# Impact of Warm Dark Matter on the Cosmic Neutrino Background Anisotropies

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. C$\nu $B Angular Power Spectra

## 3. Quantum Amplification of Neutrino Capture

## 4. Results and Conclusions

## Author Contributions

## Funding

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Kamionkowski, M.; Kosowsky, A. The cosmic microwave background and particle physics. Annu. Rev. Nucl. Part. Sci.
**1999**, 49, 77–123. [Google Scholar] [CrossRef] [Green Version] - Tully, C.G.; Zhang, G. Multi-messenger astrophysics with the cosmic neutrino background. J. Cosmol. Astropart. Phys.
**2021**, 6, 053. [Google Scholar] [CrossRef] - de Vega, H.J.; Sanchez, N.G. Equation of state, universal profiles, scaling and macroscopic quantum effects in warm dark matter galaxies. Eur. Phys. J. C
**2017**, 77, 1–19. [Google Scholar] [CrossRef] [Green Version] - Hipólito-Ricaldi, W.S.; vom Marttens, R.; Fabris, J.; Shapiro, I.; Casarini, L. On general features of warm dark matter with reduced relativistic gas. Eur. Phys. J. C
**2018**, 78, 1–13. [Google Scholar] [CrossRef] - Blas, D.; Lesgourgues, J.; Tram, T. The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes. J. Cosmol. Astropart. Phys.
**2011**, 2011, 034. [Google Scholar] [CrossRef] [Green Version] - Dakin, J.; Brandbyge, J.; Hannestad, S.; HaugbØlle, T.; Tram, T. CONCEPT: Cosmological neutrino simulations from the non-linear Boltzmann hierarchy. J. Cosmol. Astropart. Phys.
**2019**, 2019, 052. [Google Scholar] [CrossRef] [Green Version] - Viel, M.; Markovič, K.; Baldi, M.; Weller, J. The non-linear matter power spectrum in warm dark matter cosmologies. Mon. Not. R. Astron. Soc.
**2012**, 421, 50–62. [Google Scholar] [CrossRef] [Green Version] - Peebles, P.J.E. The Large-Scale Structure of the Universe; Princeton University Press: Princeton, NJ, USA, 1980; p. 435. [Google Scholar]
- Bešlić, I.; Vranješ Markić, L.; Boronat, J. Spin-polarized hydrogen and its isotopes: A rich class of quantum phases. Low Temp. Phys.
**2013**, 39, 857–873. [Google Scholar] [CrossRef] - Fried, D.G.; Killian, T.C.; Willmann, L.; Landhuis, D.; Moss, S.C.; Kleppner, D.; Greytak, T.J. Bose-Einstein condensation of atomic hydrogen. Phys. Rev. Lett.
**1998**, 81, 3811. [Google Scholar] [CrossRef] [Green Version] - Marín, J.; Markić, L.V.; Boronat, J. Spin-polarized hydrogen adsorbed on the surface of superfluid
^{4}He. J. Chem. Phys.**2013**, 139, 224708. [Google Scholar] [CrossRef] [Green Version] - Betti, M.; Biasotti, M.; Boscá, A.; Calle, F.; Carabe-Lopez, J.; Cavoto, G.; Chang, C.; Chung, W.; Cocco, A.; Colijn, A.; et al. A design for an electromagnetic filter for precision energy measurements at the tritium endpoint. Prog. Part. Nucl. Phys.
**2019**, 106, 120–131. [Google Scholar] [CrossRef] [Green Version] - London, H. Thermodynamics of the thermomechanical effect of liquid He II. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci.
**1939**, 171, 484–496. [Google Scholar] - Landau, L. Theory of the superfluidity of helium II. Phys. Rev.
**1941**, 60, 356. [Google Scholar] [CrossRef] - Aseev, V.; Belesev, A.; Berlev, A.; Geraskin, E.; Kazachenko, O.; Kuznetsov, Y.E.; Lobashev, V.; Ostroumov, R.; Titov, N.; Zadorozhny, S.; et al. Energy loss of 18 keV electrons in gaseous T and quench condensed D films. Eur. Phys. J.-At. Mol. Opt. Plasma Phys.
**2000**, 10, 39–52. [Google Scholar] [CrossRef] - Abdurashitov, D.; Belesev, A.; Chernov, V.; Geraskin, E.; Golubev, A.; Koroteev, G.; Likhovid, N.; Nozik, A.; Pantuev, V.; Parfenov, V.; et al. Electron scattering on hydrogen and deuterium molecules at 14–25 keV by the “Troitsk nu-mass” experiment. Phys. Part. Nucl. Lett.
**2017**, 14, 892–899. [Google Scholar] [CrossRef] [Green Version] - Kollmeier, J.A.; Zasowski, G.; Rix, H.W.; Johns, M.; Anderson, S.F.; Drory, N.; Johnson, J.A.; Pogge, R.W.; Bird, J.C.; Blanc, G.A.; et al. SDSS-V: Pioneering panoptic spectroscopy. arXiv
**2017**, arXiv:1711.03234. [Google Scholar] - Aker, M.; Beglarian, A.; Behrens, J.; Berlev, A.; Besserer, U.; Bieringer, B.; Block, F.; Bornschein, B.; Bornschein, L.; Böttcher, M.; et al. First direct neutrino-mass measurement with sub-eV sensitivity. arXiv
**2021**, arXiv:2105.08533. [Google Scholar] - Mertens, S.; Brunst, T.; Korzeczek, M.; Lebert, M.; Siegmann, D.; Alborini, A.; Altenmüller, K.; Biassoni, M.; Bombelli, L.; Carminati, M.; et al. Characterization of silicon drift detectors with electrons for the TRISTAN project. J. Phys. G Nucl. Part. Phys.
**2020**, 48, 015008. [Google Scholar] [CrossRef] - Li, Y.F.; Xing, Z.Z. Possible capture of keV sterile neutrino dark matter on radioactive β-decaying nuclei. Phys. Lett. B
**2011**, 695, 205–210. [Google Scholar] [CrossRef] [Green Version] - Cheipesh, Y.; Cheianov, V.; Boyarsky, A. Heisenberg’s uncertainty as a limiting factor for neutrino mass detection in β-decay. arXiv
**2021**, arXiv:2101.10069. [Google Scholar] - Nussinov, S.; Nussinov, Z. Quantum Induced Broadening-A Challenge For Cosmic Neutrino Background Discovery. arXiv
**2021**, arXiv:2108.03695. [Google Scholar] [CrossRef]

