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Abstract: We analyse the influence of spiral dislocation topology on the revival time for the harmonic
oscillator, for a particle confined to one-dimensional quantum ring, and a two-dimensional quantum
ring. We first investigate the effects of a cut-off point that stems from the topology of this defect on the
harmonic oscillator. Then, we show that the influence of spiral dislocation topology on the harmonic
oscillator gives rise to a non-null revival time related to the radial quantum number. In the case of the
two-dimensional quantum ring, we show that the revival times related to the radial quantum number
and the angular momentum quantum number are influenced by the spiral dislocation topology.

Keywords: spiral dislocation; linear topological defects; harmonic oscillator; analytical solutions;
quantum revivals; quantum rings

1. Introduction

In recent decades, the connection between the description of linear topological defects
in gravitation and solids has been the focus of a great deal of work [1–33]. This connection is
made in an elegant way via the Katanaev–Volovich approach [34]. This model allows us to
describe linear topological defects through the Riemann–Cartan geometry [35]. Examples
of the use of the Katanaev–Volovich approach [34] are the studies of the influence of a
disclination in materials described by the Dirac equation, such as graphene [36–39] and
fullerene [40]. Based on nonrelativistic wave equations, several studies have shown the
influence of linear topological defects on the electronic properties of solids [41–48]. Linear
topological defects have also been studied in quantum rings [49–52], for an electron subject
to the deformed Kratzer potential [53] and subject to a uniform magnetic field [54–57]. The
most promising perspective in the studies of linear topological defects is the appearance of
Aharonov–Bohm-type effects [58–61].

In this work, we study the influence of spiral dislocation topology on the revival time
for the harmonic oscillator, a particle confined to one-dimensional quantum ring, and a two-
dimensional quantum ring. We start by raising a discussion about a cut-off point that arises
from the topology of the spiral dislocation. Then, we study the influence of this cut-off point
on the harmonic oscillator. We show that the influence of this cut-off point modifies the
spectrum of energy of the harmonic oscillator. From the eigenvalues of energy, we show that
a non-null revival time [62] related to the radial quantum number can be obtained due to
the influence of this cut-off point on the harmonic oscillator. Later, we extend our discussion
about the influence of the spiral dislocation topology on quantum revivals [62] to a particle
confined to a one-dimensional quantum ring and a two-dimensional quantum ring.

The structure of this paper is as follows. In Section 2, we show that a cut-off point arises
from the topology of the spiral dislocation, then we study the influence of this cut-off point
on the harmonic oscillator. We discuss the effects of the topology on the spiral dislocation
on the revival time [62–65] in the two-dimensional harmonic oscillator system; in Section 3,
we discuss the influence of the spiral dislocation topology on the quantum revivals for a
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particle confined to a one-dimensional quantum ring; in Section 4, we extend the discussion
about the influence of the spiral dislocation topology on the quantum revivals for a particle
confined to a two-dimensional quantum ring; and in Section 5, we present our conclusions.

2. Effects of a Cut-Off Point Yield by the Spiral Dislocation Topology on the
Harmonic Oscillator

Let us introduce the spiral dislocation that corresponds to the distortion of a circle into
a spiral [21–23,45]. Based on the Katanaev–Volovich approach [34], the spiral dislocation is
described by the line element:

ds2 = dr2 + 2β dr dϕ +
(

β2 + r2
)

dϕ2 + dz2. (1)

The parameter β is a constant and it is related to the Burger vector ~b through the
relation β =

∣∣∣~b∣∣∣/2π [45]. In this case, the Burger vector is parallel to the plane z = 0. In
addition, we see that 0 < r < ∞, 0 ≤ ϕ ≤ 2π and −∞ < z < ∞. Recently, effects
of the spiral dislocation topology have been studied in relativistic quantum systems in
Refs. [66–68].

