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Abstract: Numerical simulations of binary neutron star mergers invariably show that, when a
long-lived remnant forms, its rotation profile is never a simple decaying function of the radius but
rather exhibits a maximum rotation rate shifted away from the center. This is in contrast to the
usual differential rotation profile employed for the numerical modeling of axisymmetric equilibria
of relativistic stars. Two families of rotation rate functions that mimic post-merger profiles were
proposed by Uryū et al. (2017). In this work we implement Uryū’s profiles into the XNS code by
Bucciantini and Del Zanna (2011) and we present novel equilibrium sequences of differentially
rotating neutron stars. These are constructed by using three different equations of state, in order to
study the dependence of mass, radius, angular momentum, and other important physical quantities,
especially the quadrupole deformation and metric quadrupole moment, from the rotation properties.

Keywords: neutron stars; differential rotation; numerical methods; magnetohydrodynamic (MHD);
relativistic processes

1. Introduction

On August 2017, the Advanced Virgo detector and the two Advanced LIGO detectors
coherently observed a transient gravitational-wave (GW) signal (GW170817) produced
by the coalescence of a binary neutron star (BNS) system [1]. This observation, with its
electromagnetic counterpart-designated GRB 170817A [2], has set a real milestone in the
history of multi-messenger astronomy. The GW spectrum provides a fertile ground for
exploring many fundamental questions in physics and astronomy [3].

Numerical relativity simulations have become an irreplaceable tool to study the
properties of the merger remnant and the GWs emitted during the coalescence process
(e.g., [4–14]). When a long-lived remnant (lifetime of at least 10 ms) forms from a BNS
merger, these numerical simulations show that the resulting hypermassive neutron star
(HMNS) is supported against collapse toward a black hole by strong differential rotation
gradients. The remnant typically presents a rotation profile which is shallow at the center,
followed by a rapid increase toward a maximum, located at a few kilometers away from
the center, beyond which the rotation rate drops following an almost Keplerian trend.
Analytical families of post-merger rotational profiles with the desired properties that mimic
the outcome of simulations have been proposed by Uryū et al. (2017) [15] (see also [16] for
a different rotation profile and [17] for non-barotropic equilibria).

In order to investigate the physics of BNS remnants and HMNSs, for instance the
production of GWs or their further evolution, it is useful to extend the numerical tools to
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build equilibria of relativistic stars, usually assuming rigid rotation or simple monotonic
profiles (e.g., [18–20]), by also allowing for these remnant-like differential rotation profiles.
Recently the mentioned functions proposed by Uryū have been successfully included in
existing or novel numerical tools for hydrodynamic equilibria [17,21–25].

In the present work we investigate in detail the properties of BNS merger rem-
nants, here modelled as axisymmetric, stationary, differentially rotating neutron stars,
using different families of barotropic (zero temperature) equations of state (EoSs), and as-
suming the rotation profiles by Uryū . We then show how various physical quantities,
such as mass, radius, and angular momentum, and in particular of the quadrupole
deformation and metric quadrupole moment, depend on the rotation parameters and
on the chosen EoS. All models have been computed using the XNS code [26,27] (https:
//www.arcetri.inaf.it/science/ahead/XNS/, accessed on 5 December 2021), which is de-
rived from the X-ECHO code by Bucciantini and Del Zanna (2011) [26] and solves the general
relativistic magnetohydrodynamics (GRMHD) equations together with the Einstein equa-
tions, under the eXtended Conformal Flatness Condition (XCFC) approximation [28] for the
metric. Axisymmetric configurations of relativistic stars obtained with XNS have been
extensively studied also in the magnetized case, for non-polytropic tabulated equations
of state, and more recently for scalar-tensor extended theories of gravity [19,27,29–32].
The XNS code allows to compute magnetized equilibrium models with poloidal, toroidal
and mixed magnetic fields and the implementation of post-merger-like rotational profiles
is therefore useful in view of future studies of GRMHD dynamics using the ECHO code [33]
or similar.

The paper is organized as follow. In Section 2 we discuss the theoretical framework.
In Section 3 we present the main results of our set of models. In Section 4 we summarize
and conclude. In Appendix A our implementation of the Uryū rotation profiles in the XNS
code is described in details.

Throughout the text we set c = G = M� = 1, where M� is the solar mass, and we
assume a signature (−,+,+,+) for the spacetime metric.

