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Abstract: The Kerr/CFT correspondence provides a holographic description of spinning black holes
that exist in our universe and the notion of hidden conformal symmetry allows for a formulation of
this correspondence that is away from extremality. In this study, we examined how hidden conformal
symmetry is manifest when we consider dynamics beyond the Klein–Gordon equation through
studying the analytic structure of the higher derivative equations of the motion of a massless probe
scalar field on a Kerr background, using the monodromy method. Since such higher derivative
dynamics appear in known examples of holographic AdS/logCFT correspondences, we investigated
whether or not a Kerr/logCFT correspondence could be possible.
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1. Introduction

Studying the nature of black holes has led to some of the deepest and most fruitful
physical insights of the last century. The realization that black holes possess an entropy
that is proportional to their surface area [1,2] was the first step toward identifying the
holographic nature of spacetime [3–5], where information stored in any spacetime volume
is related to the surface area bounding that region. The most famous concrete realization
of this principle in string theory is the anti-de Sitter/conformal field theory (AdS/CFT)
correspondence [6,7], which relates a theory of gravity in negatively-curved spacetime to
a highly-symmetric quantum field theory in fewer spacetime dimensions. Holographic
dualities, such as AdS/CFT, are the workhorse of modern theoretical physics in that
they harness black hole physics to study a surprisingly diverse plethora of phenomena,
including strongly interacting condensed matter systems [8], the geometrization of entan-
glement [9–11], Hawking evaporation [12,13] and quantum chaos [14,15].

Remarkably, holographic correspondences now exist for real, physical black holes
that appear in our universe, which are maximally (or near-maximally) spinning Kerr black
holes [16]. The Kerr/CFT correspondence [17] relies on taking a near-horizon limit in the
extremal Kerr metric and showing that the isometries of the resulting metric form a copy of
the conformal algebra SL(2,R). A version of the Kerr/CFT correspondence has also been
found away from the extremal limit [18]. The authors of [18] found that the price of moving
away from extremality is that it is necessary to consider the symmetries of the near-horizon
dynamics (the wave equation), rather than only the symmetries of the near-horizon metric,
to uncover the underlying conformal algebra. Such symmetries of the dynamics are referred
to as hidden symmetries to distinguish them from the explicit isometries of the metric. This
notion of hidden conformal symmetry associated with black hole horizons has provided
new insights into interesting and potentially observable aspects of black holes, such as
black hole shadows [19], tidal Love numbers [20] and near-superradiant geodesics [21].
Furthermore, the presence of hidden symmetries in a gravitational system are known to be
responsible for the separability of the equations of motion on that background, as well as
the complete integrability of geodesics [22].
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A particularly useful method for examining the near-horizon dynamics of a probe
scalar field on a black hole background is to study the monodromy properties of solutions
to the Klein–Gordon equation [23–26]. The monodromy data encode information about
black hole thermodynamics and the hidden conformal symmetry of [18] and provide ample
evidence for a two-dimensional CFT description of the thermal properties of black hole
microstates. In particular, the fact that hidden conformal symmetry appears to be a feature
of a large class of black holes [23,27,28] seems to indicate that it may be sensible to apply
a Cardy formula [29] to able to reproduce the Bekenstein–Hawking entropy in scenarios
beyond four- and five-dimensional black holes [18,30,31].

The goals of this work were twofold. First, since hidden conformal symmetry is
only discernible through studying the dynamics of a probe field, we began this study by
asking: how is hidden conformal symmetry manifest when we change the dynamics? That
is, we aimed to study an action such that the resulting equations of the motion of our
probe field were not the standard Klein–Gordon equation. In addition, we hoped that our
chosen dynamics could potentially yield novel physical insight, while at the same time be
easily comparable to the known Klein–Gordon case. To this end, we considered the higher
derivative action of a massless scalar field Φ :

S = −
∫

d4x
√

g
(

1
2

Φ
(
∇µ∇µ

)n
Φ
)

, (1)

with the corresponding equation of motion:(
∇µ∇µ

)n
Φ = 0. (2)

When the integer n = 1, we recover the familiar Klein–Gordon equation for a free scalar
field. Higher order differential equations such as this arise in other physical settings, e.g.,
in the study of buoyant thermal convection [32].

Although the equation of motion (2) is a very simple extension of the standard Klein–
Gordon case, these higher derivative interactions already possess interesting physical
attributes. The holographic duals of logarithmic conformal field theories (logCFTs) [33] are
known to involve the higher derivative equations of motion [34]. LogCFTs are interesting in
their own right, with applications in percolation [35] and quenched disorder [35–39]. Thus,
our second motivating question behind looking for hidden conformal symmetry in the
dynamics (2) was: can we construct a holographic logCFT correspondence in the spirit of
Kerr/CFT (in which the conformal symmetry exists at the black hole horizon) as opposed
to AdS/CFT (in which the CFT is said to exist at the boundary of AdS)? Constructing a
logCFT correspondence within this scenario would be particularly interesting due to their
non-unitary nature, in which the presence of hidden conformal symmetry has prompted
many authors [18,23,25,40] to assume the validity of a Cardy formula and show that it
reproduces the Bekenstein–Hawking entropy. However, Cardy’s formula is not known
to hold in non-unitary settings. From a pragmatic point of view, a longer-term goal of
establishing a Kerr/logCFT correspondence is to potentially use the Kerr background (plus
a scalar field) to study effects in percolation and quenched disorder, in much the same way
that the AdS/CFT correspondence can be harnessed to study aspects of strongly interacting
quantum field theories [8].

This article is organized as follows. In Section 2, we review how hidden conformal
symmetry is found in the Klein–Gordon equation on a Kerr background. In Section 3,
we briefly present a standard form for the Klein–Gordon operator that streamlined our
calculations. We note that this standard form holds for a probe field of general spin, in
both four and five dimensions. In Section 4, we perform our analysis of hidden conformal
symmetry in higher derivative dynamics. We present the calculated monodromy data in
Section 4.1 and move to holographic considerations in Section 4.2. We discuss our findings
and future work in Section 5. In our Appendix A, we provide more examples of the
standard form Klein–Gordon operator presented in Section 3.
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2. Hidden Conformal Symmetry from the Klein–Gordon Equation

In this section, we examine the hidden conformal symmetry of the Kerr black hole, as
first discovered by [18]. This provides the framework for studying how hidden conformal
symmetry is manifest in theories with higher derivative interactions in Section 4. While
most of this section is a review, we believe that some of the discussion that we present
is new.

The Kerr black hole is described by the following metric:

ds2 =
ρ2

∆
dr2 − ∆

ρ2 (dt2 − a sin2θdφ)2 + ρ2dθ2 +
sin2θ

ρ2 ((r2 + a2)dφ− adt)2, (3)

where we have defined:

∆ = r2 + a2 − 2Mr , and ρ2 = r2 + a2cos2θ , (4)

and a ≡ J
M is the spin of the black hole of mass M and angular momentum J. This geometry

possesses an outer horizon r+ and inner horizon r−, the locations of which are determined
by the equation ∆ = 0. In particular, we have:

r± = M±
√

M2 − a2 . (5)

There are two Killing vectors associated with (3): ∂t and ∂φ. These generate explicit
isometries of the metric (3).