For a spinless particle in an elastic medium with a linear topological defect, such
as the spiral dislocation (1), the Laplace–Beltrami operator is given in the form [4,46,55]:
∇2 = 1√

g ∂i
(

gij√g ∂j
)
, where gij is the metric tensor, gij is the inverse of gij and g =

det
∣∣gij
∣∣. In this case, the indices {i, j} run over the space coordinates. Hence, when

the quantum particle is subject to the two-dimensional harmonic oscillator, the time-
independent Schrödinger equation for the harmonic oscillator in the presence of the spiral
dislocation is given by [21] (we shall use the units where h̄ = 1 and c = 1):

Eψ = − 1
2m

(
1 +

β2

r2

)
∂2ψ

∂r2 −
1

2m

(
1
r
− β2

r3

)
∂ψ

∂r
+

β

m r2
∂2ψ

∂r ∂ϕ
− 1

2m r2
∂2ψ

∂ϕ2
(2)

− 1
2m

β

r3
∂ψ

∂ϕ
− 1

2m
∂2ψ

∂z2 +
1
2

m ω2r2ψ.

The solution to the Schrödinger Equation (2) can be given in the form: ψ(r, ϕ, z) =
Φ(ϕ) Z(z) u(r). After substituting it into Equation (2), we find that Φ(ϕ) = ei`ϕ and Z(z) =
eikz, where ` = 0,±1,±2, . . . and k is a constant. Thereby, we obtain the radial equation:(

1 +
β2

r2

)
u′′ +

(
1
r
− β2

r3 − i
2β `

r2

)
u′ − `2

r2 u + i
β `

r3 u−m2ω2r2u +
(

2mE− k2
)

u = 0. (3)

The first aspect to be observed in the radial Equation (3) is that there is no shift in the
angular momentum quantum number due to the effects of the spiral dislocation topology.
As shown in Refs. [61,69], the effects of the topology of a disclination yield a shift in the
angular momentum quantum number given by `→ `/α, where α is the parameter related
to the angular deficit which characterizes the disclination. Moreover, in Refs. [49,60,69],
the shift in the angular momentum quantum number is given by ` → `− β̄k, where β̄
is the parameter related to the Burgers vector which characterizes the screw dislocation
(in this case, it corresponds to the distortion of a circular curve into a vertical spiral [45]).
These examples of shift of the angular momentum quantum number have shown the
influence of the linear topological defects on the eigenvalues of energy that gives rise to
Aharonov–Bohm-type effects for bound states [59]. From this perspective, the topology of
the spiral dislocation does not yield any shift in the angular momentum quantum number,
hence there is no Aharonov–Bohm-type effect for the harmonic oscillator in the presence of
a spiral dislocation.
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Let us proceed with the solution to the radial Equation (3). It is given in the form [21]:

u(r) = exp
(

i ` tan−1
(

r
β

))
× f (r), (4)

where f (r) is the solution to the second-order differential equation:(
1 +

β2

r2

)
f ′′ +

(
1
r
− β2

r3

)
f ′ − `2

(r2 + β2)
f −m2ω2r2 f +

(
2mE− k2

)
f = 0. (5)

We thus go further by performing the change of variables: x = mω
(
r2 + β2) [21]. How-

ever, in contrast to Ref. [21], let us take a solution well-behaved when x → ∞. Therefore, in
terms of the dimensionless parameter x, the solution to Equation (5) is given by

f (x) = e−
x
2 x

|`|
2 U

(
|`|
2

+
1
2
− λ, |`|+ 1; x

)
, (6)

where U
(
|`|
2 + 1

2 − λ, |`|+ 1; x
)

is regular at x → ∞ and it is known as the confluent
hypergeometric function of second kind [70]. The parameter λ, in turn, is defined as

λ =
1

4mω

(
2mE + m2ω2β2 − k2

)
. (7)