2. Theoretical Framework

Under the assumption of stationarity and axisymmetry, the relativistic Euler equation
for a rotating non-magnetized fluid in spherical coordinates (t, r, θ, φ) can be written as

∇p
ε + p

−∇ ln ut + j∇Ω = 0 (1)

where uµ = (ut, 0, 0, uφ) is the fluid four-velocity, ε the total energy density of the fluid, p
the (isotropic) pressure, Ω = uφ/ut the angular velocity, or rotation rate, and j = utuφ the
(gravitationally redshifted) specific angular momentum. For barotropes, i.e., ε = ε(p), one
can always introduce a (pseudo) specific enthalpy function h such that

∇ ln h =
∇p

ε + p
(2)

so that the integrability condition of Equation (1) turns out to be j = j(Ω), i.e., j must
be a function of the angular velocity alone. One can then integrate Equation (1) using
Equation (2) and obtain the generalized Bernoulli integral

ln
h
ut +

∫
j dΩ = B (3)

where B is a constant, usually computed at the center of the star r = 0 where j vanishes.
Among the many possible rotational laws for j(Ω), often also indicated with F(Ω), one of
the most commonly adopted (e.g., [26,34–38]) is

j(Ω) = A2(Ωc −Ω) (4)

https://www.arcetri.inaf.it/science/ahead/XNS/
https://www.arcetri.inaf.it/science/ahead/XNS/
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where A is a constant and Ωc is the central rotation rate of the star. More recently, extensions
of this law have been presented ([39,40]).

The main characteristic of the above law is that the rotational profile is a monotonic
function. However, as anticipated, BNS merger simulations show a rotational profile for the
merger remnant incompatible with such trend, and different analytical families have been
proposed by Uryū et al. (2017) [15]. One of the main differences is that in these families
there is no one-to-one relation between Ω and j. In particular, the same rotation rate Ω is
associated to different values of the specific angular momentum j.

These rotational profiles can be broadly classified in two families of functions Ω = Ω(j):
a 3-parameter rotation law (hereafter Uryu3)

Ω(j; p, A, B) = Ωc

[
1 +

(
j

B2 Ωc

)p](
1− j

A2 Ωc

)
(5)

and a 4-parameter rotation law (hereafter Uryu4)

Ω(j; p, q, A, B) = Ωc
1 +

(
j/B2 Ωc

)p

1 + (j/A2 Ωc)
p+q (6)

In both the above expressions the index p controls the trend near the rotation axis,
which is usually rather flat in BNS simulations, while the index q in Equation (6) controls its
asymptotic behavior. In particular, for q = 3 one obtain, in the Newtonian limit, a Keplerian
rotation. Note that for B→ ∞ Equation (5) reduces to Equation (4).

To handle the difference with respect to one-to-one laws, the integral in Equation (3)
must be rewritten as if j were the independent variable according to

∫
j dΩ =

∫
j

dΩ
dj

dj (7)

Interestingly, in both Uryu3 and Uryu4 law, the integral is analytical. However
hypergeometric functions appear in the integral of the Uryu4 law, and for this reason, all
previous studies have been done fixing the parameters p and q to some specific values that
allow one to simplify the integral. In particular, the most used combination is p = 1 and
q = 3, and this choice will also be assumed in the present work.

Stationary and axisymmetric purely rotating fluids satisfy the circularity condition [41–43],
under which the 3 + 1 spacetime line element can be written in spherical coordinates as
e.g., [26]

ds2 = −α2 dt2 + ψ4
(

dr2 + r2 dθ2
)
+R2 (dφ−ωdt)2 (8)

where α is the lapse function, ψ as the conformal factor, R is the generalized cylindrical
radius, and ω = −βφ is the angular velocity, as measured by an observer at infinity,
of the zero angular momentum observer (ZAMO [44]), responsible for frame dragging.
The quantity j then becomes

j = utuφ =
R2 (Ω−ω)

α2 −R2 (Ω−ω)2 (9)

Under the further assumption of conformal flatness, which was proved to be highly
accurate for rotating NS even close to mass shedding [26,27,45], one hasR = ψ2r sin θ.