**Figure 2.**The fractional contribution to the $l=1$ multipole of the C$\nu $B angular power spectrum for a neutrino mass of 0.05 eV as a function of redshift.

**Figure 3.**(

**left**) The total C$\nu $B angular power spectra for CDM and WDM with a 2 keV sterile neutrino. (

**right**) The ratio of the C$\nu $B angular power spectra for CDM and WDM cosmologies for a sterile neutrino mass of 2, 3, or 7 keV. The impact of WDM is a relative drop in the C$\nu $B angular power at high-l. The contributions to the total uncertainty on the measurement of the ratio are shown for cosmic variance and the PTOLEMY counting statistics in the limit of large-N total neutrino capture events.

**Figure 4.**Comparison of a laser (

**top**) to a quantum liquid amplification process for relic neutrino capture (

**bottom**). The amplitudes for exchange terms involving the stimulated increase from N to $N+1$ bosons in the final-state condensate sum coherently with a positive sign following Bose–Einstein statistics.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Tully, C.G.; Zhang, G.
Impact of Warm Dark Matter on the Cosmic Neutrino Background Anisotropies. *Universe* **2022**, *8*, 118.
https://doi.org/10.3390/universe8020118

**AMA Style**

Tully CG, Zhang G.
Impact of Warm Dark Matter on the Cosmic Neutrino Background Anisotropies. *Universe*. 2022; 8(2):118.
https://doi.org/10.3390/universe8020118

**Chicago/Turabian Style**

Tully, Christopher G., and Gemma Zhang.
2022. "Impact of Warm Dark Matter on the Cosmic Neutrino Background Anisotropies" *Universe* 8, no. 2: 118.
https://doi.org/10.3390/universe8020118