Recently, we have studied the harmonic oscillator under the influence of the spiral
dislocation (1) by assuming that β2 is very small [21]. This assumption has allowed us
to analyse the asymptotic behaviour of the radial wave function when r → 0, as we can
consider x → 0 [23]. In the present work, by contrast, we do not assume that β is very
small. Therefore, we cannot assume that x → 0 when r → 0. In this case, when r → 0, then
x → mω β2. This gives us a new view of the system: the point r0 = β can be considered as a
cut-off point analogous to that considered in Refs. [20,71–75], where the attractive inverse-
square potential is dealt with. Hence, the spiral dislocation topology imposes a lower limit
on x given by x0 = mωr0 = mω β2. Thereby, the wave function (6) is normalized in the
range: x0 ≤ x < ∞. As a consequence, we have the boundary condition:

f (x0) = 0. (8)

Henceforth, we focus on a particular case with the purpose of obtain the eigenval-
ues of energy explicitly. For x0 and B = |`| + 1 fixed, and for large |A| (A = |`|

2 +
1
2 − λ), then, the function U(A, B; x0) can be written in the form [70]: U(A, B; x0) ∝

cos
(√

(2B− 4A)x0 − Bπ
2 + Aπ + π

4

)
. Hence, from Equation (6) and the boundary condi-

tion (8), we obtain the eigenvalues of energy:

En = −ω

[
2n +

1
2
+

mωβ2

2

]
+

4mω2β2

π2

[
1±

√
1− π2

4mωβ2 (4n + 1)

]
+

k2

2m
, (9)

where n = 0, 1, 2, 3, . . . is the radial quantum number.
Hence, the allowed energies (9) stem from the influence of the cut-off point yielded by

the topology of the spiral dislocation on the harmonic oscillator. As we have not considered
the parameter β to be very small, the effects of the spiral dislocation topology have imposed
a lower limit on the range where the wave function must be normalized. Additionally, the
energy levels do not depend on the angular momentum quantum number `. Therefore,
each energy level En has infinity degeneracy. The effects of the spiral dislocation topology
also yield the contributions given by the terms proportional to β2. In addition, the radial
quantum number possesses an upper limit given by
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nmax <
mωβ2

π2 − 1
4

. (10)

This upper limit is the maximum value of the radial quantum number nmax (maximal
integer). Hence, the radial quantum number n possesses values from zero to the upper
limit given in Equation (10), otherwise, the energy levels (9) would have an imaginary
term. Therefore, the upper limit of the radial quantum number (10) is influenced by the
spiral dislocation topology. Finally, the last term of the energy levels (9) is the translational
kinetic energy that stems from the free motion of the particle in the z-direction. Hence, the
bound states occur in two-dimensions even though the system is unconfined in the third
dimension in agreement with Refs. [49,76,77].

Quantum Revivals

According to Refs. [62–65], quantum revivals occur when the wave function recovers
its initial shape at a time called the revival. Quantum revivals have drawn attention
in recent years, where it is worth citing the studies of quantum revivals in the infinite
square well [64,65,78–80], quantum pendulum [81], position-dependent mass systems [82],
Rydberg atoms [83–85] and graphene [86,87]. Based on Refs. [62,63,88–90], when a quantum
system has one quantum number ν, the energy eigenvalues can be expanded about central
value ν1 of this quantum number. Thereby, the energy can be expanded in Taylor series
as [62,63]:

Eν ≈ Eν1 +

(
dE
dν

)
ν=ν1

(ν− ν1) +
1
2

(
d2E
dν2

)
ν=ν1

(ν− ν1)
2 + · · · (11)

Therefore, there are distinct time scales. The classical period is given by

Tcl =
2πh̄∣∣∣∣( dE

dν

)
ν=ν1

∣∣∣∣ , (12)

while the revival time is defined by [62,63]

τ =
4πh̄∣∣∣∣( d2E

dν2

)
ν=ν1

∣∣∣∣ . (13)

Although we have studied a bidimensional system in the previous section, the energy
levels (9) depend on just one quantum number, i.e, the allowed energies are determined
only by the radial quantum number. In this way, both the classical period (12) and the
revival time (13) are defined in terms of the radial quantum number n. With respect to the
revival time (13), for a given value of n, we have

τ =
4π∣∣∣ d2En
d n2

∣∣∣ = 4mβ2

π
×
[

1− π2

4mωβ2 (4n + 1)
]3/2

. (14)

