is defined by the injective mapping
Φ : M −→ M5 =M× R with the natural foliation to level surfaces of the scalar field
S(X) = X5/c5 = τ

Στ =
{

X ∈ M5
∣∣ S(X) = τ

}
. (47)

The normalized gradient of S(X)

nα = σ
1√
|g55|

∂αS(X) = σ
1√
|g55|

δ5
α gαβnαnβ = σ (48)

is normal to Στ because S(X) = constant for X ∈ Στ . The vectors gµ with components

(
gµ

)α
= ∂µΦα =

(
∂Xα

∂xµ

)
τ

= δα
µ (49)

form a coordinate frame for the tangent space T (Στ) ⊂ T (M5) and a fifth basis vector for
T (M5) may be chosen as the linear combination of n and

{
gµ

}
prescribed by

g5 = Nµgµ + Nn (50)
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often called the ADM parameterization. The 4-vector Nµ generalizes the shift 3-vector in
3+1 formalisms and N is the lapse function. Designating γµν = gµν = gµ · gν we find a
generalization of the ADM metric decomposition through gαβ = gα · gβ

gαβ =

 γµν Nµ

Nµ σN2 + γµνNµNν

 gαβ =

 γµν + σ
1

N2 NµNν −σ
1

N2 Nµ

−σ
1

N2 Nµ σ
1

N2

 (51)

which puts the unit normal into the form

nα =
1
N
(
−Nµgµ + g5

)α
=

1
N

(
−Nµδα

µ + δα
5

)
nα = σ

1√
|g55|

δ5
α = σN δ5

α = σN
(
g5)

α

(52)

where the second expression is implicit in parameterization (50) through nα = gαβnβ. The
projection operator onto T (Στ) is

Pαβ = gαβ − σnαnβ Pαβ = gαβ − σnαnβ PαγPγβ = Pβ
α = δ

β
α − σnαnβ (53)

with completeness relations

gαβ = Pαβ + σnαnβ δα
β = Pα

β + σnαnβ . (54)

In particular, the spacetime components are

γµν = gαβEα
µEβ

ν =
(

Pαβ + σnαnβ

)
Eα

µEβ
ν = PαβEα

µEβ
ν = Pµν (55)

showing that the projector Pαβ when restricted to Στ acts as the 4D metric γµν.
The 5D covariant derivative ∇γ compatible with gαβ is associated with the Christoffel

connection Γγ
δβ which appeared in the geodesic equations (16). The projected covariant

derivative on T (Στ) compatible with Pαβ (and hence γµν) is denoted Dα

(DX)αβ1···βn
= Pα′

α Pβ′1
β1
· · · Pβ′n

βn

(
∇α′Xβ′1···β′n

)
. (56)

These covariant derivatives lead to the curvature and projected curvature tensors[
∇β,∇α

]
Xγ = XδRδ

γαβ

[
Dβ, Dα

]
Xa = XδR̄δ

γαβ (57)

along with the extrinsic curvature defined by

Kαβ = −Pγ
α Pδ

β ∇δnγ = −∇αnβ − nα
1
N

DβN . (58)

The spacetime part of the projected curvature R̄ρ
λµν is the 4D intrinsic curvature forM and

Kµν characterizes the evolution of the unit normal to T (Στ).
We may decompose the Riemann tensor into a sum of projections on T (Στ) and nα,

by using the completeness relation (54) to write

Rγ
δαβ =

(
Pα′

α + σnαnα′
)(

Pβ′

β + σnβnβ′
)(

Pγ
γ′+ σnγnγ′

)(
Pδ′

δ + σnδnδ′
)

Rγ′

δ′α′β′ (59)

leading to terms of the type(
Pα′

αPβ′

βPγ
γ′P

δ′
δ

)
Rγ′

δ′α′β′

(
Pγ

γ′P
α′
αPβ′

β

)
nδ Rγ′

δα′β′

(
Pαα′P

β′

β

)
nγ′nδ Rα′

δβ′γ′ (60)
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because the antisymmetry of the Riemann tensor leads to nβ′nγ′nδ Rα′
δβ′γ′ = 0. Using (53) in

the second of (57) provides the Gauss relation

Rµ
νλρ = R̄µ

νλρ − σ
(

Kµ
λKρν − Kµ

ρ Kλν

)
. (61)

