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Abstract: We discuss thermofield double QFT at real time, in the large N limit. First, we establish a
(dynamical) symmetry, which we argue holds in general for the real-time portion of the Schwinger–
Kelydish contour. At large N, this symmetry is seen to generate a one-parameter degeneracy of
stationary collective solutions. The construction is explicitly worked out on an example of the O(N)

vector QFT. As a nontrivial application, we describe the construction of the corresponding (large N)
thermofield double state in real-time collective formalism.
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1. Introduction

Thermal physics forms the basis for major applications of QFT in condensed matter,
quantum gravity, and AdS/CFT. A theoretical formulation is given through quantization
on the Schwinger–Kelydish (SK) contour [1,2] and the corresponding perturbative [3–6]
and non-perturbative [7,8] features. One particular picture is based on the thermofield
double (TFD), a scheme which identifies the (two) different Hamiltonians corresponding
to propagation on the Real and Imaginary parts of the SK contour, respectively. A central
role is then played by the thermofield double state, which in this framework is analogous
to the ground state in standard quantization. However, in contrast to canonical ground
states, the thermofield double state is much less developed. Attempts at constructing and
approximating the TFD state are numerous, and a partial list of references is [9–12]. It is
the goal of the present work to provide a contribution to this subject, through the role (and
construction) of a dynamical symmetry which we argue operates in general (for any theory)
on the real-time portion of the SK contour. We demonstrate this in perturbation theory.
The second ingredient is the use of large N. It is expected in general that in this limit the
dynamics are simplified, and that an explicit construction of the TFD state might be possi-
ble. We indeed give such a construction in the collective (Hamiltonian) framework using
the O(N) theory as an example. We build on the initial work of [13] where the collective
Hamiltonian representation of the real time SK contour was used to study emergent [14]
space–time. A number of interesting recent works concern the O(N) model [15,16] and
its holographic role. The dynamical symmetry and the large N collective TFD state wave-
function(al) described in the present work clearly hold more general relevance. Studies of
TFD as a ground state through an explicitly coupled system [17] are numerous [18–20]. The
formulation that we present potentially offers another line of comparison.

This work is organized as follows. In Section 2, we perturbatively establish a dynamical
symmetry of the interacting thermofield theory. The field transformations under this
symmetry are then discussed and are seen to be simplified at large N. In Section 3, we
present the full large N construction in the framework of collective field theory. It presents
a simple, explicit form of the dynamical symmetry in question. In Section 4, we provide
the construction of the TFD state. Conclusions and relevant applications are discussed in
Section 5.
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2. Symmetry of Thermofield Double QFT

We will perform our study of thermofield dynamics in the O(N) QFT framework. In
the first subsection we set up the notations and briefly summarize the free theory case.
Generalizing to interacting QFT, we then argue for the existence of an exact dynamical
thermofield double symmetry. We give a demonstration of this, and a construction of
the generator of thermofield symmetry in perturbation theory. The associated symmetry
transformations of fields are also given. The role of this symmetry will be visible in the
solution of large N collective field theory that follows in the subsequent section. In general,
the existence of symmetry implies a degeneracy in the stationary field solution. This will
be seen through the collective field theory solution of the O(N) QFT.

2.1. Thermofield Dynamics in Free Theory

In the TFD formalism, a thermofield vacuum state |0(β)〉 is defined so that the thermal
average of an arbitrary operatorO can be reproduced as an expectation value in the thermal
vacuum state |0(β)〉

〈O〉β ≡ 〈0(β)|O|0(β)〉 = 1
Z(β)

Tr(e−βHO), (1)

where Z(β) ≡ Tr
(
e−βH). To accomplish this, one should purify the mixed state by

doubling the Hilbert space. Let d denote the spatial dimension; the real-time thermofield
Hamiltonian for the free O(N) vector model is

Ĥ2 =
∫ [1

2
π2 +

1
2
(∇ϕ)2 +

1
2

m2 ϕ2
]

ddx−
∫ [1

2
π̃2 +

1
2
(∇ϕ̃)2 +

1
2

m2 ϕ̃2
]

ddx. (2)

Here ϕ2 ≡ ∑N
i=1 ϕi ϕi, etc. The non-tilde (tilde) fields are the original (doubled) de-

grees of freedom, and we will always put a ‘hat’ on the thermofield Hamiltonian and
the subsequent symmetry operator Ĝ. Since we focus on the Hamiltonian formalism, for
compactness we will use x ≡ x to denote the spatial vector, and k ≡ k to denote the spatial
momentum. The mode expansions of the fields are as usual

ϕj(x) =
∫ ddk

(2π)d/2
1√

2ω(k)

(
aj(k)eik·x + aj†(k)e−ik·x

)
, (3)

π j(x) = −i
∫ ddk

(2π)d/2

√
ω(k)

2

(
aj(k)eik·x + aj†(k)e−ik·x

)
, (4)

and similarly for the doubled fields ϕ̃ and π̃. We have the canonical commutation relations

[ai(k), aj†(k′)] = δijδd(k− k′), (5)

[ãi(k), ãj†(k′)] = δijδd(k− k′). (6)

Using the mode expansion, we can write the real-time thermofield Hamiltonian as

Ĥ2 =
∫

ddk ω(k)Ĥ2(k) =
∫

ddk ω(k)
(

a†(k) · a(k)− ã†(k) · ã(k)
)

. (7)

The thermo vacuum state for the O(N) model then reads

|0(β)〉 ≡ exp(−iĜ2)|0, 0̃〉 = ∏
k

exp
[
θβ(k)

(
a†(k) · ã†(k)− a(k) · ã(k)

)]
|0, 0̃〉. (8)

Here, the Ĝ2 operator takes the form

Ĝ2 =
∫

ddk iθβ(k)Ĝ2(k) =
∫

ddk iθβ(k)
(

a†(k) · ã†(k)− a(k) · ã(k)
)

, (9)
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with
θβ(k) ≡ arctanh(e−βω(k)/2). (10)

The Ĝ2 operator induces a Bogoliubov transformation

aj
β(k) ≡ eiĜ2 aj(k)e−iĜ2 = aj(k) cosh θβ(k)− ãj†(k) sinh θβ(k), (11)

and similarly for aj†
β (k), ãj

β(k) and ãj†
β (k). The new annihilation operators annihilate the

thermo vacuum state:
aj

β(k)|0(β)〉 = ãj
β(k)|0(β)〉 = 0. (12)

The thermofield Hamiltonian Ĥ2 then also annihilates |0(β)〉

Ĥ2|0(β)〉 = 0. (13)

We can also easily check that Ĝ2 commutes with Ĥ2:

[Ĝ2, Ĥ2] = 0. (14)

We note that in Ĝ2, one can replace θβ with any well-defined even function f (k) of
momentum to obtain a symmetry operator Ĝ2[ f ], obeying Equation (14). Consequently, in
what follows θβ(k) will be replaced generally by f (k)/2.

2.2. Thermofield Dynamics in Interacting Theory

We would like to suggest that the kinematic symmetry seen in the previous subsection
is generalizable. In particular, we will argue and present evidence that it can be extended
to the interacting case, taking the form of a dynamical symmetry:[

Ĝ[ f ], Ĥ
]
= 0, (15)

associated with the (real-time) Hamiltonian Ĥ = H − H̃. In addition, we will argue that
this generator gives the TFD vacuum state through

|0(β)〉 = exp
(
−iĜ[ f ]

)
|0, 0̃〉, for specific f (k). (16)

In what follows, we will be demonstrating the existence and explicit construction of
Ĝ[ f ] in perturbation theory. This will be performed through solving the condition (15) .