Hence, we have obtained a non-null revival time in contrast to what is shown in
Ref. [62], where there is no revival time in the one-dimensional harmonic oscillator system.
However, in the two-dimensional case (cylindrical symmetry), the energy levels of the
harmonic oscillator are proportional to n and |`| [21]. By dealing with the two-dimensional
harmonic oscillator as in Refs. [62,63,88–90], the quantum revivals are obtained with
respect to the quantum numbers {n, `}. Therefore, there is no revival time related to the
radial quantum number, but we would have a non-null revival time related to the angular
momentum quantum number due to contribution that stems from the term proportional
to |`|. Returning to the allowed energies (9), they do not depend on `, so there is no
revival time associated with the angular momentum quantum number. The existence of
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the revival time associated with the radial quantum number given in Equation (14) is due
to the influence of the cut-off point that stems from the spiral dislocation topology on the
harmonic oscillator.

3. Effects of the Spiral Dislocation Topology on Quantum Revivals in a
One-Dimensional Ring

Recently, one of the authors studied the effects of the spiral dislocation on a particle con-
fined to a one-dimensional quantum ring [52]. With ra as the radius of the one-dimensional
quantum ring, the corresponding spectrum of energy is [52]

E` ≈
`2

2m (r2
a + β2)

− 1
8m (r2

a + β2)
, (15)

where the effects of the spiral dislocation topology give rise to the presence of the effective
radius xa =

√
r2

a + β2 and the analogue of the Costa term [49,91], which is given by the last
term of the right-hand side of Equation (15). Note that ` = 0,±1,±2,±3, . . . is the angular
momentum quantum number.

The energy levels (15) depend only on the angular momentum quantum number,
hence both the classical period (12) and the revival time (13) are defined in terms of the
angular momentum quantum number `. In this way, the revival time (13) is given by

τ =
4π∣∣∣ d2E`
d `2

∣∣∣ = 4π m
(

r2
a + β2

)
, (16)

where there is the influence to the spiral dislocation topology on the revival time.

4. Effects of the Spiral Dislocation Topology on Quantum Revivals in a
Two-Dimensional Ring

Recently, the effects of the spiral dislocation on a particle confined to a two-dimensional
quantum ring have also been studied by one of us in Ref. [52]. In this study, the quantum
particle is restricted to move between two fixed radii r = ra and r = rb (rb > ra) in the
plane z = 0. The corresponding spectrum of energy is given by [52]

En, ` ≈
n2π2

2m
[√

r2
b + β2 −

√
r2

a + β2
]2 +

4`2 − 1

8m
√(

r2
b + β2

)
(r2

a + β2)
. (17)

In this case, the effects of the spiral dislocation topology have given rise to the presence

of the effective radii xa =
√

r2
a + β2 and xb =

√
r2

b + β2 in the energy levels (17). Note that
n = 0, 1, 2, 3, . . . is the radial quantum number and ` = 0,±1,±2,±3, . . . is the angular
momentum quantum number.

In this case, the bidimensional system is characterized by having two quantum num-
bers {n, `}. When a quantum system is characterized by having two or more quantum
numbers, we follow Refs. [62,63,88–90] with the purpose of obtaining the quantum re-
vivals. With two quantum numbers ν1 and ν2, we can label the energy eigenvalues as Eν1,ν2 .
Thereby, the energy eigenvalues can be expanded about central values ν′1 and ν′2 of these
quantum numbers, hence the energy can be expanded in Taylor series as [62,63]:

Eν1,ν2 ≈ Eν′1,ν′2
+

(
∂E
∂ν1

)
ν′1ν′2

(
ν1 − ν′1

)
+

(
∂E
∂ν2

)
ν′1ν′2

(
ν2 − ν′2

)
+

1
2

(
∂2E
∂ν2

1

)
ν′1ν′2

(
ν1 − ν′1

)2
+

1
2

(
∂2E
∂ν2

2

)
ν′1ν′2

(
ν2 − ν′2

)2

+

(
∂2E

∂ν1∂ν2

)
ν′1ν′2

(
ν1 − ν′1

)(
ν2 − ν′2

)
+ · · · (18)
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Therefore, the classical periods are given by