This provides Rµ
νλρ (the spacetime components of the 5D intrinsic curvature) in terms

of the 4D intrinsic curvature R̄µ
νλρ and the extrinsic curvature Kρν (which collects the

5-components of Γγ
δβ not present in R̄µ

νλρ). Replacing Xδ = nδ in the first of (57) and
projecting the three remaining indices onto T (Στ) leads to the Codazzi relation(

Pα′
αPβ′

βPγ′
γ

)
nδ Rδ

γ′α′β′ = DβKαγ − DαKβγ (62)

and similarly projecting onto nγ′ and nδ leads to(
Pαα′P

β′

β

)
nγ′nδ Rα′

δβ′γ′ = −Kγ
α Kγβ − σ

1
N

DβDαN + Pα′
α Pβ′

β nγ′∇γ′Kα′β′ . (63)

Equations (61)–(63) generalize the corresponding relations in the 3+1 formalism and play a
central role in decomposing the Einstein equations into evolution equations.

To formulate an initial value problem we seek the τ-derivatives of the metric γαβ = Pαβ

and extrinsic curvature Kαβ. Introducing the normal evolution vector m = Nn and writing
(50) as

g5 = Nµgµ + Nn = N + m (64)

we find the Lie derivative along m as

Lm = Lg5 −LN (65)

and since (g5)
γ = δ

γ
5 , we obtain

Lg5 Aαβ = δ
γ
5 ∂γ Aαβ + Aγβ∂αδ

γ
5 + Aαγ∂βδ

γ
5 = ∂5 Aαβ =

1
c5

∂τ Aαβ . (66)

The Lie derivative of the metric γαβ along m is

Lm γαβ = mγ∇γγαβ + γγβ∇αmγ + γαγ∇βmγ (67)

which may be evaluated using (53) for Pαβ = γαβ in the first term and using (58) to obtain

Lm γαβ = −2NKαβ −→ 1
c5

∂τγµν = LN γµν − 2NKµν (68)

as the evolution equation for the metric. The Lie derivative of Kαβ is

Lm Kαβ = mγ∇γKαβ + Kγβ∇αmγ + Kαγ∇βmγ . (69)

Again using (58) to evaluate ∇αmγ and recalling (63) results in

1
N
Lm Kαβ +

1
N

DαDβN + KαγKγ
β =

(
Pαα′ Pβ′

β

)
nγnδ Rα′

δβ′γ (70)

so that using the Gauss relation (61) we can put (70) into the form

Pα′
αPβ′

βR α′β′ = σ
1
N
Lm Kαβ + σ

1
N

DαDβN + R̄αβ − σKKαβ + σ2Kδ
αKβδ . (71)
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In this expression only the Ricci tensor on the LHS refers to the 5D geometry ofM5 and
may be eliminated using the Einstein field equations. Recalling the trace-reversed form (39)
we have in curved space

Rαβ =
8πG

c4

[
Tαβ +

1
2 gαβ

1− 1
2 gαβgαβ

(
gµνTµν + g55T55

)]
(72)

in which gαβ on the RHS must be replaced with a symmetry-broken form, just as we saw
in the linearized theory. Breaking the symmetry for the local metric is best achieved in a
vielbein formulation of GR, as discussed in a forthcoming paper. In the linearized theory,
we replace gαβ → ηαβ → η̄αβ and will continue here by writing

Rαβ ≈
8πG

c4

[
Tαβ −

1
2

η̄αβT̄
]

(73)

as an approximation, where again T̄ = ηµνTµν. We decompose the source term by projecting