Consider then the interacting theory with a quartic interaction c Ĥ4 added in the
thermofield Hamiltonian

Ĥ = Ĥ2 + c Ĥ4 + · · · , with Ĥ4 =
1

4N

∫ [
(ϕ2)2 − (ϕ̃2)2

]
ddx, (17)

where c denotes the coupling constant. Consequently, the operator Ĝ ≡ Ĝ[ f ] will be 1

Ĝ = Ĝ2 + c Ĝ4 + · · · , with Ĝ4 =
i

4N

∫
[dk]4Ĝ4(k1, k2; k3, k4), (18)

where Ĝ2 is the free theory generator (9). We will be constructing Ĝ4 in momentum space.
Substituting these expressions into the symmetry condition (15) and using the existing
commutation relation (14), we see that up to order c, the Ĝ4 operator obeys the following
symmetry constraint

[Ĝ2, Ĥ4]− [Ĥ2, Ĝ4] = 0. (19)

Our goal is to solve this equation for Ĝ4, determining Ĝ[ f ] to this order.
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It is advantageous to work in momentum space, and with bi-local operators specified
in Appendix A. We can write Ĝ2 and Ĥ2 as

iĜ2 = −1
2

∫
ddk f (k)(C†(k, k)− C(k, k)), (20)

Ĥ2 =
∫

ddk ω(k)(B(k, k)− B̃(k, k)). (21)

Defining two linear combinations of bi-local operators

S(k1, k2) = A(k1, k2) + A†(−k1,−k2) + 2B(−k1, k2), (22)

S̃(k1, k2) = Ã(k1, k2) + Ã†(−k1,−k2) + 2B̃(−k1, k2), (23)

we can also write the quartic interaction in terms of bi-local operators as

Ĥ4 =
1

4N

∫
[dk]4Ĥ4(k1, k2; k3, k4)

=
1

4N

∫
[dk]4

(
S(k1, k2)S(−k3,−k4)− S̃(k1, k2)S̃(−k3,−k4)

)
. (24)

The definitions and commutation relations of bi-local operators appearing in
Equations (22) and (23) are summarized in Appendix A. We see that Ĥ4 is a quadratic form
of the bi-local operators, which implies that Ĝ4 will also be a quadratic form.

With these expressions, after evaluating the first commutator of Equation (19) and
integrating over the momentum variables in Ĝ2 we obtain the following equation for Ĝ4

[Ĥ2, Ĝ4] =[Ĝ2, Ĥ4]

=− i
4N

∫
[dk]4 f (k2) {D(k1, k2) + D†(−k1,−k2) + C(k1,−k2) + C†(−k1, k2), S(−k3,−k4)}

+
i

4N

∫
[dk]4 f (k1) {D(−k1,−k2) + D†(k1, k2) + C(−k1, k2) + C†(k1,−k2), S̃(−k3,−k4)}, (25)

where {·, ·} denotes the anti-commutator. We discuss the solution of this equation next.
To solve this equation, we first observe that the commutation relations of Ĥ2(k) and a

bi-local operator O(k1, k2) (A37) to (A46) can be schematically put into the form

[Ĥ2(k),O(k1, k2)] = s1(O)δd(k − k1)O(k, k2) + s2(O)δd(k − k2)O(k1, k). (26)

Here, s1 and s2 are signs that depend on the bi-local operator O(k1, k2). Suppressing
the momentum arguments, their values can be summarized as follows

1. s1(O) = −1, s2(O) = −1, ∀ O ∈ {A, Ã†, D}.
2. s1(O) = +1, s2(O) = +1, ∀ O ∈ {A†, Ã, D†}.
3. s1(O) = +1, s2(O) = −1, ∀ O ∈ {B, C†}.
4. s1(O) = −1, s2(O) = +1, ∀ O ∈ {B̃, C}.

Thus, for an arbitrary quadratic form of the bi-local operators, we have

[Ĥ2(k),Oa(k1, k2)Ob(k3, k4)] = + s1(Oa)δ
d(k − k1)Oa(k , k2)Ob(k3, k4)

+ s2(Oa)δ
d(k − k2)Oa(k1, k)Ob(k3, k4)

+ s1(Ob)δ
d(k − k3)Oa(k1, k2)Ob(k , k4)

+ s2(Ob)δ
d(k − k4)Oa(k2, k2)Ob(k3, k). (27)

Let {ki} be the shorthand for {k1, k2; k3, k4}; we define

ωOaOb({ki}) ≡ s1(Oa)ω(k1) + s2(Oa)ω(k2) + s1(Ob)ω(k3) + s2(Ob)ω(k4), (28)
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then for any quadratic form of bi-local operators we have the identity

F ({ki})
ωOaOb({ki})

[Ĥ2,Oa(k1, k2)Ob(k3, k4)] = F ({ki})Oa(k1, k2)Ob(k3, k4). (29)

Here, F ({ki}) is a well-defined function of the momenta which may depend on the
inverse temperature β. This identity then trivially extends to

F ({ki})
ωOaOb({ki})

[Ĥ2, {Oa(k1, k2),Ob(k3, k4)}] = F ({ki}){Oa(k1, k2),Ob(k3, k4)}. (30)

With Equations (25) and (30), we see that the solution of Equation (19) can be written as

Ĝ4(k1, k2; k3, k4) =− f (k2)∑
α,β

1
ωOαOβ

(k1, k2; k3, k4)
{Oα(k1, k2),Oβ(k3, k4)}

+ f (k1)∑
α,β

1
ωOαÕβ

(k1, k2; k3, k4)
{Oα(−k1,−k2), Õβ(k3, k4)}, (31)

where the bi-local operators are labeled as

Oα(k1, k2) ∈ {D(k1, k2), D†(−k1,−k2), C(k1,−k2), C†(−k1, k2)},
Oβ(k3, k4) ∈ {A(−k3,−k4), A†(k3, k4), 2B(k3,−k4)},
Õβ(k3, k4) ∈ {Ã(−k3,−k4), Ã†(k3, k4), 2B̃(k3,−k4)}.

2.3. Field Transformations

In this subsection we discuss the field transformations generated by Ĝ. We will
explicitly evaluate their form to the leading order in c. We consider the transformations of
the (bi-local) fields induced by the Ĝ operator (18) through

Φ f = e−iĜΦe+iĜ

= e−iĜ2 ΦeiĜ2 + c ∂c

(
e−iĜΦeiĜ

)∣∣∣
c=0

+ · · · . (32)

The second term on the last line can be further expressed as

∂c

(
e−iĜΦeiĜ

)∣∣∣
c=0

= −
∫ 1

0
dx [iĜ4(x), Φ(1)], (33)

where we denote
O(x) = e−ixĜ2OeixĜ2 (34)

for the arbitrary operator O.
To evaluate the field transformations in the large N limit, which is our interest, we

use the algebra of bi-local operators. From the interaction contribution to the generator Ĝ
Equation (32), we have
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iĜ4 =
1
2

∫ 4

∏
j=1

(
ddk j

(2π)d
1√
2ωj

)
(2π)dδd

(
4

∑
j=1

k j

)
f (k1)

×
{[
− 1

ω1 + ω2 + ω3 + ω4
D(k2, k1)A(k3, k4) +

1
ω1 + ω2 −ω3 −ω4

D†(−k2,−k1)A(k3, k4)

− 1
ω1 −ω2 + ω3 + ω4

C†(−k2, k1)A(k3, k4) +
1

ω1 −ω2 −ω3 −ω4
C(k2,−k1)A(k3, k4)

− 2
ω1 + ω2 −ω3 + ω4

D(k2, k1)B(−k3, k4) +
2

ω1 −ω2 −ω3 + ω4
C(k2,−k1)B(−k4, k3)

]
− [†]

}
+ {∼}. (35)

Here, † represents adjoint conjugation, and ∼ represents the analogous contributions
in terms of the tilde operations.

Likewise, for the bi-local fields:

Φ11(k1, k2) =
1√

2ω1
√

2ω2
{A(k1, k2) + B(−k1, k2)}+ {†},

Φ12(k1, k2) =
i√

2ω1
√

2ω2
{C(k1, k2) + D(k1,−k2)}+ {†}. (36)

We note that even though singular terms appear in the above, these will be seen to
cancel among each other, leaving a non-singular result for the resulting field transforma-
tions. This represents a rather nontrivial consistency check on the construction and form of
the symmetry generator to this order.

