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Abstract: Following analogies with relativistic point particles and Schild strings, we show that the
Einstein gravity and its strong coupling regime (or the Planck mass going to zero) are related to each
other through a Laplace transform. The Feynman propagator of gravity in the strong coupling regime
satisfies a functional diffusion equation in the three-metric space with the evolution parameter being
the volume of spacetime. We conjecture that the relationship between both regimes is consistent with
the existence of an evolution operator in which time is replaced by the volume of spacetime.

Keywords: quantum gravity; strong coupling limit; path integral approach

1. Introduction

The quantum theory of gravity has been intensively studied in the last seventy years [1].
On the one hand, it is a highly complex technical problem and, on the other, a conceptual
one that is not yet understood. However, the new ideas incorporated to build such a theory
will undoubtedly be radically new when it happens.

Some ideas developed in the study of quantum gravity are, for example1, dissipation
and determinism [5], thermodynamics [6–8], string theory [9], loop quantum gravity [10,11],
or Poincaré symmetry deformations of symmetry [12–14], to mention only a few.

In this paper, we would like to study some technical and conceptual issues of quantum
gravity using ideas taken from string theory. In particular, Eguchi explored a scheme in [15]
for quantizing a string with finite tension from the Schild (tensionless) string [16]. The
idea was applied to extended objects (relativistic membranes) [17,18] and it is certainly
interesting to study the case of gravity in the strong limit coupling [19,20].

We will review aforementioned cases to show that it is possible to connect theories
defined in some limit of certain parameters (where the theory is usually simpler) with
the theory at finite values of such parameter. The connection is provided by the Laplace
transformation, which closely resembles what happens in statistical mechanics where the
relation between microcanonical and canonical ensembles is considered.

The idea proposed in the present paper, is to establish a series of analogies between
particles and strings and then, when these analogies are understood, to apply them to
formulate a quantized gravity starting from the strong coupling regime [21–23].

The paper is organized as follows: in the next section, we discuss an approach to the
quantization of particles and strings, where the Laplace transform and the strong limit have
a key role. In Section 3, we apply these ideas to quantum gravity in the strong coupling
regime and we analyze its possible physical implications. The last section is devoted
to discussion.
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2. Particles and Schild Strings

In order to present these ideas, let us start by considering the Feynman propagator for
a relativistic particle of mass m [24]

G[x, x′; m2] =
∫ ∞

0
ds e−

m2
2 sG[x, x′; s], (1)

where
G[x, x′; s] =

∫
Dx e−S [x], (2)

and S is the Euclidean action of the point particle.
This idea of introducing mass as a Laplace transform is very useful for studying the

massless–massive limit transition, and, underlying this approach, are the proper-time
gauge on the one hand, and, on the other hand, the boundary condition

xµ
1 (0) = xµ

0 , and xµ
2 (1) = xµ

1 , (3)

which are held fixed upon arbitrary variations. Spacetime has dimension D and, therefore,
index µ = {0, 1, . . . , D− 1}.

In order to calculate (2) we note that the Euclidean action is

S =
∫ 1

0
dτ

1
2s

ẋ2. (4)

where the extra field s(τ) guarantees the invariance of the action under time reparametriza-
tion. Indeed, under the change τ → τ′(τ), the function s must change as s → s′(dτ′/dτ)
with s′ = s(τ(τ′)), to have an invariant action.

When (4) is replaced in (2), and using (3), one obtains

G[x, x′; s] = s−
D
2 e−

(∆x)2
2s , (5)

with ∆xµ = xµ
1 − xµ

0 . The explicit formula of the Laplace transform (1) is

G[x, x′; m2] =
∫ ∞

0
ds s−

D
2 e−

(∆x)2
2s −

m2
2 s, (6)

the standard integral representation of the Feynman propagator in the proper-time gauge.
The appearance of the Laplace transform closely resembles the relation between mi-

crocanonical and canonical ensembles in statistical mechanics. In this analogy, what would
be equivalent to the number of microcanonical states is played by G[x, x′; s], measuring
the number of configurations with a fixed parameter s, while the measure of the number
of states with a given mass is G[x, x′; m2]. The relevant point, here, is that it is possible to
connect a particular limit of some parameter at which the theory is simpler, with the limit
of a finite parameter. We will see how this idea is extended for strings and how can it be
useful for the case of gravity.