The additional hidden symmetry generators are not symmetries of the metric, but of
the dynamics. Consider a massless scalar field Φ on the background (3). Here, we assume
that we can treat the scalar Φ as a probe. The Klein–Gordon equation of motion for this
scalar, i.e.,

1
√

g
∂µ(
√

ggµν∂νΦ) = 0 , µ = 0, . . . , 3 , (6)

famously separates1 under the ansatz:

Φ(t, r, θ, φ) = ei(mφ−ωt)R(r)S(θ) . (7)

The radial equation is:(
∂r(∆∂r) +

(ω−Ω+m)2

4κ2
+

(r+ − r−)
r− r+

− (ω−Ω−m)2

4κ2
−

(r+ − r−)
r− r−

+(r2 + 2M(r + 2M))ω2
)

R(r) = KR(r),

(8)

where Ω± and κ± are the angular velocities and surface gravities of the inner and outer
horizons,

Ω± =
a

2Mr±
, κ± =

r+ − r−
4Mr±

, (9)

and K is a separation constant (which also encodes information on the spectrum of the
spherical harmonic function S(θ)).

2.1. Near-Region Limit

The authors of [18,40] have argued that a hidden conformal symmetry becomes
manifest when we consider only soft hair modes. That is, they consider the following
“near-region” limit of the Equation (8):

ω M� 1 , and ω r � 1 . (10)
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As emphasized in [40], this limit can be thought of as a near-horizon limit taken in phase
space. The resulting equation is:(

∂r(∆∂r) +
(ω−Ω+m)2

4κ2
+

(r+ − r−)
r− r+

− (ω−Ω−m)2

4κ2
−

(r+ − r−)
r− r−

)
R(r) = KR(r). (11)

The solutions of (11) are hypergeometric functions. As pointed out by [18], the hyper-
geometric functions transform in representations of SL(2,R), which is the first hint of the
existence of a hidden conformal symmetry; but what are the generators? To find them, we
can take our inspiration from Kerr/CFT, noting that the near-horizon extremal Kerr (NHEK)
geometry is warped AdS3 and that, for a particular choice of angle θ = θ0, it is exactly the
upper-half plane of AdS3 (up to a conformal factor):

ds2 = F(θ0)

(
dw+dw− + dy2

y2

)
. (12)

Thus, the existence of the conformal symmetry of black horizons (hidden or otherwise) is
tied to the existence of a copy of AdS3 in the near-horizon limit (either in the metric or in
the Klein–Gordon equation).

The isometry group of AdS3 is SL(2,R)× SL(2,R) and we already know the Killing
vectors for (12), which are:

H1 = i∂+, H0 = i
(

w+∂+ +
1
2

y∂y

)
, H−1 = i

(
w+2∂+ + w+y∂y − y2∂−

)
,

H̄1 = i∂−, H̄0 = i
(

w−∂− +
1
2

y∂y

)
, H̄−1 = i

(
w−2∂− + w−y∂y − y2∂+

)
.

(13)

These generators satisfy the conformal algebra:

[H0, H±1] = ∓iH±1, [H−1, H1] = −2iH0 , (14)

and have quadratic Casimir:

H2 = −H2
0 +

1
2
(H1H−1 + H−1H1)

=
1
4

(
y2∂2

y − y∂y

)
+ y2∂+∂−.

(15)

Now, the only remaining thing that is needed to identify the hidden symmetry genera-
tors of (11) is to find a suitable coordinate transformation between the Boyer–Lindquist
coordinates (t, r, φ) and the conformal coordinates (w±, y). For Kerr black holes, this turns
out to be:

w+ =

(
r− r+
r− r−

)1/2
e2πTRφ ,

w− =

(
r− r+
r− r−

)1/2
e2πTLφ− t

2M ,

y =

(
r+ − r−
r− r−

)1/2
eπ(TL+TR)φ− t

4M .

(16)

where
TR =

r+ − r−
4πa

, TL =
r+ + r−

4πa
. (17)
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Much has been written about the conformal coordinates (16) [18,25,40,42] and we observe
more directly how to build them in Section 2.2, in terms of monodromy analysis2. For now,
we just note that they are of the general form:

w+ = f (r)etR ,

w− = f (r)e−tL ,

y = g(r)e(tR−tL)/2,

(18)

and we return to (tL, tR) later. It is important to note that plugging the coordinate trans-
formation (16) into the Kerr metric (3) does not exactly reproduce the Poincaré patch
metric (12). Rather, near the bifurcation surface w± = 0, the Kerr metric becomes:

ds2 =
4ρ2

+

y2 dw+dw− +
16J2 sin2 θ0

y2ρ2
+

dy2 + ρ2
+dθ2 + . . . , (19)

where
ρ2
+ = r2

+ + a2 cos2 θ , (20)

and the terms in the ellipsis “. . . ” of Equation (19) are at least linear order in the coordi-
nates w±. The existence of these higher order terms underscores the fact that the hidden
conformal symmetry generators (13) are not isometries of the Kerr metric (3).

For clarity, the expressions of the generators (13) in the Boyer–Lindquist coordinates
are [18]:

H1 = ie−2πTRφ

(
∆1/2∂r +

1
2πTR

r−M
∆1/2 ∂φ +

2TL
TR

Mr− a2

∆1/2 ∂t

)
,

H0 =
i

2πTR
∂φ + 2iM

TL
TR

∂t,

H−1 = ie2πTRφ

(
−∆1/2∂r +

1
2πTR

r−M
∆1/2 ∂φ +

2TL
TR

Mr− a2

∆1/2 ∂t

)
,

(21)

with similar expressions for the H̄ sector. In these coordinates, the quadratic Casimir (15)
becomes exactly the near-region radial Klein–Gordon operator in (11), so that:

H2Φ = KΦ. (22)

2.2. Monodromy Method

We now demonstrate that it is possible to find the generators (21) without explicitly
taking a “near-region” limit, as in [18]. This subsection will largely follow [25], with some
new discussion.

Let us again consider the Klein–Gordon Equation (8). This differential equation has
two regular singular points at the horizons r± and one irregular singular point at infinity3.
Each singular point causes a branch cut, and we were interested in studying the radial
solutions R(r) of (8) (now promoted to complex-valued functions) when going around each
of the regular singular points. In general, the solutions R(r) develop a monodromy around
these singular points. To study this, we posited that R(r) has a series solution of the form:

R(r) = (r− ri)
β

∞

∑
n=0

qn(r− ri)
n. (23)

Our immediate objective was to determine the monodromy parameter β ≡ iα using
the Frobenius method. We discuss this in more detail for our more complicated higher
derivative case in Section 4. For the case at hand, we just present the answer and refer
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the reader to [23] for details. The monodromy parameters around the inner and outer
horizons are:

α± =
ω−Ω±m

2κ±
, (24)

where Ω± and κ± are as defined in (9).
Next, a crucial step in obtaining the generators (21) was to implement a change of basis:

ei(mφ−ωt) = e−i(ωLtL+ωRtR). (25)

The choice employed by [25] was:

ωL = α+ − α−, ωR = α+ + α−. (26)

This particular change of basis (26) is not well motivated in the literature and is often taken
as a purely mathematical step to match the results of [18]. To determine whether this was
the appropriate basis choice to use in our more complicated higher derivative analysis,
presented in Section 4, a deeper physical understanding of this choice was needed, which
we outline here4.