We now give the symmetry transformation of Φ11, with other components being
similar. We find it convenient to exhibit the form in an integral representation over x:

− c
∫ 1

0
dx [iĜ4(x), Φ11(p, q; 1)]

=− c
2

1√
2ωp

√
2ωq

∫ 1

0
dx
∫ 4

∏
j=1

(
ddk j

(2π)d
1√
2ωj

)
(2π)dδd(

4

∑
j=1

k j) f (k1)×{
+

2
ω1 −ω2 + ω3 + ω4

(
cosh x

f2

2
sinh x

f1

2
B2̄1 + sinh x

f2

2
cosh x

f1

2
B̃†

2̄1

)
×[

cosh x
f3

2
cosh x

f4

2
cosh

fp

2
cosh

fq

2
(δ4p̄Bq̄3 + δ4q̄Bp̄3)− sinh x

f3

2
sinh x

f4

2
sinh

fp

2
sinh

fq

2
(δ4p̄ B̃†

q̄3 + δ4q̄ B̃†
p̄3)

]
+

2
−ω1 + ω2 + ω3 + ω4

(
cosh x

f2

2
sinh x

f1

2
B†

2̄1 + sinh x
f2

2
cosh x

f1

2
B̃2̄1

)
×[

cosh x
f3

2
cosh x

f4

2
cosh

fp

2
cosh

fq

2
(δ4p̄Bq̄3 + δ4q̄Bp̄3)− sinh x

f3

2
sinh x

f4

2
sinh

fp

2
sinh

fq

2
(δ4p̄ B̃†

q̄3 + δ4q̄ B̃†
p̄3)

]
+

2
ω1 + ω2 −ω3 + ω4

(
cosh x

f3

2
cosh x

f4

2
B3̄4 + sinh x

f3

2
sinh x

f4

2
B̃†

3̄4

)
×[

+ cosh x
f2

2
sinh x

f1

2
cosh

fp

2
cosh

fq

2
(δ1p̄Bq̄2 + δ1q̄Bp̄2 + δ2p̄Bq̄1 + δ2q̄Bp̄1)

− sinh x
f2

2
cosh x

f1

2
sinh

fp

2
sinh

fq

2
(δ1p̄ B̃†

q̄2 + δ1q̄ B̃†
p̄2 + δ2p̄ B̃†

q̄1 + δ2q̄ B̃†
p̄1)

]
+

2
ω1 −ω2 + ω3 + ω4

(
cosh x

f2

2
sinh x

f1

2
B̃2̄1 + sinh x

f2

2
cosh x

f1

2
B†

2̄1

)
×[

cosh x
f3

2
cosh x

f4

2
sinh

fp

2
sinh

fq

2
(δ4p B̃q3 + δ4q B̃p3)− sinh x

f3

2
sinh x

f4

2
cosh

fp

2
cosh

fq

2
(δ4pB†

q3 + δ4qB†
p3)

]
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+
2

−ω1 + ω2 + ω3 + ω4

(
cosh x

f2

2
sinh x

f1

2
B̃†

21̄ + sinh x
f2

2
cosh x

f1

2
B21̄

)
×[

cosh x
f3

2
cosh x

f4

2
sinh

fp

2
sinh

fq

2
(δ4p̄ B̃q3 + δ4q̄ B̃p3)− sinh x

f3

2
sinh x

f4

2
cosh

fp

2
cosh

fq

2
(δ4pB†

q3 + δ4qB†
p3)

]
+

2
ω1 + ω2 −ω3 + ω4

(
cosh x

f3

2
cosh x

f4

2
B̃3̄4 + sinh x

f3

2
sinh x

f4

2
B†

3̄4

)
×[

+ cosh x
f2

2
sinh x

f1

2
sinh

fp

2
sinh

fq

2
(δ1p̄ B̃q2 + δ1q B̃p2 + δ2p B̃q1 + δ2q B̃p1)

− sinh x
f2

2
cosh x

f1

2
cosh

fp

2
cosh

fq

2
(δ1p̄B†

q2 + δ1qB†
p2 + δ2pB†

q1 + δ2qB†
p1)

]}
+ {†}. (37)

After plugging in the zero temperature ground state values

〈B(k1, k2)〉 = 〈B̃(k1, k2)〉 = 〈B†(k1, k2)〉 = 〈B̃†(k1, k2)〉 =
1
2
(2π)dδd(k1 − k2), (38)

the expression drastically simplifies:

− c
∫ 1

0
dx [iĜ4(x), Φ11(p, q; 1)]

=− c δd(p− q)
4ωpωq(ωp + ωq)

∫ 1

0
dx

ddk1

(2π)d
f1

2ω1
sinh x f1×{

cosh
x fp

2
cosh

x fq

2
cosh

fp

2
cosh

fq

2
− sinh

x fp

2
sinh

x fq

2
sinh

fp

2
sinh

fq

2

+ cosh
x fp

2
cosh

x fq

2
sinh

fp

2
sinh

fq

2
− sinh

x fp

2
sinh

x fq

2
cosh

fp

2
cosh

fq

2

}
. (39)

Then, we can perform the integral,

− c
∫ 1

0
dx 〈[iĜ4(x), Φ11(1)]〉 = −cδd(p− q)

1
4ω3

p
cosh 2θp

∫ ddk1

(2π)d
sinh2 ( f1/2)

ω1
(40)

〈e−iĜ2 Φ11(p, q)eiĜ2〉 = δd(p− q)
cosh fp

2ωp
− cδd(p− q)

cosh fp

8ω3
p

∫ ddk1

(2π)d
1

ω1
+O(c2). (41)

Putting things together, the symmetry transformed configuration for Φ11 is given by

〈Φ f
11(p, q)〉 = δd(p− q)

cosh fp

2ωp
− c δd(p− q)

cosh fp

8ω3
p

∫ ddk1

(2π)d
cosh f1

ω1
+O(c2). (42)

Its meaning is to transform a non-thermal ground state solution into a thermal one.
This will be seen fully in the framework of the large N collective theory in the next section.

In summary, we have, based on a perturbative construction, established the existence of
a nontrivial dynamical symmetry in the case of interacting QFT. The form and construction
of the symmetry generator appear complex. We have seen an indication, however, that
both the construction and the full expression for the symmetry are simplified with a large
N limit. Indeed, in the following section we present the form and existence of the full
symmetry through large N in a complete and simple form. In parallel, we mention the
existence of a similar symmetry in the only known example of the SYK model. In this case
the form and construction [21,22] of the symmetry again take a rather complex form at
nontrivial coupling J, while it is simplified, taking the Schwarzian form at large J and N.
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3. Collective Theory

In this section, we study the TFD dynamics in the framework of collective field
theory [23] appropriate at large N. The Hamiltonian for the interacting O(N) vector
model (17) can also be written as

H =
∫ [1

2
π2 +

1
2
(∇ϕ)2 +

1
2
(m2 + σ)ϕ2 − N

4c
σ2
]

ddx, (43)

and similarly for the double H̃.
As we have emphasized, our study features the real-time Hamiltonian Ĥ = H − H̃.

The collective representation (in terms of bi-local fields) for this system was given in [13],
where the large N limit was studied for a free case. It is our purpose in this section to
extend the findings to the interacting theory. Denoting the bi-local collective fields

Φ(x, y) ≡ 1
N

(
Φ11(x, y) Φ12(x, y)
Φ21(x, y) Φ22(x, y)

)
=

1
N

(
ϕ(x) · ϕ(y) iϕ(x) · ϕ̃(y)
iϕ̃(x) · ϕ(y) −ϕ̃(x) · ϕ̃(y)

)
, (44)

where we multiply each tilde vector field with an imaginary unit i, which as explained
in [13], allows for an elegant description of the effective Hamiltonian. We also introduce a
diagonal matrix Σ

Σ(x) ≡
(

σ(x) 0
0 σ̃(x)

)
=

(
c φ11(x, x) 0

0 c φ22(x, x)

)
. (45)

The thermofield collective Hamiltonian then takes the form

Ĥcoll =
2
N

Tr(Π ? Φ ? Π) +
N
8

Tr
(

Φ−1
)
+

N
2

Tr
(
(−∇2 + m2 + Σ) ? Φ

)
− N

4c

∫
(σ2 − σ̃2)ddx, (46)

with the star product being understood as

(A ? B)(x, z) ≡
∫

A(x, y)B(y, z)ddy.