The Feynman propagator satisfies the diffusion equation(
∂

∂s
− 1

2
�2
)

G[x, x′; s] = 0. (7)

From here, the connection to the WKB approach is straightforward. Indeed, applying
the operator ∂

∂s −
1
2�

2 to Equation (2) we find(
∂

∂s
− 1

2
�2
)

G[x, x′; s] =
[
−∂S

∂s
+

1
2
�2S− 1

2
(∂S)2

]
G[x, x′; s] = 0, (8)
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with (∂S)2 = ∂µS ∂νSδµν. The Hamilton–Jacobi equation is obtained from the last equation
in (8)

− ∂S
∂s

= −1
2
�2S +

1
2
(∂S)2. (9)

The term �2S is a quantum correction and, indeed, in the limit h̄ → 0, this term
cancels and we recover the Hamilton–Jacobi equation of classical mechanics.

Using this result, we turn to the study of string theory by using the following formal
analogy: the role of mass corresponds to the tension T in string theory. Therefore, if we can
write the Feynman propagator as a Laplace transform (as before), then we can naturally
make a connection with the Schild string [16].

Following the ideas above, it is natural to think that the equivalent expression to (2) is2

G[X(σ), X′(σ); T] =
∫ ∞

0
dN⊥ e−N⊥ T G[X(σ), X′(σ); N⊥], (10)

where
G[X(σ), X′(σ); N⊥] =

∫
DXµ(σ) e−S [X(σ)], (11)

describes the Schild string dynamics with

S [X(σ)] =
∫

d2σ
1

2N⊥
Ẋ2(σ). (12)

Here the (). and ()′ denote τ and σ derivatives, respectively.
These above-mentioned expressions require careful physical explanation (technical

results are explained in [17,18] (see also [27])). First, the Schild string is the analog to a set
of massless particles, and then—if the length of the string is finite, as we know—all the
points of the string move at the speed of light, as implied by the constraint

H⊥ =
1
2

P2(σ) = 0. (13)

However, the string also has to be invariant under reparametrizations in the world-
sheet. That is, the next must be fulfilled

H1 = PµX′µ = 0, (14)

implying that the total Hamiltonian is

H =
∫

dσ(N⊥H⊥ + N1H1) = 0, (15)

with N⊥, N1 being two Lagrange multipliers. Keeping these results in mind, we set the
gauge according to

Ṅ⊥ = 0, N1 = 0, (16)

which is the proper-time gauge [28]. In this gauge the most straightforward choice is setting
N⊥ equal to a constant, and that is what we will assume. Once this gauge is fixed, the
action (12) is obtained.

With this result, the Laplace transform turns out to be a consequence of the fact that
not only the ends of the string move at the speed of light (as it happens in conventional
string theory) [29]. Instead, in the present case all the points on the string are moving at the
speed of light.

Taking into account these considerations, the calculation of (11) is direct and the
result is

G[X(σ), X′(σ); N⊥] = s−
D
2 e−

(∆X(σ))2
2N⊥ . (17)
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The functional diffusion equation is subtle because the string is an extended object,
which makes necessary the addition of new considerations.

Indeed, the presence of two “evolution” parameters, namely σ and τ, suggests that
the true evolution parameter (Teichmüller one) is the area (A) of the string world volume.

From the Hamiltonian point of view, the equations can be obtained as follows: the
action of the string is S =

∫
dτdσL, where the integral is performed in the region D

with boundary ∂D. Consider, now, the variation of the action under the variation of the
integration domain D, namely under the variation {δτ(λ), δσ(λ)} with λ a parameter
(usually chosen as λ ∈ [0, 1]). The variation of the action turns out to be

δS =
∫
LδA dλ +

∫
δL dA, (18)

with dA = dσ(λ)dτ(λ). The second term is the variation of the Lagrangian and it is possible
to show that this term does not contribute to the variation if the action is invariant under
local area transformations, which is true in the present case [15] (for a detailed discussion
see also [27]). Since the action is invariant under area-preserving transformations, it changes
only when the total area of D changes [30], and then it is possible to identify the functional
derivative of the action in the previous expression with the partial derivative, that is

dS
dA

= L. (19)

On the other hand, S = S[A, X], then

dS
dA

=
∂S
∂A

+
∂S
∂X

∂X
∂A

. (20)

If we formally identifyẊ = ∂X
∂A then, by using (19) and the factH = PẊ−L, we find