Tαβ = Tα′β′

(
Pα′

α + σnα′nα

)(
Pβ′

β + σnβ′nβ

)
= Sαβ + 2σnα pβ + nαnβκ (74)

where
Sαβ = Pα′

α Pβ′

β Tα′β′ pβ = −nα′Pβ′

β Tα′β′ κ = nαnβTαβ (75)

so that Sµν corresponds to the 4D energy–momentum tensor Tµν, pµ corresponds to the
mass current into the µ direction T5µ, and κ corresponds to the scalar mass density T55. It is
useful in this context to regard mass as a quantity expressing the dynamical independence
of energy and momentum, providing a variable relation between them. In this notation,
T̄ = ηµνTµν = ηµνSµν = S. Finally, the projected Ricci tensor becomes

Pα′
αPβ′

βR α′β′ ≈ Pα′
αPβ′

β

8πG
c4

[
Tα′β′ −

1
2

η̄α′β′ T̄
]
=

8πG
c4

[
Sαβ −

1
2

η̄αβS
]

(76)

providing an evolution equation for the extrinsic curvature(
1
c5
Lτ −LN

)
Kµν =−DµDνN

+N
[
−σR̄µν + KKµν − 2Kλ

µ Kνλ + σ
8πG

c4

(
Sµν −

1
2

ηµνS
)]

. (77)

The double projection of the unbroken 5D field equation onto the time direction n is(
Rαβ −

1
2

gαβR
)

nαnβ =
8πG

c4 Tαβnαnβ −→ Rαβnαnβ − 1
2

σR =
8πG

c4 κ (78)

which using the Gauss relation (61) becomes

R̄− σ
(

K2 − KµνKµν

)
= −σ

8πG
c4 κ . (79)

This expression, called the Hamiltonian constraint, applies to the mass density of the

gravitational field, not the energy density as in 4D GR. The mixed projection with Pβ′

βnα

nαPβ′

β

(
Rαβ′ −

1
2

gαβ′R
)
= nαPβ′

β

8πG
c4 Tαβ′ −→ Pβ′

βnαRαβ′ −
1
2

gαβ′nαPβ′

βR = −8πG
c4 pβ (80)
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is combined with the Codazzi relation (62) and gαβ′nαPβ′

β = nαPαβ = 0 to obtain

DµKµ
ν − DνK =

8πG
c4 pν (81)

which is called the momentum constraint, referring to the flow of mass into the field.
Together, the evolution Equations (68) and (77) and constraints (79) and (81) are the 4+1
decomposition of the SHP Einstein equations. Notice however that the Hamiltonian
constraint does not reflect the breaking of 5D symmetry to O(3,1) and will be corrected in
Section 5.

The evolution equations and constraints contain only objects defined on Στ . Unlike
the evolution equations, the constraints contain no τ-derivatives. If they are satisfied by
the initial conditions, they will be satisfied for all τ. The constraining relationship is said to
propagate, rather than evolving under second order differential equations.

5. The 4+1 Decomposition for the Linearized Theory

Under 4+1 decomposition, the metric is written

∥∥gαβ

∥∥ =

[
gµν gµ5
gµ5 g55

]
=

[
ηµν + hµν hµ5

hµ5 η55 + h55

]
(82)

allowing us to identify

∥∥gαβ

∥∥ =

 γµν Nµ

Nµ σN2 + γµνNµNν

 =

 ηµν + hµν hµ5

hµ5 η55 + h55

 (83)

from which

σN2 + γµνNµNν = σN2 +
(
ηµν + hµν

)
hµ

5 hν
5 ≈ σN2 −→ σN2 = σ + h55

N =
√

1 + σh55 ≈ 1 +
1
2

σh55 .
(84)

Then

∥∥∥gαβ
∥∥∥ =

 γµν + σ
1

N2 NµNν −σ
1

N2 Nµ

−σ
1

N2 Nµ σ
1

N2

 ≈
 ηλν − hµν −σhµ

5

−σhµ
5 σ(1− σh55)

 (85)

and the unit normal is

nα = σNδ5
α = σ

√
1 + σh55δ5

α = σ

(
1 +

1
2

σh55

)
δ5

α (86)

nα =−hµ
5 δα

µ +

(
1− 1

2
σh55

)
δα

5 . (87)