Let us consider how the radial solutions R(r) change when going around the singular
point r+. Near r = r+, our radial solutions are of the form:

R(r) = (r− r+)±iα+
(
1 +O(r− r+)

)
. (27)

When going around the singular point r− r+ → e2πi(r− r+), we see that:

R(r)→ R(r)e∓2πα+ . (28)

As explained in [23], when going around the singular point r+ twice, i.e., r − r+ →
e4πi(r− r+), we expect the wave equation Φ = e−iωt+imφR(r) to be invariant 5. The radial
piece of the outgoing solution R(r) = (r − r+)iα+ picks up the factor e−4πα+ . Plugging
in the value for α+ in (24), we find that t and φ transform in the following way to cancel
this factor:

(t, φ) ∼ (t, φ) +
2πi
κ+

(1, Ω+). (29)

We now see that the basis choice (26) arises from determining the appropriate conjugate
variables that lead to more natural thermal and angular transformation properties. For
example, around r = r+, we would replace (29) with:

(X, Y) ∼ (X, Y) + 2πi(1, 1). (30)

The authors of [23] presciently rename (X, Y) as (tL, tR). Similar arguments for the singular
point r− lead us to the transformation properties:

(X, Y) ∼ (X, Y) + 2πi(−1, 1). (31)

For the wavefunction Φ = e−iωLtL−iωRtR R(r), we find that by using (30) and (31), the
functions (tL, tR) that accomplish these identifications are:

tR = 2πTRφ , tL =
1

2M
t− 2πTLφ . (32)

With (tL, tR) in (32), we can now immediately reproduce the zero mode generators
of [18]. They are:

H0 =
i

2πTR
∂φ + 2iM

TL
TR

∂t = i∂tR , H̄0 = −2iM∂t = −i∂tL . (33)
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Note that, in this discussion, we avoided making the seemingly arbitrary basis choice (26).
Instead, we used (ωL, ωR) as fixed by (32) and (25).

It may appear that the monodromy analysis only determines the zero mode generators
(H0, H̄0) and not (H±1, H̄±1), but we can actually go further. From Equation (18), we
see that (tL, tR) also fix the conformal coordinates up to a radial factor, which can be
recovered from the radial behavior of the hypergeometric solutions of (11) or from the
Klein–Gordon operator itself, as we argue in Section 4 and Appendix A. Once we have the
proper conformal coordinates, all of the Hs are determined by (13).

3. A Standard Form for the Klein–Gordon Operator

Before we move on to our higher derivative model, it is useful for us to express the
Klein–Gordon operator in a standard form. In addition to streamlining our analysis, this
form highlights the interesting physical structure of the operator, which persists in both
higher dimensional and higher spin settings.

We begin by writing the Klein–Gordon operator on the Kerr background in the follow-
ing way:

∇µ∇µ =
1
ρ2

∂r(∆∂r)−
(r+ − r−)
(r− r+)

(
∂t + Ω+∂φ

2κ+

)2

+
(r+ − r−)
(r− r−)

(
∂t + Ω−∂φ

2κ−

)2

+
1

sin2 θ
∂2

φ − (a2 cos2 θ + 4M2)∂2
t − (r2 + 2Mr)∂2

t +
1

sin2 θ
∂θ

(
sin2 θ∂θ

)]
.

(34)

This form has several useful features for our analysis. First, if we posit the standard solution
Φ = ei(mφ−ωt)R(r)S(θ), we see that the term(

1
sin2 θ

∂2
φ − (a2 cos2 θ + 4M2)∂2

t

)
Φ = CΦ (35)

produces a version of Carter’s constant C [45]. This means that, when we consider a
constant θ slice θ = θ0, the only dependence on our choice of slice would be in the prefactor
ρ−2 (recall that ρ2 = r2 + a2 cos2 θ). The presence of this factor means that our higher order

equation of motion
(
∇µ∇µ

)n
Φ = 0 appears not to be separable. Nevertheless, we see in

Section 4 that at leading-order near r = r±, all dependences on ρ2 (and thus, θ0) drop out.
Thus, we consider a constant θ slice θ = θ0, allowing us to study the “radial” operator:

∇µ∇µ =
1
ρ2

0

∂r(∆∂r)−
(r+ − r−)
(r− r+)

(
∂t + Ω+∂φ

2κ+

)2

+
(r+ − r−)
(r− r−)

(
∂t + Ω−∂φ

2κ−

)2

Ctφ − (r2 + 2Mr)∂2
t

]
,

(36)

where ρ2
0 = r2 + a2 cos2 θ0 and we denote the operator in (35) as Ctφ for convenience.

The form of the operator (36) has a further use. The terms

∂t + Ω±∂φ

2κ±
(37)

produce the monodromy parameters (24) introduced in Section 2.2, i.e.,:(
∂t + Ω±∂φ

2κ±

)
Φ = −iα±Φ . (38)
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In addition, the Killing vector fields

ξ± = κ±
(

∂t + Ω±∂φ

)
(39)

are exactly those that vanish on the inner and outer horizons r±. As such, they are the same
vector fields that appear in Wald’s formulation [46] of black hole entropy as the integrated
Noether charge associated with the Killing vectors vanishing on the horizons. This point
was discussed in [23].

Further, the radial factors
(

r+−r−
r−r±

)
can be directly related to the conformal coordinates,

as defined in (18), and we can finally write the Klein–Gordon operator (36) acting on Φ as:

∇µ∇µΦ =
Φ

ρ2R(r)

[
∂r(∆∂r) + α2

+
g2(r)
f 2(r)

− α2
−g2(r) + (r2 + 2Mr)ω2 + Ctφ

]
R(r). (40)

This form of the Klein–Gordon operator holds for higher spin fields and in higher dimen-
sions, even though the forms of α±, f (r) and g(r) change. This is discussed in Appendix A.
The only terms that do change for a higher spin or higher dimension are the non-singular
terms:

(r2 + 2Mr)ω2 + Ctφ, (41)

which are precisely those that are dropped in the near-region limit of Section 2.1.