H
[

X,
∂S
∂X

]
= − ∂S

∂A
, (21)

where the conjugate momentum has been identified with ∂S
∂X . The resulting equation is,

therefore, the Hamilton–Jacobi equation for strings withH, the Hamiltonian density [31,32].
From the quantum point of view—and as in the case of the relativistic particle dis-

cussed above—the Feynman propagator satisfies the functional diffusion equation [15]

∂

∂A
G[X(σ), X′(σ); A] =

1
2

δ2

δX2(σ)
G[X(σ), X′(σ); A]. (22)

Equations (11) and (22) allow us to determine the Hamilton–Jacobi equation

∂

∂A
S [X(σ)] = −1

2
δ2S [X(σ)]

δX2[σ]
+

1
2

(
δS [X(σ)]

δX(σ)

)2

. (23)

The second derivative, namely δ2S/δX2, contains the quantum corrections and is the
main contribution in the systematic treatment of the WKB approximation. Naturally, in
the present case, Equation (23) is the Schrödinger functional equation. In the limit h̄→ 0,
the reparametrization constraint PµXµΨ[x(σ)] = −ı δ

δXµ Ψ[x(σ)] vanishes also, as it must be
due to the gauge choice.

Equations (22) and (23), and their physical implications have been intensively investi-
gated in the past, although the derivation that we have given here is not the usual one (for
extensions to p-branes, see, for example, [17]). The solutions in the WKB approximation
have been considered in [33–36].
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3. Quantum Gravity

Now, we go ahead with the main objective of this research and we will consider what
happens with quantum gravity.

The Hamiltonian gravity action in the ADM formalism becomes

S =
1

16πGN

∫
d4x
(

πij ġij − N⊥H⊥ − NiHi

)
, (24)

where, as in the case of string theory, N⊥ and Ni are Lagrange multipliers, πij is canonical
momentum, gij the metric tensor of the three-dimensional space, andH⊥,Hi are the Hamil-
tonian and diffeomorphism constraint, respectively. The Latin index, as usual take values
{1, 2, 3} and denote intrinsic quantities of the space section. GN is the Newton’s constant.

The Hamiltonian constraints are

H⊥ = 16πGN Gijklπ
ijπkl −

√
g

16πGN

(
R(3) − 2Λ

)
≈ 0, (25)

Hi = −2π
j
i ;j ≈ 0, (26)

where the supermetric is

Gijkl =
1

2
√

g

(
gikgjl + gil gjk − gijgkl

)
, (27)

and Λ is the cosmological constant.
The coefficient 16πG comes from the Einstein–Hilbert action. The Newton’s constant

GN has canonical dimension −2 and it can be written as the inverse of the Planck mass,
that is G−1

N = M2
Pl. We will use this consideration extensively below.

In order to make more explicit the analogy between string theory and gravity, let us
write the Nambu–Goto action

S =
∫

d2σ
(

PµẊµ − N⊥H⊥ − N1H1
)
, (28)

with

H⊥ =
1
2

(
1
T

P2 + TX′2
)
≈ 0, (29)

H1 = PµX′µ ≈ 0, (30)

If we compare (25) and (29) we see that the analog of a tensionless string corresponds
to MPl =

1
G2 → 0, which would be the analog of the massless spectrum in string theory.

However, note that, even when the analogy is formal, it is technically interesting because—
as we will see below—it is possible to extract technical and physical information from an
otherwise intractable problem.

The zero Planck mass limit is also known as the strong coupling gravity and has been
studied in many contexts [19,23,28,37,38] (for a recent discussion see [39] ) and the study of
geometric properties is part of a very active topic, namely Carroll geometry [40,41].

Another technical aspect related to Carroll’s geometry is that in the limit MPl → 0, the
spacetime is causally disconnected since the speed of a signal going from one point to a
neighbor one is zero (that is, c→ 0). Parenthetically, this is the reason for the name Carroll
(also note that this limit is a contraction of the Poincaré group).

Technically the limit MPl → 0 is equivalent to settingspatial derivatives equal to zero
in the gravity theory.

Keeping these ideas in mind, we can use the proper-time gauge in gravity [28]

Ṅ⊥ = 0, Ni = 0. (31)
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Note that the condition Ṅ⊥ = 0 establishes that, although N⊥ does not depend on
time, it can depend on spatial coordinates, but without loss of generality, we will assume
N⊥ as a constant.