Equation (9), once the space-time metric and a rotational law have been assumed,
allows one to derive j(Ω), or Ω(j), as a function of position r and θ. In turn, this allows for
the integration of Equation (3) and the determination of the matter distribution inside the
star. Once the structure of the star is found, global quantities like mass M and the moment
of inertia I, as well as local quantities like the equatorial radius re and polar radius rp, can
be determined. For the present work, the physical input parameters that characterize a
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particular configuration are the values of the central density ρc and central rotation rate Ωc,
other parameters will be discussed in Section 3.

To close the system and solve Equation (3) a (barotropic) EoS is needed. In this work
we explore three different possibilities. One is the standard polytropic EoS p = KρΓ (Pol2)
with an adiabatic index Γ = 2 and a polytropic constant K = 110 (in geometrized units).
The other two are tabulated zero-temperature, purely nucleonic EoSs, namely the APR4 [46]
and the NL3ωρ [47]. More detailed information, especially on how these are matched to
the low density regime, can be found in [32].

3. Equilibrium Configurations and Quadrupole Moments

The equilibrium configurations are computed using an updated version of the XNS
code [26,27], employing spherical coordinates and assuming a uniformly spaced grid,
with 500 points in the radial coordinate r covering the range r ∈ [0, 20] and 200 points
in the polar angular coordinate θ in the range θ ∈ [0, π]. For all models we impose a
central density ρc = 1.28× 10−3 and a central rotation rate Ωc = 2.22× 10−2. The other
free parameters are the radial position where the rotation rate reaches the maximum, rmax,
and the corresponding value Ωmax = Ω(rmax), or equivalently the ratio

λ =
Ωmax

Ωc
(10)

All models considered in this work are reported in Table 1, where the first upper letter
refers to the EoS and the number to the Uryū law. Since the Ωmax/Ωc ratio for a BNS
remnants is approximately 2 (e.g., [6,8–10,13]), we computed our models using either λ = 2
or λ = 1.5, in order to study the dependence of the proprieties of the BNS remnants on this
particular parameter. To study the dependence on the p parameter in the Uryu3 law, we
set p = 3/2 and p = 1 as in [15,22,23]. The parameter rmax is chosen in order to get the
position of the maximum rotation rate within the inner half of the star.

Figure 1a shows the profile of the rotation rate on the equatorial plane for models
A3. As it is possible to see, models A3b, A3c and A3d have the same rmax/re ratio (where
re is the equatorial radius of the star), while for the model A3a this ratio is exactly half
of that of the previous models. This implies that the equatorial radius is independent
of the rotation parameters for rmax < 1, as can also be seen in Table 1. This is not true
for rmax > 1: repeating the simulations with rmax = 1.5 and 2.5, and varying the other
rotation parameters, we observe a variation of the equatorial radius, implying that the
equatorial radius does not depend on the rotation parameters only for rmax < 1. However,
the equatorial radius depends on the EoS, as it is possible to see in Figure 1b, where the
rotation rate on the equatorial plane for models A4e and P4e is shown. These models are
computed with the same rotation profile and other parameters, but with a different EoS. We
find a different rmax/re ratio for these two models, implying a different equatorial radius.

All models in Table 1 present the maximum rest mass density in the center. In Figure 2
we compare the density profile for models 3b and 4b with those of the corresponding
non-rotating star, i.e., the static configuration computed with the same EoS and central
density of the rotating model. We find that there is no difference between the density
shapes plotted with respect the r/re ratio, regardless of the rotation profile and parameters.
However, this is not an universal shape: in fact, by increasing the central rotation rate
or defining other quantities to parametrize the rotation profiles-for example the Ωe/Ωc
ratio, with Ωe the equatorial rotation rate-it is possible to obtain a density profile with a
maximum away from the center of the star (e.g., [15,21,24,25], see also below).

As can be seen in Table 1, rest (M0) and Komar (MK) masses show an increase as rmax
and λ increase. They are also very similar for both values of p used for the Uryu3 law in
this work and assume higher values for models N and lower values for models A. Their
ratio reaches higher values for models N too, but, for a given EoS, it is independent on the
parameters of the rotation profile. The circumferential radius Rc assumes similar values for
different p and λ, and it increases for increasing rmax, showing a strong dependence on this
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parameter. This radius has the lowest values for models A and the highest for models P,
while it shows no dependence on the rotation profile (again for a given EoS).
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Figure 2. Rest mass density vs. radius on the equatorial plane for (a) models 4b and (b) models 4e in 
Table 1. Solid (dashed) lines are for the rotating (non-rotating) star. Values of the rest mass density are 
relative to the central value, while values of the radius are relative to the equatorial radius of the star. 
See the text for more details.
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The moment of inertia I-given by the usual relation [48,49]