4. Hidden Conformal Symmetry in Higher Derivative Dynamics

To study how hidden conformal symmetry is manifest in a theory with higher deriva-
tive dynamics, we considered the following action for a massless scalar field on a Kerr
black hole background:

S = −
∫

d4x
√

g
(

1
2

Φ
(
∇µ∇µ

)n
Φ
)

, (42)

where n is an integer. The equation of motion resulting from this action was:(
∇µ∇µ

)n
Φ = 0, (43)

where n = 1 is the Klein–Gordon equation. Our motivation for choosing this action was
twofold. First, the equations of motion were simple enough to provide a straightforward
extension to previous results with n = 1 obtained by [18,25]. Though simple, we ob-
served that (43) had already produced interesting complications that provided insights
into whether the choice of dynamics affects hidden conformal symmetry. Our second
motivation was that the action (42) is of physical interest, since known examples of holo-
graphic duals to logarithmic conformal field theories contain higher derivative equations
of motion [34]. Thus, (42) provided us with the opportunity both to study the effect of
changing the dynamics on hidden conformal symmetry and also to potentially diagnose a
new instance of a logCFT correspondence.

The differential Equation (43) can be reformulated in two ways, one of which was
of particular use to us. The aim of both approaches is to reduce the system to a series of
second-order equations. For example, as was discussed in [47], the equation of motion (43)
can be broken up into coupled second-order equations by introducing n − 1 auxiliary
scalar fields:

∇µ∇µΦ1 = 0,

∇µ∇µΦi = Φi−1, for i = 2, ..., n.
(44)

The related and more useful alternative to this approach is to repackage the auxiliary scalar
fields as higher spin objects. That is, the problem (43) can be expressed as:
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∇µ∇µΦ = 0,

∇µ∇µΦµ1µ2 = 0,

∇µ∇µΦµ1µ2µ3µ4 = 0,
...

∇µ∇µΦµ1...µ2n−2 = 0.

(45)

In the above expressions, we defined the higher spin fields as:

Φµ1µ2 ≡ ∇µ1∇µ2 Φ,

Φµ1µ2µ3µ4 ≡ ∇µ1∇µ2∇µ3∇µ4 Φ,
...

Φµ1µ2...µ2n−2 ≡ ∇µ1∇µ2 ...∇µ2n−2 Φ.

(46)

We return to the significance of this reformulation later, in Section 4.2.1.
We begin this section with a monodromy analysis of higher derivative dynamics on

a Kerr background in Section 4.1. As mentioned before, one initial motivation for study-
ing higher derivative dynamics was to potentially identify a new instance of a logCFT
correspondence through hidden conformal symmetry, in the spirit of the Kerr/CFT corre-
spondence away from extremality. We present our study of this question in Section 4.2.1,
which we begin with a short review of how the higher derivative model (42) is used in
AdS/logCFT, followed by a study of whether this is a viable model with which to build a
Kerr/logCFT correspondence.

4.1. Monodromy Analysis

In this section, we analyze hidden conformal symmetry in our higher derivative
theories in the spirit of Section 2.2. We began our analysis with n = 2 in the equation of
motion (43). We then treated n = 3 and constructed a clear pattern for the monodromy
parameters α± for general n.

We immediately encountered the potential issue that, for n > 1, the equation of
motion (43) appears not to be separable. Perhaps intriguingly, this turned out not to matter
at leading-order near r = r±. That is, in what follows, we took a constant slice θ = θ0 and
our results for α± did not depend on the choice of θ0.

4.1.1. Case n = 2

Since we were free to take a constant θ slice, we focused on the behavior of a radial
differential equation near its singular points. In particular, we could write the radial
equation in standard form near a singular point r = ri:

(r− ri)
4R(4) + D(r)(r− ri)

3R(3) + C(r)(r− ri)
2R′′ + B(r)(r− ri)R′ + A(r)R = 0. (47)

The Frobenius method instructed us to look for series solutions of the form:

R(r) = (r− ri)
β

∞

∑
k=0

qk(r− ri)
k, (48)

and coefficient functions expanded as:
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D(r) =
∞

∑
k=0

dk(r− ri)
k, C(r) =

∞

∑
k=0

ck(r− ri)
k,

B(r) =
∞

∑
k=0

bk(r− ri)
k, A(r) =

∞

∑
k=0

ak(r− ri)
k.

(49)

In order for (47) to be satisfied, the coefficient of each power of r− ri had to equal zero. In
particular, the coefficient of the (r− ri)

β term produced the fourth-order indicial equation:

β(β− 1)(β− 2)(β− 3) + β(β− 1)(β− 2)d0 + β(β− 1)c0 + βb0 + a0 = 0. (50)

Without loss of generality, we first studied the analytic structure around r = r+. The
zeroth order coefficients of our series expansions (48) were:

d0 = 4, c0 = 2(1 + α2
+), b0 = 0, a0 = α2

+(1 + α2
+), (51)

where α+ denotes the monodromy parameter for a scalar field on a Kerr blackground near
the outer horizon, as defined in (24). Plugging these values back into our indicial equation,
we obtained:

(β2 + α2
+)((β− 1)2 + α2

+) = 0. (52)

Thus, we obtained:
β = {±iα+, 1± iα+}, (53)

where α+ is given by the expression (24) or, since β ≡ iα:

αn=2
+ = {±α+, − i± α+}. (54)

There was a similar result for αn=2
− :

αn=2
− = {±α−, − i± α−} , (55)

where, again, α− can be read in Equation (24).
At this point, there are several things to point out regarding (53)–(55). First, we can

see why it was useful to reformulate our equation of motion (43) for n = 2 as two coupled
equations with a higher spin field, as in (45):

∇µ∇µΦ = 0,

∇µ∇µΦµ1µ2 = 0.
(56)

These equations were coupled in the sense that Φµ1µ2 was built from Φ as in (46). The
four monodromy parameters αn=2

+ associated with our fourth-order equation near the
outer horizon r+ were exactly those found when analyzing the second-order Klein–Gordon
equation for a scalar field (α±, see Equation (24)) and for a spin-2 field (−i ± α±, see
Equation (A6)).

Second, from (53) we could see that two of the exponents β differed from two others
by a positive integer. The Frobenius method tells us that, of the four linearly independent
solutions around each singular point, two of them may be log solutions. For example, near
r = r+ we have:

R(r) = (r− r+)1±iα+Φ±1 (r),

R(r) = a±(r− r+)1±iα+Φ±1 (r) log(r− r+) + (r− r+)±iα+Φ±2 (r),
(57)

where a± are constants, which can be zero or not. This could signal that, if there is indeed
a CFT description of this system, it could be a logCFT. However, it is important to note
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that there is a subtle difference between the log terms that appear here for Kerr and
those that appear in the context of logCFTs dual to an AdS background, as discussed in
Section 4.2.1. In the Frobenius method, when two roots are repeated (as in the AdS analysis,
see Equation (76)), a logarithmic part of the solution is guaranteed. In contrast, it is a
theorem that when two roots differ by a positive integer (as in our case) the coefficients a±
could be zero, see e.g., [48]. This depends on the specific and intricate nature of the given
differential equation.