Here, Π denotes the conjugate momentum of the bi-local field Φ.
From the saddle point equation

δĤcoll
δΦ

= 0,

one can find a stationary background solution. Explicitly, the saddle point equation can be
reduced to

1
2

Φ ? (−∇2 + m2 + Σ) ? Φ =
1
8
I, (47)

where I is the identity of the bi-local collective space.
This equation, first of all, has a (decoupled) vacuum solution, where each of the diag-

onal collective fields represents the ground state solution of the respective Hamiltonians.
Regarding the more general solution, it was found in [13] that one has a (one-parameter)
set of solutions (the free parameter being f (k)). The parameter was seen in [13] to have
an identification in terms of the temperature. In view of the (dynamical) symmetry of the
previous section, we now expect that a one-parameter set of solutions appears generally.

We use a subscript f to denote the expected f dependence. This is given as follows.
Due to exchange symmetry (between tilde and non-tilde fields), we expect

σf (x) = σ̃f (x). (48)
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Then, the saddle point Equation (47) can be considered in momentum space. An
ansatz for the solution reads

Φ f (x, y) =
∫ ddk

(2π)d
1

2ω f (k)

(
cosh f (k) i sinh f (k)
i sinh f (k) − cosh f (k)

)
eik·(x−y), (49)

where we have taken the translational invariance and the symmetry of the bi-local collective
field into account, and likewise, for the f -dependent matrix factor. The free parameter f (k),
much like in the free case, will be an arbitrary even function representing the symmetry
freedom of the thermal background, as shown in Equation (47). We see that the f factor in
the ansatz takes the same form as in the free case [13]. However, the dispersion relation
ω f (k) differs, and will be seen to obey an f -dependent gap equation. We have

ω2
f (k) = k2 + m2 + σf , (50)

representing the dispersion relation of the thermal background field in the presence of
a quartic interaction. Due to the translational invariance, σf is a constant at the thermal
background. In the large N limit, the extra term represents the summation of all bubble
diagrams. Placing the ansatz into the collective equation, one can see that these are obeyed
provided σf obeys the following ( f -dependent) gap equation

σf =
∫ ddk

(2π)d

c f (k)

2
√

k2 + m2 + σf

, (51)

where we have the f -dependent quartic coupling

c f (k) = c · cosh f (k), (52)

indicating the temperature and momentum dependence.
To summarize, working in the real time formalism, we have exhibited the appearance

of a one-parameter class of background solutions. This we attributed to the existence of a
dynamical symmetry operating on the real-time portion of the Schwinger–Kelydish contour.
We can explicitly see the agreement with the symmetry-generated configuration discussed
in the last section. We expand (49), in particular, 1/ω f (p) in order c:

1
ω f (p)

=
1

ω(p)
− c

4ω3(p)

∫ ddk
(2π)d

cosh f (k)
ω(k)

. (53)

Substituting this expansion in the collective field, we see that the result matches with
Equation (42), which was generated by the symmetry argument.

Finally, one can also show that Ĥcoll vanishes in the above background:

Ĥ(0)
coll =

N
8

Tr
(

Φ−1
f

)
+

N
2

Tr
(
(−∇2 + m2 + Σ f ) ? Φ f

)
− N

4c

∫
(σ2

f − σ̃2
f )d

dx = 0. (54)

This means that the thermofield Hamiltonian annihilates the thermo vacuum state in
the leading approximation.

We note that f (k) can be specified, and seen to be related to the inverse temperature β,
through comparison with the two-point function 〈ϕi(x)ϕi(x)〉β (no summation) at finite
temperature. This is given in Appendix B, where the identification f (k) = 2θβ(k) can be
found. Finally, we mentioned earlier the similarity with the collective [24] background
seen in the SYK model [25], where the symmetry parameter f (t) was also seen to produce
temperature dependence, effectively becoming the gravitational mode. However, in the
SYK case [22] this symmetry appears at the conformal point [21], while in the present case
no such specification is needed. The symmetry (and its spontaneous breaking) appears to
be a general property of TFD.
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4. Large N Thermofield Double State

We will now employ the collective formalism (with the associated symmetry) to
discuss a construction of the thermofield double state (TFDS). It will be presented in the
wavefunction(al) form, with the dynamical large N collective variables being canonical
bi-local fields. Since in general the collective representation is realized through a change in
variables through a Jacobian, the corresponding wavefunction will contain this nontrivial
contribution. The large N approximation then follows through a stationary shift, and the
collective wavefunction in general takes a Gaussian form, representing the thermofield
double ground state. Generally, we will present a scheme for the construction of the TFD
wavefunction(al) from solutions of the real-time collective wave equation. We will elaborate
on various symmetry issues characterizing the solution.

4.1. Direct Construction

Let us first discuss the large N (collective) wavefunction in the solvable case of free
theory. One can start from the TFD state written on a creation–annihilation basis

|0(β)〉 = Z−1/2 exp
[∫

gβ(k)a†
k ã†

k ddk
]
|0〉, (55)

where Z is the canonical partition function and gβ(k) = e−βω(k)/2 is the fugacity, with ωk ≡√
k2 + m2 being the free theory dispersion relation. Using the coherent state representation

〈ϕ, ϕ̃| =(2π)−d/2e−
1
2
∫

ωk(ϕ2(k)+ϕ̃2(k))ddk

× 〈0| exp
[∫ (

−1
2

a2
k +

√
2ωk ϕ(k)ak

)
ddk
]

exp
[∫ (

−1
2

ã2
k +

√
2ωkϕ̃(k)ãk

)
ddk
]

,
(56)

one can then evaluate the field space wavefunction(al). It is convenient to introduce the
double notation

ak =

(
ak
ãk

)
, a†

k =

(
a†

k
ã†

k

)
, ϕ(k) =

(
ϕ(k)
ϕ̃(k

)
, (57)

so we can express the thermofield wavefunction(al) in field space as

Ψβ[ϕ, ϕ̃] =
exp

(
− 1

2
∫

ωkϕ
2(k)ddk

)
(2π)d/2Z1/2 〈0| exp

[∫ (
− 1

2 ak · I · ak +
√

2ωkϕ(k) · ak

)
ddk
]

exp
[

1
2

∫
gβ(k)a†

k · Γ · a
†
k ddk

]
|0〉, (58)

where

I =
(

1 0
0 1

)
, Γ =

(
0 1
1 0

)
. (59)

Using the formula

〈0| exp
[

1
2

a ·M1 · a + L1 · a
]

exp
[

1
2

a† ·M2 · a† + L2 · a†
]
|0〉

= (det M)−1/2 exp
[

L1 ·M · L2 +
1
2

L1 ·M−1 ·M2 · L1 +
1
2

L2 ·M1 ·M−1 · L2

] (60)

with M = I−M2 ·M1, we can further simplify the form of the thermofield wavefunction to

Ψβ[ϕ, ϕ̃] = (2π)−d/2(Z Det M)−1/2 exp
[
−1

2

∫
ωk ϕ(k) · Iβ(k) ·ϕ(k)ddk

]
, (61)

where we have defined

Iβ(k) =
I − gβ(k)Γ
I + gβ(k)Γ

, M(k) = I + gβ(k)Γ. (62)
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The above expression can also be recast in terms of θβ(k) = arctanh(e−βωk/2)

Iβ(k) = cosh( f (k))I − sinh( f (k))Γ, Det M =
∫ ddk

cosh2( f (k)/2)
. (63)

As a check, we find that in the high-temperature limit β→ 0, f becomes independent
of the momentum k,

Ψ0[ϕ, ϕ̃] = lim
f→∞

(2πZ)−1/2 1
2

e f /2 exp
[
−1

4
e f
∫

ωk(ϕ(k)− ϕ̃(k))2 ddk
]

(64)

= (2Z)−1/2 lim
l→0

1
l
√

π
exp

[
− 1

l2

∫
ωk(ϕ(k)− ϕ̃(k))2 ddk

]
(65)

= (2Z)−1/2δ

(√∫
ωk(ϕ(k)− ϕ̃(k))2 ddk

)
, (66)

which is exactly the maximally entangled state wavefunction.
The associated collective field wavefunction also contains a Jacobian prefactor [26]

and reads

Ψβ[Φ] ∼ J1/2[Φ] exp

[
−N

2

2

∑
a,b=1

∫
ωkδd(k− p) Ĩβ

ab(k)Φab(k, p)ddk dd p

]
∼ exp[−A[Φ]],

(67)

with

Ĩβ(k) =
(

cosh f (k) i sinh f (k)
i sinh f (k) − cosh f (k)

)
. (68)

We wrote the wavefunction(al) in exponential form with an ‘action’ A to prepare for
the stationary phase approximation to be used. A subsequent 1/N expansion will lead to
the large N form of the TFD wavefunction(al).