I =
J

Ωe
(11)

increases with all rotation parameters and shows lower values for the Uryu4 law, regardless
of the EoS employed. It also reaches higher values for models N and lower values for
models A. The equatorial rotation rate Ωe and the angular momentum J also increase
for increasing rmax and λ values, but they both decrease for larger p. In particular, these
parameters show a strong dependence on the radial position where Ω reaches the maximum,
as can be seen in Figure 1 for the rotation rate, regardless of the EoS. Like for the moment
of inertia, they show higher values for models N (for fixed rotation parameters), but the
equatorial rotation rate shows the lowest values for models P instead of for models A.
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Note that for differential rotators there is an arbitrariness in the definition of the rotational
rate that should be used in Equation (11). Given our rotational profiles, Ωe is typically
smaller (possibly much smaller) than both the average and the central rotation rate. As a
consequence, the value of the moment of inertia is potentially much higher than for
analogous models (with the same rotational kinetic energy) assuming uniform rotation.
This introduces important biases on several derived quantities, in particular the ’effective
Newtonian’ quadrupole, that should be properly considered.

Table 1. Physical quantities for all models considered in this work. Listed quantities are (in ge-
ometrized units) the radial position where the rotation rate reaches the maximum rmax, the equatorial
radius re, the circumferential radius Rc, the equatorial rotation rate Ωe, the angular momentum J,
the rest and Komar masses M0 and MK , the kinetic-to-gravitational ratio T/|W|, and the moment of
inertia I. Models A are computed using the APR4 EoS, models N are computed using the NL3ωρ EoS,
and models P are computed using the polytropic EoS p = KρΓ with K = 110 and Γ = 2. The number
in the model name refers to the Uryū law: models 3 are computed using the Uryu3 law with p = 3/2
(except for models 3c, computed with p = 1), while models 4 are computed using the Uryu4 law with
(p, q) = (1, 3). All models are computed with λ = 2 (except for models 3d and 4c computed with
λ = 1.5), and have a central density ρc = 1.28× 10−3 and a central rotation rate Ωc = 2.22× 10−2.

Model rmax re Rc Ωe J M0 MK T/|W | I(
×10−3) (

×10−1) (
×10−3) (×10)

A3a 0.4 6.42 7.59 0.88 0.528 1.214 1.122 0.86 6.008
A3b 0.8 6.42 7.62 2.79 1.645 1.240 1.145 6.02 5.897
A3c 0.8 6.42 7.63 3.49 2.022 1.250 1.154 8.30 5.800
A3d 0.8 6.42 7.60 2.20 1.270 1.225 1.133 3.71 5.784
A3e 1.5 6.58 7.87 8.28 4.926 1.322 1.219 32.4 5.950
A3f 2.5 7.02 8.48 16.5 10.53 1.467 1.351 84.3 6.376
A4a 0.4 6.42 7.60 2.02 0.958 1.218 1.127 2.00 4.750
A4b 0.8 6.46 7.67 4.83 2.348 1.251 1.156 9.81 4.864
A4c 0.8 6.46 7.65 3.70 1.764 1.232 1.138 5.88 4.764
A4d 1.5 6.66 7.98 11.2 5.889 1.346 1.240 40.4 5.277
A4e 2.5 7.14 8.63 19.2 11.72 1.502 1.382 93.3 6.096
N3a 0.4 6.50 9.34 2.54 5.195 3.083 2.582 2.66 20.42
N3b 0.8 6.50 9.41 6.98 14.04 3.138 2.628 15.1 20.11
N3c 0.8 6.50 9.43 8.31 16.51 3.158 2.645 19.5 19.86
N3d 0.8 6.50 9.37 5.32 10.51 3.106 2.602 8.81 19.76
N4a 0.4 6.50 9.35 4.36 7.885 3.093 2.591 5.03 18.10
N4b 0.8 6.50 9.44 9.50 17.42 3.161 2.648 20.6 18.33
N4c 0.8 6.50 9.39 7.15 12.82 3.118 2.612 11.8 17.93
P3a 0.4 8.22 9.81 0.69 0.928 1.644 1.522 0.88 13.51
P3b 0.8 8.22 9.84 2.17 2.864 1.668 1.543 6.17 13.20
P3c 0.8 8.22 9.85 2.71 3.520 1.678 1.552 8.53 12.97
P3d 0.8 8.22 9.83 1.70 2.220 1.655 1.533 3.78 13.03
P3e 1.5 8.30 10.0 6.59 8.605 1.769 1.635 33.6 13.07
P3f 2.5 8.90 10.9 13.2 19.67 2.005 1.848 90.9 14.86
P4a 0.4 8.22 9.82 1.66 1.735 1.649 1.527 2.11 10.47
P4b 0.8 8.22 9.86 3.98 4.203 1.682 1.557 10.3 10.56
P4c 0.8 8.26 9.87 3.02 3.171 1.664 1.540 6.16 10.49
P4d 1.5 8.42 10.2 9.26 10.58 1.805 1.667 43.0 11.42
P4e 2.5 9.14 11.2 15.9 22.63 2.068 1.904 103 14.24