Our principal goal was then to study if and how hidden conformal symmetry is

manifest in our higher derivative dynamics
(
∇µ∇µ

)2
Φ = 0. There were several ways to

approach this problem. In the usual scenario, that is ∇µ∇µΦ = 0, we try to find SL(2,R)
generators (H0, H±1), as in (21), that (1) satisfy the commutation relations (14) and (2) form
a Casimir that reproduces the near-region Laplacian H2Φ = KΦ, as in (22). In trying to
find equivalent structures in the equation (∇µ∇µ)2Φ = 0, the role of a quadratic Casimir
H2 would perhaps have to be replaced by a quartic CasimirH4. However, when we take
the equivalent description of our system (56), we can see that hidden conformal symmetry
is still visible and presents itself in a natural way.

Since (56) was an equivalent description of our fourth-order equation, we could
analyze each equation in (56) separately. The first equation, ∇µ∇µΦ = 0, was of course
just the standard case that had already been treated in [25]. Then, we turned to the
spin-2 equation. For the reader’s convenience, we reproduce this equation here from our
Appendix A:(

∂r∆∂r + α2
+,s=2

g2(r)
f 2(r)

− α2
−,s=2g2(r) + ω2r2 + 2(Mω + 2i)ωr + Ct,φ

)
R(r) = 0, (58)

where s is the spin of the auxiliary field. Again, we could think of the constant Ct,φ as being
absorbed in a separation constant and the terms ω2r2 + 2(Mω + 2i)ωr could be dropped
in the near-region limit. Thus, the solutions to(

∂r∆∂r + α2
+,s=2

g2(r)
f 2(r)

− α2
−,s=2g2(r)

)
R(r) = 0 (59)

were also hypergeometric functions, hinting at hidden conformal symmetry.
In our review, Section 2, we introduced several important and interrelated quantities:

monodromy exponents β ≡ iα (24), the change of basis modes (ωL, ωR) (26), their conjugate
variables (tL, tR) (32), the conformal coordinates (w±, y) (16) and the SL(2,R) generators
(H0, H±1) (21). We then asked the question: which of these quantities, if any, needed to be
modified from their n = 1 values so that we could still obtain the conditions for diagnosing
hidden conformal symmetry? Notice that this is equivalent to finding generators that
satisfy the commutation relations (14) whose Casimir reproduces the near-region Klein–
Gordon operatorH2

n=2Φµ1µ2 = KΦµ1µ2 , as in (22). We claim that this was accomplished by
modifying only one thing: the change of basis choice (ωL, ωR). Let us demonstrates how
this worked by discussing each of the above quantities in turn.

First, we claim that (tL, tR) did not change from their n = 1 values given in (32), since
these were obtained by thermal considerations in our review in Section 2. The conformal
coordinates (w±, y) should also not change from (16) and (18), since these were purely
geometric relations taking the Kerr background to the upper-half plane (to leading-order
near the bifurcation surface). Finally, the generators were built directly from the the
conformal coordinates via (13), so these should also remain unchanged from their n = 1
values. This only left two quantities: the monodromy parameters α, which certainly did
change, and the basis choice (ωL, ωR), which had to change to account for the change in
the αs. As mentioned above and in Appendix A, the new αs for the spin-2 equation were:

αs=2
± = i± αs=0

± , (60)
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and the basis choice to accommodate this was modified from (26) to:

ωL = α+ − α− − 2i, ωR = α+ + α−. (61)

This means that we considered the frequencies ω ∈ C.

It is not necessary to write the full equation
(
∇µ∇µ

)2
Φ = 0 in a standard form (as in

Section 3) except to point out one thing. Taking a constant θ slice, the fourth-order equation
of motion is of the form:

D
[
R(r)

]
+

[
α2
+

(
1 + α2

+

) g4(r)
f 4(r)

+ α2
−

(
1 + α2

−

)
g4(r) + n.s.

]
R(r) = 0, (62)

where D
[
R(r)

]
stands for all terms involving a derivative of R(r), n.s. represents non-

singular terms and the radial functions f and g are as defined in (16) and (18). From
Equation (62), we could learn more about the standard form discussed in Section 3: the
coefficients of the radial functions were just the Frobenius exponents β (see Equation (53)).

4.1.2. Case n = 3 and Higher n

We now present the monodromy calculation for the equation of motion
(
∇µ∇µ

)n
Φ =

0 with n = 3 and establish a pattern for general n.
Just as in the n = 2 case, our analysis did not depend on our choice of constant θ slice.

Therefore, we were free to consider the sixth-order radial equation in standard form:

(r− ri)
6R(6) + F(r)(r− ri)

5R(5) + E(r)(r− ri)
4R(4)+

D(r)(r− ri)
3R(3) + C(r)(r− ri)

2R′′ + B(r)(r− ri)R′ + A(r)R = 0.
(63)

For concreteness, we again chose to study ri = r+. Upon positing a series solution for R(r)
and the coefficient functions (as in (48) and (49)), we found the indicial equation:

(β2 + α2
+)((β− 1)2 + α2

+)((β− 2)2 + α2
+) = 0. (64)

So, all together, our indicial equations close to r = r+ for
(
∇µ∇µ

)
Φ = 0,

(
∇µ∇µ

)2
Φ = 0

and
(
∇µ∇µ

)3
Φ = 0 were

(β2 + α2
+) = 0,

(β2 + α2
+)((β− 1)2 + α2

+) = 0,

(β2 + α2
+)((β− 1)2 + α2

+)((β− 2)2 + α2
+) = 0,

(65)

respectively. Equation (65) suggests the monodromy structure of
(
∇µ∇µ

)n
Φ = 0 on the

Kerr background for general n:

n

∏
j=1

((β− j + 1)2 + α2
+) = 0. (66)

4.2. Holographic Correspondence with Higher Derivative Dynamics
4.2.1. AdS/logCFT

Here, we begin with a brief review of how higher derivative dynamics in AdS are dual
to logCFTs in order to contrast what happened when we considered these dynamics on a
Kerr background in the next subsection. Holographic logCFTs have been discussed since
the early days of AdS/CFT [49,50]. There has been much progress in this direction, see
e.g., [34], and here, we only report the main lesson from it: logCFTs are holographically



Universe 2022, 8, 155 13 of 21

realized as higher derivative theories in AdSd+1 spacetimes. In particular, for scalar fields
with mass µ, the action is:

S = −1
2

∫
dd+1 x

√
g φ
(
∇µ∇µ − µ2

)n
φ, (67)

where n ≥ 2 corresponds to the rank n of the dual logCFT. The equation of motion is then a
2n-th order differential equation, i.e.,:(

∇µ∇µ − µ2
)n

φ = 0 . (68)

The above action can also be formulated in terms of auxiliary fields; for example, in the
case n = 2, we have:

S = −1
2

∫
dd+1 x

√
g
(

gµν∂µφ1∂νφ2 + µ2φ1φ2 +
1
2

φ2
1

)
. (69)

The equation of motion for φ1 and φ2 are(
∇µ∇µ − µ2

)
φ2 = φ1

(
∇µ∇µ − µ2

)
φ1 = 0 , (70)

respectively.