Using the Jacobian J[Φ] = (Det[Φ])N/2, we have the action in the exponent as

− A =
N
4

Tr log Φ− N
2

2

∑
a,b=1

∫
ωkδd(k− p) Ĩβ

ab(k)Φab(k, p)ddk dd p . (69)

The large N saddle point equation reads

− (Φ−1)ba(k, p) + 2ωk δd(k− p) Ĩβ
ab(k) = 0, (70)

and is solved by the bi-local collective field of the form

Φβ
ab(k, p) =

δd(k− p)
2ωk

(
cosh f (k) i sinh f (k)
i sinh f (k) − cosh f (k)

)
. (71)

We recognize this as the classical stationary point of the collective field seen in
Section 3. This agreement represents a consistency check of the general form of the collective
wavefunction(al).

Next, we perturb around the thermal background Φab = Φβ
ab +

1√
N

ηab
2, expanding in

1/N,
A = NA0 + A2 + · · · . (72)
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Explicitly,

A0 = −N
2

Tr log Φβ,

A2 =
1
8

Tr
[
Φ−1

β ? η ? Φ−1
β ? η

]
=

1
2

∫
ddk1 ddk2 ω1ω2

(
cosh( f (k1)) i sinh( f (k1))

i sinh( f (k1)) − cosh( f (k1))

)(
η11(k1, k2) i η12(k1, k2)

i η21(k1, k2) −η22(k1, k2)

)

×
(

cosh( f (k2)) i sinh( f (k2))

i sinh( f (k2)) − cosh( f (k2))

)(
η11(k2, k1) iη12(k2, k1)

iη21(k2, k1) −η22(k2, k1)

)

=
1
2

∫
η(k1, k2) · G−1

0 (k1, k2) · η(k1, k2)
ddk1

(2π)d
ddk2

(2π)d ,

(73)

where we use θa ≡ θβ(ka) for convenience. The large N TFD wavefunction(al) therefore
takes the Gaussian form (up to an irrelevant normalization factor):

Ψβ[η] = exp

[
−1

2

∫
η(k1, k2) · G−1

0 (k1, k2) · η(k1, k2)
ddk1

(2π)d
ddk2

(2π)d

]
, (74)

where

η(k1, k2) =


η11(k1, k2)
η12(k1, k2)
η21(k1, k2)
η22(k1, k2)

 (75)

and

G−1
0 (k1, k2) = ω2

1ω2
2


c1c2 −c1s2 −s1c2 s1s2
−c1s2 c1c2 s1s2 −s1c2
−s1c2 s1s2 c1c2 −c1s2
s1s2 −s1c2 −c1s2 c1c2

. (76)

Here, we denote: cp = cosh fp/ωp and sp = sinh fp/ωp.
To recapitulate, generally, at large N, the ground state or the TFDS wavefunction(al)

takes a Gaussian form. The nontrivial information is contained in the associated Green’s
function. One then has a systematic 1/N expansion, which produces higher (polynomial)
contributions. We will leave the discussion of these higher corrections to the future. In
particular, the wavefunction in one dimension can be evaluated analytically. The relevant
calculations are carried out in Appendix C.

4.2. Collective Construction

We now proceed to the main topic of this section, namely the construction of the
(interacting) TFD wavefunction(al) in the collective scheme. The procedure will be based
on the collective representation of the real-time Hamiltonian Ĥ considered in the previous
section. First, shifting the bi-local fields

Π =
√

Nπ, Φ = Φ f +
1√
N

η, (77)

where the quantum fluctuation η and its canonical momentum are defined as vectors

π(k1, k2) =


π11(k1, k2)
π12(k1, k2)
π21(k1, k2)
π22(k1, k2)

, η(k1, k2) =


η11(k1, k2)
η12(k1, k2)
η21(k1, k2)
η22(k1, k2)

. (78)
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In the large N limit, then, the wavefunction(al) will be a zero energy eigenfunction
corresponding to the quadratic Hamiltonian

Ĥ(2)
coll =

1
2

π ? K ? π +
1
2

η ? Ṽ ? η. (79)

Here, the star product is understood in momentum space as

(K ? η)(k1, k2) ≡
∫

K(k1, k2; k3, k4) · η(k3, k4)
ddk3

(2π)d
ddk4

(2π)d ,

where the symbol ‘·’ indicates matrix multiplications. The kinetic matrix K(k1, k2; k3, k4) is
diagonal in the sense that (k1, k2) = (k3, k4) [13],

K(k1, k2; k3, k4) = (2π)dδd(k1 − k3)(2π)dδd(k2 − k4)K(k1, k2), (80)

where

K(k1, k2) =


c1 + c2 s2 s1 0

s2 −c1 + c2 0 −s1
s1 0 c1 − c2 −s2
0 −s1 −s2 −c1 − c2

. (81)

Meanwhile, the potential matrix Ṽ(k1, k2; k3, k4) is given by a sum

Ṽ(k1, k2; k3, k4) ≡ V(k1, k2; k3, k4) +
c
2

∆(k1, k2; k3, k4), (82)

where the ‘free’ part V(k1, k2; k3, k4) is given by

Ṽ(k1, k2; k3, k4) ≡ (2π)dδd(k1 − k3)(2π)dδd(k2 − k4)V(k1, k2), (83)

with

V(k1, k2) = ω2
1ω2

2


c1 + c2 −s2 −s1 0
−s2 −c1 + c2 0 s1
−s1 0 c1 − c2 s2

0 s1 s2 −c1 − c2

. (84)

Finally, the interaction part is

∆(k1, k2; k3, k4) = (2π)dδd(k1 − k2 + k3 − k4)


1

0
0
−1

. (85)

Based on the large N Hamiltonian we now have that the (interacting) thermal ground
state wavefunction(al) is represented by a Gaussian form

Ψgs[η] =
1√
Z

exp
(
−1

2
η ? G−1 ? η

)
. (86)

which explicitly reads as

Ψgs[η] =
1√
Z

exp

[
−1

2

∫
η(k1, k2) · G−1(k1, k2; k3, k4) · η(k3, k4)

4

∏
i=1

ddki

(2π)d

]
. (87)

with a kernel given by a four-point Green’s function. In canonical representation, with

πab(k1, k2) = −i
δ

δηab(k1, k2)
, (88)
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we have the action of the Hamiltonian on this wavefunction as

Ĥ(2)
collΨgs =

[
1
2

Tr
(

K ? G−1
)
+

1
2

η ?
(

G−1 ? K ? G−1 − Ṽ
)
? η

]
Ψgs. (89)

Requiring the thermal vacuum state to be annihilated by the collective Hamiltonian,
we are led to the following equations involving the unknown Green’s function G:

E1 =
1
2

Tr
(

K ? G−1
)
= 0, (90)

and
G−1 ? K ? G−1 − Ṽ = 0. (91)

We see that the (order 1) ground state energy E1 will indeed vanishes at the stationary
point in this construction (due to various anti-symmetry properties of the solution).

As a check, we turn off the interaction and verify that the nonlinear (quadratic)
equation that we have obtained is satisfied by the known (operator method) solution of the
free collective theory (76). In that case, our solution for G0 satisfies

− G−1
0 (k1, k2) · K(k1, k2) · G−1

0 (k1, k2) + V(k1, k2) = 0, (92)

where translational symmetry was used:

G−1
0 (k1, k2; k3, k4) = (2π)dδd(k1 − k3)(2π)d(k2 − k4)G−1

0 (k1, k2). (93)

We can verify that the explicit collective solution (76) obeys our equation. One can
check that the ground state energy vanishes through (90).