The kinetic-to-gravitational energy ratio T/|W| shows the same dependence on the ro-
tation profile and the angular momentum parameters. Also this quantity strongly depends
on rmax, but the dependence on the other rotation parameters is not negligible. In none of
the model that we have investigated this ratio exceeds 0.27, which is the typical threshold
value against bar-mode instability [22,23,50]. Thus, we can safely assume that our models
represent stable configurations, also in consideration of the fact that a proper threshold for
differentially rotating system is likely to hold at a higher value.
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Apart from the trends in the global parameters, it is also important to investigate and
characterize the deformation of our configurations, in the light of possible GW emission.
In this respect, we have considered three quantities of interest: the ratio of the polar to
equatorial radius, characterizing the deformation of the star, the Newtonian quadrupole
deformation e-defined as

e =
Izz − Ixx

Izz
(12)

where Izz and Ixx are the Newtonian moments of inertia around the polar axis z and the x
axis, respectively-and the metric quadrupole Q-defined as

Q =
√

5π
∫ π

0
r3 ln (α)Y2(θ) sin θdθ (13)

where Y2(θ) is the spherical harmonic function of order 2 (with m = 0), and integration is
performed for radii r > Rc (see Table 2). Note that in CFC this is equivalent to the Thorne
quadrupole [51,52], that is the relevant quantity for GW emission, the difference between
the two being proportional to the deviation from conformal flatness. For uniformly rotating
NS even at mass shedding we have verified, using uniformly rotating model computed in
quasi-isotropic coordinates [53], that the difference is less than a few percent.

Table 2. Polar-to-equatorial ratio rp/re, Newtonian quadrupole deformation e-defined by Equa-
tion (12), distortion coefficient aΩ-defined by Equation (14) and metric quadrupole Q-defined by
Equation (13), for all models in Table 1.

Model rp/re e aΩ Q

A3a 0.99 0.003 3.4 0.04
A3b 0.96 0.020 3.3 0.26
A3c 0.96 0.027 3.2 0.36
A3d 0.98 0.012 3.3 0.16
A3e 0.87 0.095 2.9 1.45
A3f 0.75 0.212 2.5 4.20
A4a 0.98 0.007 3.3 0.09
A4b 0.94 0.031 3.2 0.42
A4c 0.96 0.019 3.2 0.25
A4d 0.85 0.115 2.9 1.83
A4e 0.73 0.229 2.5 4.77
N3a 0.98 0.008 3.1 0.31
N3b 0.93 0.042 2.8 1.73
N3c 0.91 0.053 2.7 2.25
N3d 0.96 0.025 2.8 1.03
N4a 0.97 0.015 2.9 0.57
N4b 0.91 0.055 2.7 2.40
N4c 0.95 0.033 2.8 1.39
P3a 0.99 0.003 3.2 0.07
P3b 0.96 0.019 3.1 0.48
P3c 0.94 0.026 3.0 0.66
P3d 0.97 0.012 3.1 0.30
P3e 0.87 0.094 2.8 2.69
P3f 0.72 0.219 2.4 8.44
P4a 0.98 0.007 3.2 0.16
P4b 0.94 0.032 3.1 0.81
P4c 0.96 0.019 3.1 0.48
P4d 0.83 0.118 2.7 3.53
P4e 0.68 0.242 2.3 9.99