Discarding terms of the order
(
hαβ

)2 ≈ 0, the Lie derivative of the metric reduces to

LNγµν = DµNν + DνNµ ≈ ∂µNν + ∂νNµ = ∂µh5ν + ∂νh5µ (88)

and we may neglect the Lie derivative LNKµν

LNKµν = Nλ∂λKµν + Kλν∂µNλ + Kµλ∂νNλ ∝
(
hαβ

)2 ≈ 0 (89)
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along with terms quadratic in Kµν. Writing

− 2NKµν ≈ −2
(

1 +
1
2

σh55

)
Kµν = −2Kµν (90)

the evolution Equation (68) for γµν becomes

1
c5

∂τγµν = ∂µh5ν + ∂νh5µ − 2Kµν . (91)

and the evolution Equation (77) for Kµν reduces to

1
c5

∂τKµν = −1
2

σ∂µ∂νh55 − σR̄µν + σ
8πG

c4

(
Sµν −

1
2

ηµνS
)

(92)

where we used

DµDνN = ∂µ(∂νN)− Γλ
µν∂λN ≈ ∂µ∂νN =

1
2

σ∂µ∂νh55 . (93)

The coupled Equations (91) and (92) provide the initial value problem for the metric and
extrinsic curvature onM in the linearized theory, given initial conditions for γµν and Kµν

that satisfy the constraints.
The relationship between γµν and Kµν can be clarified somewhat in the linearized

theory. Using (58), (86) and (87) for Kαβ, nα, and nα we evaluate

Kαβ = −
(

δα′
α − σnα′nα

)(
δ

β′

β − σnβ′nβ

)(1
2

∂β′h55δ5
α′ − σΓ5

β′α′

)
−→ Kµν = σΓ5

µν (94)

showing explicitly that the extrinsic curvature contains 5-components of the 5D Christoffel
symbol not present in the 4D intrinsic curvature. Similarly, rewriting (91) as

1
2
(
∂µh5ν + ∂νh5µ − ∂5γµν

)
= Kµν (95)

we again recognize the LHS as η55Γ5
µν. Thus, Kµν replaces the “velocity” ∂5γµν with a

“momentum” extracted from Γ5
µν components that do not explicitly appear in the initial

value problem, converting the second order wave equation to a pair of first order equations.
In [10] we showed that in the 4+1 canonical ADM formalism, the momentum precisely
conjugate to γµν is

πµν = −σ
√

γ(Kµν − γµνK) . (96)

The linearized evolution equation for Kµν and the constraints can be understood by
splitting the Einstein equations into spacetime and 5-parts. The Bianchi identity for the
symmetry-broken linearized Einstein tensor is

∇αGαβ = ∇α

(
Rαβ − 1

2
η̄αβR

)
= ∂α

(
Rαβ − 1

2
η̄αβR

)
+ o
(

h2
αβ

)
= 0 (97)

which we rewrite as
1
c5

∂τG5β = −∂µGµβ + o
(

h2
αβ

)
. (98)

The RHS must contain gαβ, ∂τ gαβ, and ∂2
τ gαβ, and so the components of G5β on the LHS

may be at most first order τ-derivatives. Therefore, the five field equations

G5β = R5β −
1
2

η̄5βR = R5β =
8πG

c4 T5β (99)
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define constraints among the initial conditions for the second order field equations: The
metric, its first-order τ-derivative, and the source current jβ = T5β. The ten field equations

Gµν = Rµν −
1
2

ηµνR =
8πG

c4 Tµν −→ Rµν =
8πG

c4

(
Tµν −

1
2

ηµνT̄
)

(100)

are unconstrained and contain second τ-derivatives of the metric. From the linearized 5D
Ricci tensor (24) with no gauge fixing, we split the spacetime part as