To summarize, in the above, we presented equations that constrain the TFD state
wavefunction(al), generally at large N in collective field theory; in addition, to the thermal
gap Equation (91), we now have the quadratic matrix equation for Green’s function G
defining the large N wavefunction. The quadratic equation for G can also be written in an
equivalent form, with the roles of K and V exchanged:

K− G ? Ṽ ? G = 0. (94)

For understanding the structure of this Equation (and of its thermal solution), we
write G = G0 + G1, where G0 is the solution of the free large N problem (given above) and
G1 is the interacting completion. Assuming that G0 is known and obeys Equations (90) and
(91) (or equivalently, Equation (94)), we then have the following equations for G1:

Tr
(

K ? (G0 + G1)
−1
)
= 0, (95)

c
2

G0 ? ∆ ? G0 + G0 ? Ṽ ? G1 + G1 ? Ṽ ? G0 + G1 ? Ṽ ? G1 = 0. (96)

We saw in the operator construction that the free Green’s function takes the form:

G0(k1, k2; k3, k4) = (2π)dδd(k1 − k3)(2π)d(k2 − k4)G0(k1, k2), (97)

while for G1 one can generally write:

G1(k1, k2; k3, k4) = (2π)d(k1 − k2 + k3 − k4)G1(k1, k2; k3, k4), (98)

which corresponds to momentum conservation. These delta function structures hold
generally for four-point functions at large N; see [27].

We will now discuss the symmetry freedom involved in the construction of a solution
for G. This is generally related to the existence of zero modes of the kinetic matrix K
and the potential matrix V (or Ṽ = V + c ∆/2 in interacting theories). As it was seen
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in [13], in the free case, the matrix K = K(k1, k2; k3, k4) defining the kinetic term is not
invertible at |k1| = |k2|. This translates into a sequence of momentum-dependent zero
modes u(k1, k2 | l)

K ? u = 0 (99)

labeled by the norm of a momentum l, i.e., |l|. Explicitly,

u(k1, k2 | l) = δ(|k1| − |l|)
(2π)dδd(k1 − k2)√
2 + 2 coth( f (k1))


1

− coth( f (k1))
− coth( f (k1))

1

. (100)

This implies that Equations (90) and (91) allow a family of solutions related by

G′−1 = G−1 +
∫ ∞

0
a(|l|, |l′|) u⊗ u(|l|, |l′|) d|l|d|l′|, (101)

for any real function a(|l|, |l′|). Here, u⊗ u denotes

u⊗ u(k1, k2; k3, k4 | l, l′)

=δ(|k1| − |l|)δ(|k3| − |l′|)
(2π)dδd(k1 − k2)√
2 + 2 coth( f (k1))

(2π)dδd(k3 − k4)√
2 + 2 coth( f (k3))

×


1 − coth( f (k3)) − coth( f (k3)) 1

− coth( f (k1)) coth( f (k1)) coth( f (k3)) coth( f (k1)) coth( f (k3)) − coth( f (k1))
− coth( f (k1)) coth( f (k1)) coth( f (k3)) coth( f (k1)) coth( f (k3)) − coth( f (k1))

1 − coth( f (k3)) − coth( f (k3)) 1

.

(102)

This contribution, however, should be excluded due to the delta function structures.
The K, V and G0 matrices are all diagonal in bi-local space in the sense that their delta
function structures are δd(k1 − k3)δ

d(k2 − k4). In addition, the interacting potential term
∆ and the corresponding correction G1 matrix both have a structure δd(k1 − k2 + k3 − k4).
However, the delta function structure of matrix u⊗ u reads δd(k1 − k2)δ

d(k3 − k4). This
represents internal contractions and hence would only influence the background, and thus
should be excluded. Once the free part is correctly specified no such contribution is needed.

Consider now similarly the contribution of zero modes associated with the potential
term. Clearly, if the matrix Ṽ possesses zero modes, denoted as v(k1, k2 | l) such that

Ṽ ? v = 0, (103)

one has an invariance, and a family of solutions related by

G′ = G +
∫ ∞

0
b(|l|, |l′|) v⊗ v(|l|, |l′|) d|l|d|l′|, (104)

where b(|l|, |l′|) is again an arbitrary real function. The explicit form of the zero mode, in
this case, can be seen using the Goldstone argument:

v(k1, k2 | l) ≡
δΦ f (k1, k2)

δ f (l)

=(2π)dδd(k1 − k2)
δ(|k1| − |l|)

2ω f (k1)


sinh( f (k1))
cosh( f (k1))
cosh( f (k1))
sinh( f (k1))


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− (2π)dδd(k1 − k2)
c |l|d−1 sinh( f (l))
8Nω f (k1)3ω f (l)


cosh( f (k1))
sinh( f (k1))
sinh( f (k1))
cosh( f (k1))

. (105)

The factor N is given by

N ≡ (2π)d

Sd

(
1 + c

∫ cosh( f (p))
4ω f (p)3

dd p
(2π)d

)
, (106)

where Sd is the area of the d-dimensional unit sphere. Again, observing the delta function
structure of the contribution, we see that it influences the background only. Therefore, with
the same argument as before, these contributions are not needed.

This analysis implies that once the free part of the wavefunction is specified, our
equations are sufficient for the determination of the full answer. This can be obtained
perturbatively, in the coupling constant c (much like the solution of the gap equation), by
numerical methods or possibly exactly. One can also contemplate variational solutions.

In summary, elements of the construction of the large N thermofield double state that
we have given apply in any collective QFT with interactions. Higher-order terms in the
exponent come in powers of 1/N and can be systematically evaluated [27].

5. Conclusions

We have in this work discussed some constructive elements of the thermofield double
QFT. Working on the real-time portion of the Schwinger–Kelydish contour we discussed a
dynamical symmetry, which we argued appears in general in any TFD quantum theory.
Perturbation theory is used to establish the generator to leading order (in the coupling
constant). The corresponding symmetry transformations are discussed, and are seen to
represent a nonlinear extension of the well known Bogoliubov transformations of the
free theory. The relevance (and use) of the (dynamical) symmetry is then seen in the
collective representation of the theory. For the O(N) theory which serves as the model for
consideration, one has the bi-local Hamiltonian representation (on the real-time portion
of the SK contour). Here, for the interacting case, the existence of a general (all orders
in the coupling constant) symmetry is shown. It was seen to imply a set of background
solutions representing the thermal backgrounds of the large N theory. The second part of
our construction concerns the construction of the TFD State itself at large N. This is carried
out at the level of fluctuations, and therefore at O(1) of collective theory. It is seen that
the collective TFD state takes a Gaussian form in this limit, and using this form we derive
the corresponding eigen-solution. It is governed by a quadratic matrix equation (in the
collective space) whose general solution we also discuss. The determination of zero modes
gives a specification of the arbitrariness of the solution. Altogether, this can be interpreted
as providing strong nonlinear constraints on the wavefunction(al), akin to Ward identities.
TFD symmetries (of BRST type) have been established [5,28,29] to play a useful role in the
hydrodynamical description of AdS/CFT. It will be relevant to study the implications of
the present construction in that context, and more broadly questions of entanglement [30].
It is most relevant to extend the construction to matrix-type models. With the recently
developed large N numerical method [31], this appears possible.
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Appendix A. Algebra of Bi-Local Operators

Appendix A.1. Definition

We define the O(N) invariant bi-local operators as

A(k1, k2) ≡ a(k1) · a(k2), (A1)

A†(k1, k2) ≡ a†(k1) · a†(k2), (A2)

B(k1, k2) ≡ a†(k1) · a(k2) +
N
2

δd(k1 − k2), (A3)

C(k1, k2) ≡ a(k1) · ã(k2), (A4)

D(k1, k2) ≡ a(k1) · ã†(k2), (A5)

C†(k1, k2) ≡ a†(k1) · ã†(k2), (A6)

D†(k1, k2) ≡ a†(k1) · ã(k2), (A7)

and similarly for Ã(k1, k2), Ã†(k1, k2), and B̃(k1, k2). In the definition of B and B̃ we include
central terms so that the following calculations are simplified.