All the mentioned quantities show a dependence on rmax (see Table 2). In particular,
the Newtonian quadrupole deformation and the metric quadrupole show a strong depen-
dence on each rotation parameter regardless of the EoS, while the polar-to-equatorial ratio
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show a strong dependence on rmax only. As the angular momentum and the kinetic-to-
gravitational ratio, both quadrupole deformation and metric quadrupole show, for fixed
rotation profile and parameters, a strong dependence on the EoS; in particular, they show
higher values for models N and lower values for models A. We also found that, for all our
models, the metric quadrupole Q is about (0.30± 0.05)× Ie. Interestingly, this agrees with
what was found in [54], where is was shown that typically Q was equal to 0.4–0.5 times
Ie. The slightly lower coefficient that we find in this case, can be attributed partly to the
bias in the definition of the moment of inertia that we have discussed above. This however
confirms that the combined use of the GR moment of inertia, for which, in the case of
uniform rotators, one can adopt the quasi-universal relation in [49], together with the
Newtonian deformation rate, that can be easily computed on stellar model without the
need of complex asymptotic metric extrapolations, can be used as a reliable proxy for the
full GR quadrupole (see the recent work [55]). Interestingly, this agrees with what found
for non-rotating magnetized NSs [54].

It is known that both in the Newtonian limit [56] and in GR [52], the quadrupole
deformation can be rewritten using the perturbative formula (in the limit of small Ωc)

e = aΩ
T
|W| +O

(( T
|W|

)2)
(14)

where aΩ is called the ’distortion coefficient’. As can be seen in Table 2, this coefficient
has the lowest values for models N and the highest for models A, and does not show a
strong dependence on the rotation parameters. As a function of the mass of the star, we
found a quasi-linear decrease in the distortion coefficient as the rest mass (or equivalently
the Komar mass) increased, regardless of the EoS. However aΩ vary in a narrow range
between 2.5 and 3.5. This is in agreement with Pili et al. (2017) [19] where it was found that
for uniform rotators and the Pol2 EoS aΩ ' 3.7 through the entire stable mass range. It
also agrees with the recent findings by Soldateschi et al. [32] on the magnetic deformability
of NS, suggesting the the distortion coefficient, once the deformation is parametrized in
terms of energy ratio, can be safely assumed to be almost constant, and typically in the
range 2.5–4.

As mentioned above, a different combination of rotation parameters or central rotation
rate can lead to a different star shape [15,21,24,25]. The two possible shapes are: (1) a star
with the maximum density in the center, or (2) a star with the maximum density away from
the center. All models in Table 1 are stars of the first type, i.e., with the maximum density
in the center, as seen above. To study the dependence of the quadrupole deformation and
the metric quadrupole on the central rotation rate and the star shape, we computed a new
model-labeled A4bb-with the same rotation law and parameters as model A4b but with a
double central rotation rate. Figure 3 show the rest mass density distribution for both A4b
and A4bb models. As it is possible to see, model A4bb show a density distribution with
a maximum value away from the center, at r/re = 0.1743, and a ratio ρmax/ρc = 1.0055.
Comparing the quantities for model A4b (Tables 1 and 2) with those for model A4bb
(Table 3), it is possible to see that all the quantities (except the polar-to-equatorial ratio)
are greater for model A4bb. This implies a strong dependence on the central rotation
rate, as expected, and on the shape of the star. It is important to note that in this case
the linear approximation (14) for the quadrupole deformation is no longer valid. In fact,
by fitting data obtained with simulations computed using a central rotation rate varying
between 1/8 and 2 times that of the model A4b, we found that the perturbative formula
(14) is a good approximation for the quadrupole deformation for central rotation rates up to
approximately the nominal value used for model A4b, while for higher values the quadratic
order on the perturbative formula is required, i.e., Equation (14) must be rewritten as

e = aΩ
T
|W| + bΩ

(
T
|W|

)2
+O

(( T
|W|

)3)
(15)
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with aΩ = 3.296± 0.004 and bΩ = −11.5± 0.1.