The previous choice is, indeed, a good gauge choice, as we will show in what
follows [23]. Consider the spacetime with topology T× ΣD−1, with ΣD−1 spacelike. Gener-
ators H⊥ and Hi in (25) and (26) give rise to the following gauge transformations

δN⊥ = ε̇− (N⊥εi),i +(Niε),i , δNi = ε̇i. (32)

The variation of the action (24) under these transformations turns out to be

δS =
∫ [

εiHi + ε Gijklπ
ijπkl

]t2

t1

dD−1x + 2
∫

dt
∫

ΣD−1

σl Nk δπkl . (33)

Since the diffeomorphism constraints are satisfied, the cancellation of εiHi occurs,
while the second term cancels under the assumption ε(t1, x) = ε(t2, x). Note that the
spatial dependence is parametric only since the limit GN → ∞ leaves only time dependence
inH. Finally, the second integral is zero also, due to the gauge choice.

In addition to the previous choice, it is possible to impose also the condition εi = 0,
since there are not restrictions to deformations in the space directions (tangential deforma-
tions) due, again, to the strong coupling limit.

Using this last fact, the Feynman propagator becomes

G[gij(2), gij(1); MP] =
∫ ∞

0
dN⊥ e−M2

P N⊥G[gij(2), gij(1); N⊥], (34)

where

G[gij(2), gij(1); N⊥] =
∫
Dgij e−

∫ 2
1 d4x 1

2N⊥
Gijkl ġij ġkl

, (35)

where gij(1) means gij(x, t1) and the same for gij(x, t2).
This equation is the analogue of (1) connecting the sectors with MPl 6= 0 with MPl = 0.
It is important to emphasize that the relation (34) is an explicit prescription that relates

the ultraviolet and infrared sectors and, therefore, another technical way of implementing
the naturalness ’t Hooft prescription [42] for quantum gravity. This, as far as we know, has
not been discussed in the literature before.

Following the arguments that led us to (19), we see that we can find a Hamilton–Jacobi
equation in a similar way to that of string theory but with a different physical interpretation.
Indeed, in gravity the action is S =

∫
d4xL, with L the Einstein–Hilbert Lagrangian.

However, the invariance under reparametrization suggests that we can use the volume of
spacetime as a parameter of evolution, so, by analogy with (19), we have

dS
dV

= L, (36)

and the Hamilton–Jacobi equation turns out to be (21) with the replacement A→ V being
V the volume of the integration domain. This assumption also follows the Moser theorem,
extended to non-compact manifolds in [43], and it remains valid for volume-invariant
diffeomrphisms (see [23] for a discussion in the 2+1 case).

However (35) implies

− ∂S
∂V

= Gijkl δS
δgij

δS
δgkl −

δ

δgij

(
Gijkl δS

δgkl

)
, (37)

which is, on the one hand, a much more complicated equation and, on the other, has
different physical implications than those we will point out below.
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The first comment is that (34) is a causal relationship between two regions with
different scales. However, (34) and the existence of the Laplace transform are consistent
with a state evolution operator, but with V playing the role of time in quantum gravity.

We also emphasize that the Laplace transform (21) is an unexpected result because,
although it was obtained following the Feynman construction, in the case of gravity, it
turns out to be a relationship that connects very different energy sectors.

4. Discussion

Following an analogy with string theory (and point-relativistic particles), we have
written the Feynman propagator between two geometries as the Laplace transform of the
propagator describing quantum gravity in the strong coupling limit.

Additionally, like the aforementioned cases, the strong coupling limit propagator
satisfies a functional diffusion equation, with the four-dimensional volume playing the role
of a time parameter.

This approach seems to be particularly suitable for treating the pure time evolution of
the metric, as, for example, in the case of quantum cosmology. In fact, for such a case, the
action in (35) is proportional to the three-dimensional volume and the integral contains
only the scale factor. To gain an insight on this, consider the three-dimensional metric
g = a2(t)diag(1, 1, 1), then

G[a(t2), a(t1); N⊥] =
∫
Da e3V

∫ t2
t1

1
N⊥

ȧ2

a5 dt.

The action in the exponential turns out to be the action in the strong coupling limit.
Various issues, such as solutions of Einstein’s equations in the strong coupling regime
and explicit quantum formulas have not been written. These and other topics will be the
purpose of a future research work.
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