Rµν = R̄µν + ∂5
1
2

σ
(
∂µh5ν + ∂νhµ5 − ∂5hµν

)
− 1

2
∂µ∂νσh55 (101)

where
R̄µν =

1
2

(
∂µ∂λhλν + ∂ν∂σhµσ − ∂λ∂λhµν − ∂µ∂νηλσhλσ

)
(102)

contains the terms belonging to the 4D Ricci tensor onM, and the last term in (101) is from
the 5-piece of ηαβhαβ. Comparing with (95) we recognize the extrinsic curvature Kµν in the
second term of (101) and using (100) to replace Rµν we arrive at

1
c5

∂τKµν =
1
2

∂µ∂νη55h55 − σR̄µν + σ
8πG

c4

(
Tµν −

1
2

ηµνT̄
)

. (103)

which differs from the evolution equation (92) by the sign of the first term on the RHS.
Equation (103) may be approached by seeking a gauge condition that resolves this sign
reversal, but this similarly shows that consistency of the linearized 4+1 formalism requires
the h55 term in (103) to vanish.

Applying the 5D Lorenz gauge condition (25), expanded as

∂λhαλ =
1
2

∂αη̄λσhλσ +
1
2

∂αη55h55 − ∂5hα5 (104)

to the 5-component of (27) we obtain

R5β =
1
2

(
−∂5∂5hβ5 − ∂λ∂λh5β

)
= −1

2
∂γ∂γh5β . (105)

Comparing with (99) for β = µ, 5 this provides

− ∂γ∂γh5µ =
16πG

c4 T5µ = −16πG
c4 pµ − ∂γ∂γh55 =

16πG
c4 T55 =

16πG
c4 κ (106)

and as expected, the RHS of these expressions match the RHS of constraints (79) and (81).
Again using (95) to evaluate

∂νK = −1
2

∂ν∂5h55 ∂µKµ
ν =

1
2

(
−∂5∂µhµν + ∂µ∂µh5ν +

1
2

∂ν∂5h− ∂ν∂5h55

)
(107)

we find
∂µKµ

ν − ∂νK =
1
2

(
∂5∂5hν5 + ∂µ∂µh5ν

)
= ∂γ∂γh5ν . (108)

which combined with the first of (106), provides the momentum constraint (81).
In the linearized theory we discard the terms K2 − KµνKµν in the Hamiltonian con-

straint (79) and must evaluate R̄. Recalling the definition of R̄δ
γαβ in the second of (57), we

insert the projectors[
Dβ, Dα

]
Xγ = Pβ′

β Pα′
α Pγ′

γ

[
∇β′ ,∇α′

]
Xγ′ −→ R̄δ

γαβ = Pβ′

β Pα′
α Pγ′

γ Rδ
γ′α′β′ (109)
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and using the idempotent Pαα′ as the metric on the projected hypersurface find

R̄ = PγβPα
δ Rδ

γαβ ≈ PγβPα
δ

(
∂αΓδ

γβ − ∂βΓδ
γα

)
(110)

for the projected Ricci scalar, neglecting terms of o
(

h2
αβ

)
. Using the (86) and (87) in the

projectors, we are eventually led to

R̄ =
1
2

(
−∂γ∂γh + 2∂γ∂γh5

5

)
= −1

2
∂γ∂γ

(
h̄− h5

5

)
. (111)

Returning now to the wave equations, in the notation of the 4+1 decompostion, the space-
time field Equation (42) is

− ∂γ∂γhµν =
16πG

c4

(
Sµν −

1
2

ηµνS
)

−→ −∂γ∂γ h̄ = −16πG
c4 S (112)

where h̄ = ηµνhµν. Combining the trace with the second of (106) we obtain

− 1
2

∂γ∂γ
(

h̄− h5
5

)
= −1

2
∂γ∂γ

(
h̄− σh55

)
= −8πG

c4 (S + σκ) (113)

leading us to

R̄ = −8πG
c4 (S + σκ) . (114)

which modifies the Hamiltonian constraint (79) found for unbroken 5D symmetry.
We have seen that breaking the 5D symmetry of the Einstein equations onM5 to O(3,1)

produces two modifications in the 4+1 formalism. First, in the evolution equation for Kµν

we see that S + σκ −→ S, stating that the energy density S, but not the mass density κ, acts
as a source for evolution of the extrinsic curvature. Second, in the Hamiltonian constraint
we see that σκ −→ S + σκ , so that the energy density and mass density contribute
independently to the Ricci scalar.