Appendix A.2. The Algebra

The commutation relations of these bi-local operators can be easily computed using
commutators (5) and (6), and one can verify that they form a basis of an algebra. It is easy
to verify that these operators have the properties

A(k1, k2) = A(k2, k1), Ã(k1, k2) = Ã(k2, k1), (A8)

B(k1, k2) = B†(k2, k1), B̃(k1, k2) = B̃†(k2, k1), (A9)

C(k1, k2) = C̃(k2, k1), D̃(k1, k2) = D̃†(k2, k1), (A10)

and similarly for Ã and Ã†. A full listing of the algebra is too lengthy, and here we only
present the essential parts. Other commutation relations can also be derived from the above
properties.

[A(k1, k2), A†(k3, k4)] = δd(k2 − k3)B(k4, k1) + δd(k2 − k4)B(k3, k1) (A11)

+ δd(k1 − k3)B(k4, k2) + δd(k1 − k4)B(k3, k2).

[A(k1, k2), B(k3, k4)] = δd(k2 − k3)A(k1, k4)− δd(k1 − k3)A(k4, k2). (A12)

[A†(k1, k2), B(k3, k4)] =− δd(k4 − k2)A†(k1, k3)− δd(k4 − k1)A†(k3, k2). (A13)

[B(k1, k2), B(k3, k4)] = δd(k2 − k3)B(k1, k4)− δd(k1 − k4)B(k3, k2). (A14)

[A(k1, k2), C†(k3, k4)] = δd(k1 − k3)D(k2, k4) + δd(k2 − k3)D(k1, k4). (A15)

[A†(k1, k2), C(k3, k4)] =− δd(k3 − k2)D†(k1, k4)− δd(k3 − k1)D†(k2, k4). (A16)

[A(k1, k2), D†(k3, k4)] = δd(k3 − k1)C(k2, k4) + δd(k3 − k2)C(k1, k4). (A17)

[A†(k1, k2), D(k3, k4)] = −δd(k3 − k1)C†(k2, k4)− δd(k3 − k2)C†(k1, k4). (A18)
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[C(k1, k2), D(k3, k4)] = δd(k4 − k2)A(k1, k3). (A19)

[C†(k1, k2), D†(k3, k4)] = −δd(k4 − k2)A†(k1, k3). (A20)

[C(k1, k2), D†(k3, k4)] = δd(k3 − k1)Ã(k4, k2). (A21)

[C†(k1, k2), D(k3, k4)] = −δd(k3 − k1)Ã†(k4, k2). (A22)

[B(k1, k2), C(k3, k4)] = −δd(k1 − k3)C(k2, k4). (A23)

[B(k1, k2), C†(k3, k4)] = δd(k2 − k3)C†(k1, k4). (A24)

[C(k1, k2), C†(k3, k4)] = δd(k2 − k4)B(k3, k1) + δd(k1 − k3)B̃(k2, k4). (A25)

[B(k1, k2), D(k3, k4)] = −δd(k1 − k3)D(k2, k4). (A26)

[B(k1, k2), D†(k3, k4)] = δd(k2 − k3)D†(k1, k4). (A27)

[D(k1, k2), D†(k3, k4)] = −δd(k4 − k2)B(k3, k1) + δd(k3 − k1)B̃(k2, k4). (A28)

Appendix A.3. Useful Relations

For the calculation of Ĝ4 it is convenient to define two linear combinations of the
bi-local operators which have already appeared in Ĥ2 (7) and Ĝ2 (9)

Ĥ2(k) = B(k , k)− B̃(k , k), (A29)

Ĝ2(k) = C†(k , k)− C(k , k). (A30)

We then present the commutation relations between them and other elementary bi-
local operators.

Firstly, the commutators of Ĝ2(k) and other operators are

[Ĝ2(k), A(k1, k2)] = −δd(k − k1)D(k2, k)− δd(k − k2)D(k1, k), (A31)

[Ĝ2(k), A†(k1, k2)] = −δd(k − k1)D†(k2, k)− δd(k − k2)D†(k1, k), (A32)

[Ĝ2(k), B(k1, k2)] = −δd(k − k1)C(k2, k)− δd(k − k2)C†(k1, k). (A33)

[Ĝ2(k), Ã(k1, k2)] = −δd(k − k1)D†(k , k2)− δd(k − k2)D†(k , k1), (A34)

[Ĝ2(k), Ã†(k1, k2)] = −δd(k − k1)D(k , k2)− δd(k − k2)D(k , k1), (A35)

[Ĝ2(k), B̃(k1, k2)] = −δd(k − k1)C(k , k2)− δd(k − k2)C†(k , k1). (A36)

Secondly, the commutators of Ĥ2(k) and other operators are

[Ĥ2(k), A(k1, k2)] = −δd(k − k1)A(k , k2)− δd(k − k2)A(k1, k), (A37)

[Ĥ2(k), Ã†(k1, k2)] = −δd(k − k1)Ã†(k , k2)− δd(k − k2)Ã†(k1, k), (A38)

[Ĥ2(k), D(k1, k2)] = −δd(k − k1)D(k , k2)− δd(k − k2)D(k1, k). (A39)

[Ĥ2(k), A†(k1, k2)] = δd(k − k1)A†(k , k2) + δd(k − k2)A†(k1, k), (A40)

[Ĥ2(k), Ã(k1, k2)] = δd(k − k1)Ã(k , k2) + δd(k − k2)Ã(k1, k), (A41)

[Ĥ2(k), D†(k1, k2)] = δd(k − k1)D†(k , k2) + δd(k − k2)D†(k1, k). (A42)

[Ĥ2(k), B(k1, k2)] = δd(k − k1)B(k , k2)− δd(k − k2)B(k1, k), (A43)

[Ĥ2(k), C†(k1, k2)] = δd(k − k1)C†(k , k2)− δd(k − k2)C†(k1, k). (A44)
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[Ĥ2(k), B̃(k1, k2)] = −δd(k − k1)B̃(k , k2) + δd(k − k2)B̃(k1, k), (A45)

[Ĥ2(k), C(k1, k2)] = −δd(k − k1)C(k , k2) + δd(k − k2)C(k1, k). (A46)

Using these commutation relations, one can easily check that in (14) the commutator
of Ĝ2 and Ĥ2 vanishes pointwise in momentum space

[Ĝ2, Ĥ2] =
∫

ddk ddk′iθβ(k)ω(k′)[Ĝ2(k),H2(k′)] =
∫

ddk iθβ(k)ω(k) · 0 = 0. (A47)

Appendix B. O(N) Vector Model at Finite Temperature

In this section, we present a brief review of the interacting O(N) vector model at finite
temperature. We consider the O(N) vector model with a quartic interaction in D = d + 1
dimensional Euclidean space–time

S[ϕ] =
∫ [1

2
(∂ϕ)2 +

1
2

m2 ϕ2 +
c

4N
(ϕ2)2

]
dDx. (A48)

Since we employ the action formalism, we therefore distinguish the D coordinate
denoted x with the d coordinate denoted x, and similarly for momenta. With an auxiliary
field σ(x) the action reads

S[ϕ, σ] =
∫ [1

2
(∂ϕ)2 +

1
2
(m2 + σ)ϕ2 − N

4c
σ2
]

dDx. (A49)

for which one can write an effective action, after integrating ϕ(x)

Z =
∫
DϕDσ exp(−S[ϕ, σ]) =

∫
Dσ exp(−NSeff[σ]), (A50)

where
Seff[σ] = −

1
4c

∫
σ2(x) dDx +

1
2

tr ln
(
−∂2 + m2 + σ(·)

)
. (A51)

The partition function is then dominated by the saddle point value of the effective
action. Let σβ be the saddle point value of the field σ(x). We vary the effective action Seff[σ]
at the saddle point

δSeff[σ]

δσ(x)