T(1)
cl =

2πh̄∣∣∣∣( ∂E
∂ν1

)
ν′1ν′2

∣∣∣∣ ; T(2)
cl =

2πh̄∣∣∣∣( ∂E
∂ν2

)
ν′1ν′2

∣∣∣∣ , (19)

while the revival times are defined by [62,63]

τ(1) =
4πh̄∣∣∣∣∣

(
∂2E
∂ν2

1

)
ν′1ν′2

∣∣∣∣∣
; τ(2) =

4πh̄∣∣∣∣∣
(

∂2E
∂ν2

2

)
ν′1ν′2

∣∣∣∣∣
; τ(12) =

4πh̄∣∣∣∣( ∂2E
∂ν1∂ν2

)
ν′1ν′2

∣∣∣∣ . (20)

The revival time τ(12) is called as the cross-revival time. Due to the fact that the
allowed energies (17) are determined by the quantum numbers {n, `}, thus, the classical
periods (19) and the revival times (20) are defined in terms of the quantum numbers {n, `}.

As our focus is on the revival times, with respect to the radial quantum number, the
revival time is

τ(1) =
4π∣∣∣ ∂2En, `
∂ n2

∣∣∣ = 4m
π

[√
r2

b + β2 −
√

r2
a + β2

]2
. (21)

On the other hand, with respect to the angular momentum quantum number, the
revival time is

τ(2) =
4π∣∣∣ ∂2En, `
∂ `2

∣∣∣ = 4π m
√(

r2
b + β2

)
(r2

a + β2). (22)

Finally, the cross-revival time [63] is given by

τ(12) =
4π∣∣∣( ∂2En, `
∂n∂`

)∣∣∣ = 0. (23)

Therefore, both revival times (21) and (22) are influenced by the topology of the
spiral dislocation. However, there is no cross-revival time for a particle confined to a two-
dimensional quantum ring in the presence of the spiral dislocation. It is worth observing
that the revival time related to the radial quantum number (21) differs from the revival
time related to the angular momentum number (23). Furthermore, we can assume that the
relation between τ(1) and τ(2) is satisfied, i.e., τ(1)

τ(2)
= ā

b̄ , where ā and b̄ are relatively prime
integers. This relation also certifies that they are commensurate [62,63]. The effective radii
also determine whether these revival times are commensurate.

5. Conclusions

We have analysed the influence of a cut-off point on the harmonic oscillator in an
elastic medium with a spiral dislocation. In this case, the cut-off point is yielded by the
topology of the spiral dislocation. We have seen that the presence of the cut-off point
modifies the spectrum of energy of the harmonic oscillator, where the energy levels are
infinitely degenerated with respect to the angular momentum quantum number `. In
addition, the effects of the topology of the spiral dislocation yield the contributions to the
energy levels given by the terms proportional to β2. However, there is no analogue of
the Aharonov–Bohm effect for bound states [49,59,60]. In addition, the radial quantum
number has an upper limit, which is determined by the angular frequency and the spiral
dislocation topology.

We have also analysed the influence of the topology of the spiral dislocation on the
revival time in the harmonic oscillator system. We have seen that the revival time is
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influenced by the spiral dislocation topology. In this case, the effects of the topology of the
spiral dislocation have allowed us to obtain a non-null revival time related to the radial
quantum number. On the other hand, no revival time related to the angular momentum
quantum number exists.

Finally, we have raised a discussion about the influence of the spiral dislocation
topology on the quantum revivals for a particle confined to one-dimensional quantum ring
and a two-dimensional quantum ring. We have seen in these cases that the spiral dislocation
topology influences the revival times. In the case of the two-dimensional quantum ring, we
have obtained different revival times with respect to both radial and angular momentum
quantum numbers. However, no cross-revival time exists.
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