It is then clear that the φ2 has to satisfy a “squared” equation, i.e.,
(
∇µ∇µ − µ2

)2
φ2 =

0. The action (69) can be generalized to arbitrary rank n [47] and the corresponding
equations of motion are given by:(

∇µ∇µ − µ2
)

φ1 = 0 , (71)(
∇µ∇µ − µ2

)
φi = φi−1 , i = 2, . . . , n ,

from which it follows that the equation of motion for the n-th field is indeed (68). In terms
of the auxiliary fields, we can observe a shift symmetry of the equations of motion and the
on-shell action

φi → φi +
i−1

∑
p=1

λpφp , (72)

for arbitrary constant λp.
Here, we briefly illustrate the example of a higher rank wave equation for a scalar

field in (Euclidean) AdSd+1; see, e.g., [34] for a recent review. We assumed the scalar field
to be massless and we used a Poincaré patch, i.e.,:

ds2
AdS =

dζ2 + dxi dxi

ζ2 , (73)

where i = 1, . . . , d.
Let us use Equation (43) for the case n = 2 and in the background (73). Given the high

degree of symmetry of the metric (73), the differential equation is particularly simple. We
can take d = 2 to make a direct comparison to the Kerr black hole metric (3) discussed in
this work. Then, the radial differential equation for the radial component ψ(ζ) of the scalar
field is given by:

ψ(4)(ζ) +
2
ζ

ψ(3)(ζ)− 2
(
K2 +

1
ζ2

)
ψ(2)(ζ) +

(
1
ζ3 −

2K2

ζ

)
ψ(1)(ζ) +K4ψ(ζ) = 0 , (74)
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where K is a constant that depends on the mode expansions along the directions xi. At the
leading-order in ζ (that is close to the AdS boundary), the radial differential Equation (74)
becomes:

ψ(4)(ζ) +
2
ζ

ψ(3)(ζ)− 1
ζ2 ψ(2)(ζ) +

1
ζ3 ψ(1)(ζ) = 0 . (75)

The main feature to notice here is the absence of a potential term at the leading-order, in con-
trast to our case (87). Applying the Frobenius method, i.e., assuming ψ(ζ) = ζβ ∑∞

n=0 cnζn,
at the leading order we obtain the roots6:

β = 0, d , with multiplicity 2 . (76)

The non-trivial multiplicity means that we obtain the following four linearly independent
solutions:

ζ0, ζd, ζ0 log ζ, ζd log ζ . (77)

At the next-to-leading order in small ζ, the differential equation becomes:

ψ(4)(ζ) +
2
ζ

ψ(3)(ζ)− 2
(
K2 +

1
ζ2

)
ψ(2)(ζ) +

(
1
ζ3 −

2K2

ζ

)
ψ(1)(ζ) = 0 . (78)

The potential term is not present in the equation, but this is specific to the case d = 2.
This equation can be solved analytically and the four linearly independent solutions are
Bessel functions of the first and second kind (In, Yn) whose arguments depend on the
dimensions of AdS, the constant K and the logarithm. Again expanding these solutions
around ζ = 0, the Bessel function Yn gives rise to another explicit logarithmic behavior
close to the boundary, in agreement with the leading behavior found in (77).

With this in mind, we took inspiration from the action (67) to start our investigation of
higher derivative models in a Kerr black hole background and their hidden symmetries.

4.2.2. Kerr

We start this section by rewriting the radial Klein–Gordon equation in new coordinates
and then we examine the squared Klein–Gordon operator in this setting.

Defining

z =
r− r−
r− r+

, (79)

the radial Equation (8) becomes:

z(1− z) f ′′(z) + (1− z) f ′(z)

−
(

α2
+ −

α2
−
z

+
K

1− z

−
(
(r− − r+)2

(1− z)3 + 2
(r− − r+)(M + r+)

(1− z)2 +
4M2 + 2Mr+ + r2

+

1− z

)
ω2

 f (z) = 0 ,

(80)

where we use the definitions from (24).
The singular points of the original Equation (8), namely r = r−, r = r+ and r = ∞

were mapped to z = 0, z = ∞ and z = 1 respectively. In these coordinates (79), the
Frobenius analysis became more transparent and it was clear from Equation (80) that close
to the regular singular point z = 0 (r = r−), at the leading-order for example, the equation
was simply:

f ′′(z) +
1
z

f ′(z) +
α2
−

z2 f (z) = 0 . (81)
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The two linear independent solutions were then:

ziα− , z−iα− . (82)

Before moving to higher order differential equations, it is useful to examine the second-
order Klein–Gordon Equation (A4) for generic spin s in this coordinate system:

z(1− z) f ′′(z) + (1− z) f ′(z)

−

(αs
+)

2 −
(αs
−)

2

z
+

K + s2

1− z
+ 2is

(
M− r+

1− z
− r+ − r−

(1− z)2

)
ω

−
(
(r− − r+)2

(1− z)3 + 2
(r− − r+)(M + r+)

(1− z)2 +
4M2 + 2Mr+ + r2

+

1− z

)
ω2

 f (z) = 0 .

(83)

Notice that the terms proportional to ω2 are unaffected by the spin s, while there is now a
linear term proportional to ω and s. Again, by expanding at leading-order, for example,
around z = 0 (r = r−), we obtain:

f ′′(z) +
1
z

f ′(z) +
(αs
−)

2

z2 f (z) = 0 , (84)

where αs
− is as defined in Equation (A6). The two independent solutions to this equation

are:
ziαs
− , z−iαs

− . (85)

Similarly, we can consider the next-to-leading order expansion of the full equation and
obtain:

f ′′(z) +
1
z

f ′(z) +
(αs
−)

2

z2 f (z)

−
(

K + s2 + (αs
+)

2 − (αs
−)

2 + 2is(M− r−)ω− (4M2 + 2Mr− + r2
−)ω

2

z

)
f (z) = 0 .

(86)

Notice that:
(α+ + α−)(α+ − α− − is) = (αs

+)
2 − (αs

−)
2 .

The solutions to Equation (86) are modified Bessel functions of the first kind In(z). Con-
tinuing the expansion of Equation (83) at the next-to-next-to-leading order, when constant
terms appear in the potential, we see that the solutions are hypergeometric functions. We
should stress that these equations are only valid in the neighborhood of z = 0 and so, the
solutions obtained in this way are not the full solution of the original equation.

Let us now consider Equation (43) for the case of n = 2. Our starting points were
Equations (36) and (40) (after acting on the field Φ). Applying the Klein–Gordon opera-
tor (36) to Equation (40) again and changing the coordinate system, as in (79), we obtained a
rather lengthy expression. We then chose a constant θ slice, since, as discussed in Section 4,
this did not affect the monodromy data. Again, the singular points were z = 0, z = ∞
and z = 1 and, by performing a series expansion around the regular singular points z = 0
(r = r−) and z = ∞ (r = r+), we obtained the roots (55) and (54), respectively.