Table 3. Physical quantities (see Tables 1 and 2 for their definitions) for model A4bb (same rotation law
and parameters as model A4b but with a double central rotation rate (see the text for more details).

re Rc Ωe J M0 MK T/|W | I rp/re e Q(
×10−3) (

×10−1) (
×10−3) (×10)

6.54 7.94 10.3 6.162 1.432 1.312 40.7 5.984 0.80 0.115 1.90Version March 7, 2022 submitted to Universe 9 of 14

(a) (b)
Figure 3. Rest mass density vs. radius (a) and two-dimensional rest mass density distribution (b) for
models A4b and A4bb. Values of the rest mass density are relative to the central value in Figure (a) and 
to the maximum value in Figure (b), while values of the radii are relative to the equatorial radius. The
left (right) side of Figure (b) show the distribution for model A4b (A4bb). The white dotted lines are 
the surface of the stars.
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a maximum value away from the center, at r/re = 0.1743, and a ratio ρmax/ρc = 1.0055. Comparing
the quantities for model A4b (Tables 1 and 2) with those for model A4bb (Table 3), it is possible to see
that all the quantities (except the polar-to-equatorial ratio) are greater for model A4bb. This implies a
strong dependence on the central rotation rate, as expected, and on the shape of the star. It is important
to note that in this case the linear approximation (14) for the quadrupole deformation is no longer
valid. In fact, by fitting data obtained with simulations computed using a central rotation rate varying
between 1/8 and 2 times that of the model A4b, we found that the perturbative formula (14) is a
good approximation for the quadrupole deformation for central rotation rates up to approximately the
nominal value used for model A4b, while for higher values the quadratic order on the perturbative
formula is required, i.e. Equation (14) must be rewritten as
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Figure 3. Rest mass density vs. radius (a) and two-dimensional rest mass density distribution (b)
for models A4b and A4bb. Values of the rest mass density are relative to the central value in (a) and
to the maximum value in (b), while values of the radii are relative to the equatorial radius. The left
(right) side of (b) show the distribution for model A4b (A4bb). The white dotted lines are the surface
of the stars.

4. Summary and Conclusions

In this work we investigated the dependence of the quadrupole deformation, the met-
ric quadrupole, and other physical quantities like mass and angular momentum, of rotating
relativistic stars, modeled as equilibrium configurations with realistic post-merger rotation
profiles. We computed our models using the XNS code [26,27], in which we have imple-
mented the rotation profiles proposed by Uryū et al. [15], and employing three different
Equations of State (EoSs).

We found the the equatorial radius of the star is independent on the rotation pa-
rameters if the radial position rmax where the rotation rate reaches its maximum value is
lower than one (in geometrized units), regardless of the EoS assumed. Values of rotational
quantities (such as angular momentum and equatorial rotation rate) tend to be higher
for the Uryū law with four parameters than for the law with three parameters. Masses,
quadrupole deformation, metric quadrupole and rotational quantities all show an increase
as the ratio between the maximum value of the rotation rate Ωmax and its central value
Ωc increases, and similarly with respect to rmax. These rotational quantities also show
higher values for the NL3ωρ EoS and lower values for the APR4 EoS, except the equatorial
rotation rate showing lower values for the Polytropic (Pol2) EoS.

We also found that the quadrupole deformation e = 1− Ixx/Izz can be approximated
reasonably well with a perturbative formula to the first order in T/|W| (the kinetic-to-
gravitational energy ratio), provided the central rotation rate is not higher than the values
considered in the present work, otherwise the second order term in the expansion becomes
necessary (see Equations (14) and (15)). Notice that the quadrupole deformation of our
models is always positive. However, very strong magnetic fields could make this parameter
negative, as shown, for example, in [30].

Models such as those studied in this work, with the addition of magnetic fields
(always possible using the XNS code), can represent an initial condition for time-dependent
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studies with GRMHD codes such as ECHO [33], in order to investigate, for instance,
the amplification of magnetic fields in this kind of sources due to mechanisms such as
the magnetorotational instability (MRI) or the (mean-field) dynamo [57]. We leave such
investigations as future work.
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Appendix A. Implementation of the Uryū Laws in the XNS Code

Here we provide details of the implementation of the profiles by Uryū in the last
version of the XNS code. The needed parameters are the values of (p, λ, rmax) for the Uryu3
law and of (p, q, λ, rmax) for the Uryu4 law (see Section 3 for the definitions of λ and rmax).
To simplify the notation we first define the following quantities