We recall from (19) and (75) that

κ = nαnβTαβ = T55 = c2
5 ρ(x, τ) (115)

representing the mass density in spacetime [27]. From conservation of the mass–energy–
momentum tensor and (75)

∇αTαβ =
1
c5

∂τTα5 +∇µTαµ = 0 −→ ∂τT55 = −∇µT5µ = ∇µ pµ (116)

relating the flow of energy–momentum into spacetime to the time variation of the local
mass density ρ(x, τ). Because of the factor c2

5 in (115) the second of (106) shows that only a
very large scalar mass density will contribute to the perturbed metric. Nevertheless, from
the definition (18) of the event current, ρ(x, τ) and hence κ are non-vanishing.

The significance of κ may also be considered by modifying the second of (100) as

Rµν =
8πG

c4

[
Sµν −

1
2

ηµν(S + σκ)

]
(117)

which is the 5D symmetric form presented in [10]. Again using (75) we see that the
modification introduces the full 5D trace ηαβTαβ = S + σκ. Writing

Λ(x, τ) = σ
4πG

c4 κ (118)
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permits us to rearrange (117) as

Rµν + Ληµν =
8πG

c4

(
Sµν −

1
2

ηµνS
)

(119)

where the mass density plays the familiar role of a scalar (but local) cosmological term,
not derived from the energy–momentum tensor Sµν. Once again, the factor of c2

5 will
generally result in a small Λ, that depends on the motions of the events contributing to the
mass density.

6. Summary

In the canonical SHP formalism, the block universeM(τ) consists of spacetime events
xµ(τ) that occur at a universal time τ. The τ-evolution of these events is generated by a
scalar Hamiltonian. This structure describes an evolving spacetime formulated as an initial
value problem in a natural way. Just as Stueckelberg characterized particle trajectories as
defined by τ-evolving events, the 4+1 formalism constructs the structure of spacetime by
integrating a coupled pair of first order differential equations in γµν, Kµν, and Tαβ, specified
at some τ, and tested for consistency by constraint equations. As in SHP electrodynamics,
one finds field equations by writing a familiar 5D theory whose symmetry is restricted to
tensor and scalar representations of O(3,1). One then finds the of 4+1 equations of motion
by foliation of 5D pseudo-spacetime, so that geometrical structures and the field equations
can be projected onto the resulting 4D hypersurfaces.

This paper clarifies the breaking of the 5D symmetry in the field equations, at the
interface between the Ricci tensor (geometry) and the matter/energy source represented by
Tαβ. We also derive the 4+1 equations of motion, for the linearized field equations, by de-
composing the 5D Ricci tensor into spacetime components Rµν providing 10 unconstrained
equations for the metric, and R5µ leading to 5 constraints on the initial conditions. The
Bianchi identity establishes the significance of this separation.

This 4+1 formalism has the advantage of employing the external time τ as evolution
parameter, manifestly preserving the 4D spacetime symmetries at each step. Spacetime
geometries are obtained from specific spacetime event trajectories, with possible coordinate
time x0(τ) reversal, generally thought of as closed timelike curves. In a forthcoming paper,
the 4+1 formalism will be derived using a quintrad frame defining a vielbein field that
permits a more direct decomposition to an initial value problem for the 4D metric extrinsic
curvature. Examples given in [10] include the absence of τ-evolution for a standard
Schwarzschild metric, and the perturbation associated with a τ-varying mass. Future
directions include solution of the weak field derived from a single arbitrarily moving
event with varying mass, and calculation in the full nonlinear framework of more complex
scenarios, such as black hole collisions, in which the use of x0 as both an evolving solution
and an evolution parameter may produce considerable difficulties.
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