We believe it is helpful to examine the fourth-order differential equation obtained
in this way, close to a regular singular point at the leading-order. We can focus on z = 0
(r = r−) for simplicity. Then, the differential equation is given by:

f (4)(z) +
4
z

f (3)(z) +
2(1 + α2

−)

z2 f (2)(z) +
α2
−(1 + α2

−)

z4 f (z) = 0 , (87)
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and the four independent solutions are:

z1−iα− , z1+iα− , z−iα− , ziα− . (88)

At the next-to-leading order, the structure of the equation is:

f (4)(z) +
(

4
z
+ A3(θ0)

)
f (3)(z) +

(
2(1 + α2

−)

z2 +
A2(θ0)

z

)
f (2)(z) +

A1(θ0)

z2 f (1)(z)

+

(
α2
−(1 + α2

−)

z4 +
A0(θ0)

z3

)
f (z) = 0 .

(89)

The constants A0, A1, A2 and A3 depend on the black hole parameters and the dynamical
inputs K, ω and m, as well as on the choice of the constant slice θ0, as our notation underlines.
We refrain from writing their explicit expression here, since it is not particularly useful.
The four linear independent solutions of Equation (89) are hypergeometric functions and
Meijer G-functions, which again depend on the monodromy data and the constant As.

We then needed to compare and contrast the AdS case (76) and the Kerr case (88) in
order to determine whether an analogous formulation of a Kerr/logCFT was possible. We
know from Section 4.2.1 that the fourth-order radial equation in an AdS background admits
logarithmic solutions (77). In fact, the logarithmic behavior is guaranteed at the leading-
order close to the boundary by the degeneracy of the indicial roots, see (75) and (76). How-
ever, the Kerr case is more subtle. The crucial difference between Equations (75) and (87)
was the presence of a potential term in the Kerr black hole geometry7. We can see from
Equation (88) that two pairs of indicial roots differed by a positive integer. This signals that
a logarithmic solution may or may not be present. In the Kerr/CFT construction, the CFT
exists at the black hole horizon and so, to determine whether the logarithmic terms were
there in the region that interested us, we expanded the Meijer G-functions close to z = 0. A
general expansion of this function contained terms polynomial in z and also terms such as
z2 log z. The corresponding coefficients were very lengthy expressions, which depended
on the A constants. We remind the reader that these were not the solutions of the full
Equation (80) and that their validity is within the validity of the expansion of Equation (89)
itself and so, the solution showing a logarithmic term beyond its perturbative regime was
not meaningful in this context. We investigated the coefficient of the logarithmic term
numerically and, interestingly, we were not able to find a non-zero coefficient near the black
hole horizon. This seems to indicate that a Kerr/logCFT construction is not possible within
this framework. We discuss the physical interpretations of this result in the discussion
section. It is perhaps worth stressing that a logarithmic solution could still be present
outside of our regime of validity, i.e., at order z2. Again, the presence or absence of a
logarithmic term in general depends on specific dynamics, in particular on the slice θ0 that
is chosen. We remind the reader that the full fourth-order Equation (80) is not separable and
we chose a specific θ-slice to perform our analysis. This is in contrast to the monodromy
data, which did not depend on this choice.

5. Discussion

The goals of this article were to provide a case study of how hidden conformal
symmetry is manifest when we change the dynamics on a given background and, in
particular, whether we could use variations of the Kerr/CFT correspondence to work
toward diagnosing a new instance of a logCFT correspondence. In this section, we review
our results, discuss the challenges of a logCFT construction and discuss future directions.

We found the monodromy parameters α(n) for the general number of derivatives
2n and showed how they are related to the monodromy exponents of the regular Klein–
Gordon equation of higher spin fields. We showed that pairs of the indicial roots iα(n)

differed by an integer and thus, a logarithmic contribution to the radial equation could be
present. However, we found that when sufficiently close to the black hole horizon, potential



Universe 2022, 8, 155 17 of 21

logarithmic contributions vanished. This seems to indicate that we cannot construct a
Kerr/logCFT correspondence from higher derivative theories, which have been used to
construct examples of AdS/logCFT correspondences.

The difficulty in constructing a Kerr/logCFT correspondence is interesting, both from
the gravitational perspective and from the field theory perspective. From the field theory
perspective, logCFTs have been proven to be relevant in numerous areas of physics. Indeed,
they can arise at critical points of various physical systems, such as those describing the
quantum Hall plateau transition [51–54], but also in models describing percolation [55], self-
avoiding walks [56] and systems with quenched disorder [35–37]. These special conformal
field theories are characterized by a logarithmic behavior in correlation functions [33,55,57],
which seems to clash with the fact that the theory is scale invariant. However, the presence
of these terms is hinged on the reducible but indecomposable representations of the confor-
mal group [33]. The crucial point is that the conformal Hamiltonian is not diagonalizable
but rather has a Jordan cell structure (for rank n ≥ 2), which leads to logarithmic terms
in the correlation functions and a lack of unitarity. While this feature would be generally
considered a red flag in quantum field theory, it does not pose any threat as a description
of statistical mechanical systems, as confirmed by the examples mentioned above. We refer
the reader to, e.g., [34,39,58] and references therein for more recent and extensive reviews
of logCFTs.

From a gravitational perspective, a natural question is whether hidden conformal
symmetries are still visible (or modified) when the dynamics are encoded in higher deriva-
tive differential operators, such as those in the action (67). Higher derivative theories
break unitarity, hence we could expect that this would be reflected somehow in the hidden
symmetry group. Consequently, this could hinder us in our efforts to investigate/study a
Cardy-like formula in this setting. Indeed, if we expect a non-unitary CFT, the partition
function may not be bounded from below and we may have states with negative norm;
thus, it is not clear in which sense we could discuss an entropy. Still, it could be possible to
give a description of the density of states, perhaps taking into account anomalies.

There are further challenges with trying to make a logCFT correspondence in the
spirit of Kerr/CFT using the model we proposed. First, there is still some progress to be
made regarding the creation of a robust holographic correspondence in Kerr/CFT itself.
Even though there is ample evidence that the hidden conformal symmetry found in [18]
really is described by an underlying CFT (such as the correct computations of scattering
cross-sections), many elements are still lacking, such as how to conduct an asymptotic
symmetry group analysis when the symmetry generators are not all isometries or when the
conformal symmetry acts at the horizon and not the boundary. We leave this interesting
problem for future work. As mentioned previously, in the case of a logCFT correspondence
in AdS, the scalar field is also guaranteed to have a logarithmic piece near the boundary
but in Kerr, the logarithmic piece could vanish near the horizon.

Lastly, we illustrate once again that the monodromy method is really a powerful tool
for studying hidden conformal symmetry: it allowed us to study near horizon dynamics
without actually taking a near-region limit in the dynamics (although sometimes we did
take such a limit, purely for the ease of the calculations). Furthermore, even though the

higher order equations
(
∇µ∇µ

)2
Φ = 0 were no longer separable, it did not matter for the

monodromy analysis. Our results were independent of the θ slice we chose. This is not
obvious a priori, and we do not have a deep physical understanding of why this would
happen. Mathematically, we observed that all terms with a dependence on the angle θ
were sub-leading when close enough to the horizons. The leading singular behavior of the
solution did not depend on the θ slice. Understanding this would be very interesting and
we leave the problem for future works.