Ω =
Ω
Ωc

, J =
j

jmax
, x =

jmax

A2 Ωc
, y =

(
jmax

B2 Ωc

)p
(A1)

where jmax is the value of j at rmax, when Ω = Ωmax, which can be evaluated using
Equation (9). We can thus rewrite Equations (5) and (6) as, respectively

Ω(J; p, x, y) = (1 + yJp)(1− xJ) (A2)

and
Ω(J; p, q, x, y) =

1 + yJp

1 + (xJ)p+q (A3)

and the integral (7) is now computed as

I =

∫ j

0
j′

dΩ
dj′

dj′ = Ωc jmax

∫ J

0
J′

dΩ
dJ′

dJ′ (A4)

With these definitions when Ω = Ωmax we have J = 1, Ω = λ, and a vanishing
derivative dΩ/dJ = 0. Note that, by definition, all parameters J, x, y, p and q cannot
be negative.

Appendix A.1. The Uryu3 Law

The first derivative of Equation (A2) is

dΩ
dJ

= −x + pyJp−1 − (p + 1)xyJp (A5)

The condition at the maximum point tells us that

y =
x

p− (p + 1)x
(A6)

Notice that the condition y > 0 implies

x <
p

p + 1
(A7)
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From Equation (A2) it follows that at the maximum point we have

y =
λ

1− x
− 1 (A8)

By equating Equations (A6) and (A8) we then obtain

x =
2p− λ(p + 1)±

√
∆

2p
(A9)

with
∆ = λ2(p + 1)2 − 4pλ (A10)

Real solutions exist for
λ ≥ 4p

(p + 1)2 (A11)

For λ > 1, ∆ > 0 and only the solution with positive sign in Equation (A9) respects
the condition x > 0, so we have

x =
2p− λ(p + 1) +

√
∆

2p
(A12)

From the study of the second derivative of Ω (which must be negative at the maximum
point) we obtain the constraint

x >
p− 1
p + 1

(A13)

In summary, x is given by Equation (A12) with constraints (A7) and (A13), while y is
given by Equation (A8) or equivalently by Equation (A6). Finally, the integral (A4) results
to be

I = −Ωc jmax

[
x
2

J2 − py
p + 1

Jp+1 +
p + 1
p + 2

xy Jp+2
]

(A14)

The procedure used to implement the Uryu3 law in the XNS code is therefore the following:

1. initialization of the values of the parameters Ωc, Ωmax, rmax and p;
2. evaluation of λ and jmax;
3. evaluation of x and y using Equations (A12) and (A8) respectively;
4. resolution (The XNS code finds the zeros of the function via an iterative Newton’s

method.) of Equation (A2) with j given by Equation (9) to find the value of Ω;
5. evaluation of the integral (A14).

Steps 4 and 5 are repeated for each grid point.

Appendix A.2. The Uryu4 Law

The first derivative of Equation (A3) is

dΩ
dJ

= py
Jp−1

(1 + x1 Jp+q)
− (p + q)x1

1 + yJp

(1 + x1 Jp+q)2 Jp+q−1 (A15)

where x1 = xp+q, and from equation (A3) it follows that at the point of the maximum
we have

1 + y = λ(1 + x1) (A16)

Combining the vanishing of the derivative in Equation (A15) with the above condition
we easily get

x =

(
λ− 1

λ

p
q

) 1
p+q

, y =
p + q

q
(λ− 1) (A17)
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Notice that these value of x and y are both positive for all λ > 1. For the chosen values
(p, q) = (1, 3), we have in particular

x =

(
λ− 1

3λ

)1/4
, y =

4
3
(λ− 1) (A18)

Setting k = xJ, the integral (A4) results to be

I = jΩ−
√

2Ωc jmax

4x

[√
2y
x

tan−1
(

k2
)
+ tan−1(1 +

√
2k)− tan−1(1−

√
2k) + tanh−1

( √
2k

1 + k2

)]
(A19)

The procedure used to implement the Uryu4 law in the XNS code, with the choice
of parameters p = 1 and q = 3 providing the above analytical integral, is therefore
the following:

1. initialization of the values of the parameters Ωc, Ωmax and rmax;
2. evaluation of λ and jmax;
3. evaluation of x and y using Equations (A18);
4. resolution of Equation (A3) with j given by Equation (9) to find the value of Ω;
5. evaluation of the integral (A19).

Steps 4 and 5 are repeated for each grid point.
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