∣∣∣∣
σβ

= 0

to obtain the ‘thermal’ gap equation

σβ = c tr
[
(−∂2 + m2 + σβ)

−1
]
. (A52)

With periodic boundary conditions, one has the Matsubara mode expansion

ϕj(τ, x) = ∑
n∈Z

∫ ddk
(2π)d ϕ̃

j
n(k) eiνnτ+ik·x, νn =

2πn
β

. (A53)

Introducing the dispersion relation ωβ(k) as

ωβ(k) =
√

k2 + m2 + σβ =
√

ω2(k) + σβ, (A54)

we can evaluate the trace term in the gap equation as follows

tr
[
(−∂2 + m2 + σβ)

−1
]
= ∑

n∈Z
Vd

∫ ddk
(2π)d

1
ν2

n + k2 + m2 + σβ



Universe 2022, 8, 114 20 of 23

= Vd

∫ ddk
(2π)d

β

2ωβ(k)
cosh

(
2θβ(k)

)
,

where Vd is the d dimensional spatial volume. Here, we defined θβ(k) as

θβ(k) = arctanh(e−βωβ(k)/2). (A55)

We can thus write the gap equation as

σβ = cβVd

∫ ddk
(2π)d

cosh
(
2θβ(k)

)
2
√

k2 + m2 + σβ

. (A56)

From the equation of motion for σ, we see that σβ corresponds to the sum of bubble
diagrams in the large N limit, which renormalizes the bare mass. Thus, the two-point
function at finite temperature is

〈ϕi(0, x)ϕj(0, y)〉β = δij
∫ ddk

(2π)d
eik·(x−y)

2ωβ(k)
cosh

(
2θβ(k)

)
. (A57)

In the zero temperature limit, β → ∞, hence cosh
(
2θβ(k)

)
→ 1, and we obtain the

ordinary large N (equal-time) two-point function.

Appendix C. Thermofield Wavefunction in One Dimension

Here, we give an explicit construction of Green’s function appearing in the TFD state
for D = 1 (QM). The four-point function (at large N) obeys the Schwinger–Dyson equation
(see [27]) whose solution in one-dimensional momentum becomes

G̃(n1, n2, n3, n4) =
2
β2 δn1,n3 δn2,n4 φ(n1)φ(n2)

− 2c
β3 δn1−n2+n3−n4,0

φ(n1)φ(n2)φ(n3)φ(n4)

1 + c
β ∑m φ(m)φ(n2 − n1 + m)

(A58)

with
φ(n) =

1
ν2

n + ω2
β

. (A59)

For the thermal four-point function we partition the time circle of inverse temperature
β into two halves obtaining the bi-time quantum fluctuation η and its three components:

ηa,b = η(τa, τb) (A60)

with τ1 = 0, τ2 = β/2. Therefore, the equal-time thermal four-point function in coordinate
space can be calculated from G̃ by Fourier transformation

〈η(0, 0)η(0, 0)〉 = ∑
n1,n2,n3,n4

G̃(n1, n2, n3, n4)

=
1

ωx
coth

βω

2
coth

βx
2

+
8ω3

x2
1

4ω3(−1 + cosh βω) + c(βω + sinh βω)
,

(A61)

where we have defined

x =

√
4ω2 +

c
ω

coth
βω

2
. (A62)

As a consistency check, we serially expand the thermal four-point function in coupling
constant c
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〈η(0, 0)η(0, 0)〉

=+
1

2ω2 coth2 βω

2
− c

128ω5 csch4 βω

2
(6βω + 8 sinh βω + sinh 2βω) +

c2

8192ω8 csch4 βω

2
×

(−48 + 32β2ω2 + (−3 + 8β2ω2) cosh βω + 48 cosh 2βω + 3 cosh 3βω + 108βω sinh βω)

+O(c3). (A63)

The zeroth order is the free propagator, which agrees with free ground state wavefunc-
tion. The first order is the interaction vertex, which agrees with coordinate space evaluation.
The second order gives the one-loop correction.

Likewise, we can calculate the rest of thermal four-point functions. For 〈η(0, 0)η(0, β/2)〉
we have

〈η(0, 0)η(0, β/2)〉 = ∑
n1,n2,n3,n4

(−1)−n4 G̃(n1, n2, n3, n4)

=
1

βω
csch

βω

2

(
β

2x
coth

βx
4
− 2

x2

)
+

1
4βω3

2 + βω coth βω
2

sinh βω
2 + c

8ω3 csch βω
2 (βω + sinh βω)

. (A64)

For 〈η(0, 0)η(β/2, β/2)〉 we have

〈η(0, 0)η(β/2, β/2)〉 = ∑
n1,n2,n3,n4

(−1)n3−n4 G̃(n1, n2, n3, n4)

=
2

βω
coth

βω

2

(
β

2x
csch

βx
2
− 1

x2

)
+

1
4βω3

βω + sinh βω

sinh2 βω
2 + c

8ω3 (βω + sinh βω)
. (A65)

For 〈η(0, β/2)η(0, β/2)〉 we have

〈η(0, β/2)η(0, β/2)〉 = ∑
n1,n2,n3,n4

(−1)−n2−n4 G̃(n1, n2, n3, n4)

=
1

2ω2 coth2 βω

2
+

c
4ω3x

csch2 βω

2

(
2ω coth βx

4 − x coth βω
2

x2 − 4ω2 +
2

βωx

)

− c
32βω6

(2 + βω coth βω
2 )2

sinh2 βω
2 + c

8ω3 (βω + sinh βω)
. (A66)

For 〈η(0, β/2)η(β/2, 0)〉 we have

〈η(0, β/2)η(β/2, 0)〉 = ∑
n1,n2,n3,n4

(−1)−n2+n3 G̃(n1, n2, n3, n4)

=
1

2ω2 csch2 βω

2
+

c
4ω3x

csch2 βω

2

(
2ω coth βx

4 − x coth βω
2

x2 − 4ω2 +
2

βωx

)

− c
32βω6

(2 + βω coth βω
2 )2

sinh2 βω
2 + c

8ω3 (βω + sinh βω)
. (A67)

These thermal four-point functions can further be assembled into a 3-by-3 G matrix
after symmetrization

G1 = 2〈η(0, 0)η(0, 0)〉
G2 = 〈η(0, β/2)η(0, β/2)〉+ 〈η(0, β/2)η(β/2, 0)〉
G3 = 2〈η(0, 0)η(0, β/2)〉
G4 = 2〈η(0, 0)η(β/2, β/2)〉. (A68)
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Putting the pieces together, we obtain the G matrix for all coupling constants, c

G =

G1 G3 G4
G3 G2 G3
G4 G3 G1

, (A69)

Therefore, the interacting thermofield wavefunction at inverse temperature β is
given by

Ψβ[η] =
1√
Z

exp
(
−1

2
ηG−1η

)
. (A70)

One can verify that the G matrix obeys the constraint equation in 3-by-3 matrix form

− G−1KG−1 + V +
c
2

∆ = 0 (A71)

and satisfies the boundary condition

lim
c→0

G = G0 (A72)

explicitly, where

K =
1

ωβ

2 cosh f sinh f 0
sinh f 0 − sinh f

0 − sinh f −2 cosh f

, (A73)

V = 2ω3
β

 cosh f − sinh f 0
− sinh f 0 sinh f

0 sinh f − cosh f

, (A74)

∆ =

1 0 0
0 0 0
0 0 −1

, (A75)

and

G0 =
1

2ω2
β

2 cosh2 f sinh 2 f 2 sinh2 f
sinh 2 f cosh 2 f sinh 2 f

2 sinh2 f sinh 2 f 2 cosh2 f

. (A76)

We used tanh ( f /2) = exp
(
−βωβ/2

)
in the expressions above.

Notes
1 We adopt the following notation

[dk]4 ≡ (2π)dδd(k1 + k2 − k3 − k4)
4

∏
i=1

ddki

(2π)d/2
1√

2ω(ki)
,

2 We include the imaginary unit ‘i’ and the minus sign ‘−’ in the definition of η [13]. We also include the complex conjugate
numerical factors in the definition of π so as to guarantee canonical commutation relations.
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