There are several interesting opportunities for future work. One important contri-
bution would be to establish a non-extremal analog to the asymptotic symmetry group
analysis; for example, that presented in [17]. This would further strengthen the claim of a
non-extremal Kerr/CFT correspondence. This paper is a first step toward learning what
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the monodromy method can tell us about other equations of motion. Another direction that
would be interesting, for example, would be to study whether hidden conformal symmetry
is somehow encoded in the Dirac or geodesic equations. Further, it was recently shown
in [28] that there is a difficulty in constructing conformal coordinates in six spacetime
dimensions and higher that do not have branch cuts, unless an explicit near-horizon limit is
taken. Thus, it would be interesting to check whether the general form of the Klein–Gordon
operator discussed in Section 3 and Appendix A holds in higher dimensions. We leave this
for future work.

An intriguing and open question is whether a generalization of the Cardy formula
exists for non-unitary theories, particularly those where the underlying conformal field
theory is logarithmic [58]. Indeed, exploring this question was one of our initial motivations
for this work. The Cardy formula has played a crucial role in the AdS/CFT duality [6,7,59]
and, in particular, in the Kerr/CFT correspondence [17]. The Bekenstein–Hawking entropy
of an asymptotically AdS3 black hole exactly reproduces (at high energy) the degeneracy of
states governed by the Cardy formula [29] in two-dimensional CFTs, i.e.,:

SCFT = 2π

√
cRL0

6
+ 2π

√
cL L̄0

6
, (90)

where cR and cL are the right and left central charges, respectively, and L0 and L̄0 are
the zero-th generators of the Virasoro algebra. It was later understood that any higher
dimensional black holes with an AdS3 near-horizon geometry obey a Cardy formula, again
as a consequence of the symmetry of the given geometry. A step further was made in [60],
where the Cardy formula was extended to a warped AdS3 geometry, i.e., geometries with
SL(2,R) × U(1) isometries. In particular, these are the isometries of the near-horizon
geometry of the extremal Kerr black holes (and, in general, of extremal/near-extremal
black holes). Two essential ingredients enter into the derivation of the Cardy formula (90):
unitarity and modular invariance. So, the presence of a Cardy formula, even with a reduced
symmetry group as in the warped case, tells us that there is still a notion of modular
invariance here. We leave the establishment of a Cardy-like formula in non-unitary settings
for future work.
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Appendix A. Other Standard Form Examples

In this short appendix, we discuss a general form of the d’Alembertian operator
∇µ∇µ that persists when acting on fields of higher spin and in higher dimensions. We
present this discussion because this form was useful to us in examining monodromies
in theories with higher-order equations of motion (∇µ∇µ)nΦ = 0 and because we feel
that it highlights important physical structures related to the monodromy parameters and
conformal coordinates defined in (23) and (18), respectively.
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To set the stage, let us state the results of the four-dimensional case: a scalar field Φ =
ei(mφ−ωt)R(r)S(θ) propagating on a Kerr background (3). The Klein–Gordon equation was:

∇µ∇µΦ =
Φ

ρ2R(r)

[
∂r(∆∂r) + α2

+
g2(r)
f 2(r)

− α2
−g2(r) + (r2 + 2Mr)ω2 + Ct,φ

]
R(r), (A1)

where, as we discussed in Section 2,

α± =
ω−Ω±m

2κ±
(A2)

are the monodromy parameters, the functions

f (r) =
(

r− r+
r− r−

)1/2
, g(r) =

(
r+ − r−
r− r−

)1/2
(A3)

define the radial dependence of the conformal coordinates and Ctφ is a constant of motion;
see Equations (35) and (36) and the discussion below. In scenarios with higher spin fields
and higher-dimensional spacetime backgrounds, the quantities (α±, f (r), g(r), Ct,φ) change
but the overall form of (A1) does not. Let us see how this works.

The hidden conformal symmetry generators for five-dimensional Myers–Perry black
holes [61] were first studied by [31]. The radial equation of motion for a scalar field ansatz
Φ = ei(−ωt+m1φ1+m2φ2) can be written as:[

∂

∂x

(
x2 − 1

4

)
∂

∂x
+ α2

+
g2(r)
f 2(r)

− α2
−g2(r) +

x∆ω2

4
+ C̃t,φ

]
Φ = 0, (A4)

where

x ≡
r2 − 1/2(r2

+ + r2
−)

(r2
+ − r2

−)

is a radial coordinate and the monodromy parameters α± are found in Appendix A of [23].
There are two important points here. First, the functions f (r) and g(r) are precisely those
that define the radial behavior of the conformal coordinates in a five-dimensional setting,
as presented in [31]. Second, we can see a pattern emerging. The Klein–Gordon equation is
expressible as: a derivative piece, pieces involving the monodromy parameters (the form of
which are fixed), a constant term and a non-constant r-dependent term that are irrelevant
at either horizon.

The monodromy analysis for higher spin s perturbations on a four-dimensional Kerr
background was treated in [24]. The equation of motion for such a perturbation can be
written as:(

∂r∆∂r + (αs
+)

2 g2(r)
f 2(r)

− (αs
−)

2g2(r) + ω2r2 + 2(Mω + is)ωr + Ct,φ

)
R(r) = 0. (A5)

Asexpected, the functions f (r) and g(r) that are attached to the monodromy parameters
α± are the same as in (A2) and the monodromy parameters themselves are:

αs
± = ∓ is

2
+

2Mωr± − am
r+ − r−

. (A6)

(There is a typo in the α± reported in [24]). Noticethat when setting s = 2 in the expres-
sions (A6), the monodromy parameters reduce to (54) and (55).
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Notes
1 (Indeed, the separability of this equation is actually a direct consequence of the existence of the hidden symmetry generators that

we were about to build. For a review on this point, see [22,41] and for a more recent discussion, see [28]).
2 (For instances of conformal coordinates in other contexts, see [43,44]).
3 Our discussion only requires the regular singular points. For the treatment of the irregular singular point, see [23,24].
4 The key elements of this discussion were also presented in [23].
5 This basically comes down to the square root in (16) and the analogy between this coordinate transformation and the vacuum

between the Minkowski space and the Rindler wedge. In the end, we chose the transformation laws for (t, φ), such that this
analogy holds.

6 These roots are nothing but the roots of the equation ∆(∆− d) = m2 for a scalar field with mass m in AdSd+1. Here, we set m = 0
and used β instead of ∆ in order to be consistent with the notation used in this work.

7 We should stress that we are only discussing formal similarities. In the Kerr black hole case, we zoomed in on a region close to
the horizon, while in the AdS case, we were interested in the boundary behavior where the CFT lives.
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