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Abstract: We study the low energy effective dynamics of four-dimensional N = 1 superconformal
theories on their generalized Coulomb branch. The low energy effective gauge couplings are naturally
encoded in algebraic curves X , which we derive for general values of the couplings and mass
deformations. We then recast these IR curves X to the UV or M-theory form C: the punctured
Riemann surfaces on which the M5 branes are compactified giving the four-dimensional theories. We
find that the UV curves C and their corresponding meromorphic differentials take the same form as
those for their mother four-dimensional N = 2 theories of class S . They have the same poles, and
their residues are functions of all the exactly marginal couplings and the bare mass parameters which
we can compute exactly.
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1. Introduction

Famously, the low energy dynamics of four-dimensional (4D) N = 2 supersymmetric
gauge theories can be determined using the constraints of holomorphy, global symmetries
and consistency in various limits. The low energy effective action on the Coulomb branch
is fully encoded in the Seiberg-Witten curve [1,2]. Shortly after the seminal work by Seiberg
and Witten, Intriligator and Seiberg pointed out that similar techniques can be employed
to study the infrared (IR) dynamics of N = 1 gauge theories as long as they possess
an abelian Coulomb branch [3]. In [4–10] a modern approach to the N = 1 curves was
taken. For N = 1 theories engineered by wrapping M5 branes on a Riemann surface
which is embedded in a local Calabi-Yau threefold [11], their IR curves are given by the
spectral curves of the generalized Hitchin systems which involve a pair of commuting
Hitchin fields.

N = 1 SCFTs of class Sk [12] can be obtained via orbifolding N = 2 SCFTs of Class
S [13,14]. They can also be engineered using M-theory on R3,1 × (CY2 ×C)/Zk ×R with
M5 branes lying along R3,1 × C with the Riemann surface C ⊂ CY2/Zk. It is an active field
of research to examine N = 1 theories of class Sk and the broader theories of class SΓ
where the Zk singularity is generalized to any ADE orbifold singularity Γ [15–30].

A supersymmetric theory often possesses several inequivalent supersymmetry-
preserving ground states which give rise to the so called moduli space of supersymmetric
vacua of the theory. In many cases the moduli space is a manifold (possibly with singular-
ities) parametrized by the vacuum expectation values (vevs) of a set of gauge-invariant
operators. Depending on the behavior of the potential for test charges, the moduli space
can generically be classified into different ‘branches’, leading to different ‘phases’ of the
theory. These phases may be Coulomb, Higgs, confining or, more generally, a mixture
between them.

N = 2 theories, due to their large R-symmetry, possess distinct Coulomb and Higgs
branches (as well as mixed branches). For generic N = 1 theories it is not possible to
separate distinct branches of supersymmetric vacua, thus the study of their moduli space
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is in general complicated. Nonetheless, it has been recently understood [15–17,19,20] that
there is a special but very broad and interesing class of N = 1 superconformal theories
(SCFTs), the so called N = 1 theories of class Sk [12], for which it is possible to distinguish
between generalized Coulomb and Higgs branches precisely as for N = 2 gauge theories.
This is due to the fact that in addition to the R-symmetry they enjoy, by construction, extra
global symmetries. Consequently, a generalized Coulomb branch can be isolated and has
been successfully studied [15–17,19,20].

For theories of class Sk, theN = 1 curves on the generalized Coulomb branch simplify
and instead of a generalized Hitchin system, they are associated to a usual Hitchin system
with only one Hitchin field [15]. This is because as for N = 2 theories we can isolate the
CY2/Zk piece of the geometry to be T∗C. What is more, in [15] the class Sk N = 1 curves
were derived at special points of the conformal manifold, the so called orbifold points,
where the coupling constants arising from the same gauge group of the mother theory in
class S are taken to be equal. One of our goals in this paper is to obtain these curves at a
generic point of the conformal manifold using the techniques developed in [3].

The construction of [3] produces the curves in a form which can be thought of as the
IR form, capturing low energy data on the generalized Coulomb branch. Their derivation
is presented in Section 3. In this paper we will denote the IR curves by X . Following the
seminal work of Gaiotto [13] we can bring an IR curve X to the Gaiotto form, which is
the UV or M-theory curve C. The UV curve C describes the Riemann surface on which
N M5 branes wrap in the M-theory realization of theories of class Sk, and is a ramified
cover of the IR curve X [12,15]. Doing so, in Section 4, we find that these curves and the
associated meromorphic differentials have a very similar pole structure as their mother
N = 2 theories of class S . The novel (genuinely N = 1) information is contained in the
residues of the meromorphic differentials. They capture the mass deformations, and turn
out to be functions of all the exactly marginal couplings and the bare mass parameters.
This can be interpreted as a finite renormalization of the bare masses that appear in the
Lagrangian. Amazingly, we are able to compute these renormalized masses exactly.

2. N = 1 Intriligator-Seiberg Curves

In this section we wish to briefly review the techiques of Intriligator and Seiberg [3]
together with a few examples of curves which we will use in Section 3.

2.1. General Principles

At a generic point of the generalized Coulomb branch CB of the moduli space, the low
energy effective theory is described in terms of r N = 1 abelian vector multiplets with
the associated field strength superfields Wa

α , a = 1, · · · , r (where r is the rank of the gauge
group), and possibly neutral moduli fields UI . In terms of N = 1 superspace, the gauge
kinetic term in the low energy effective action takes the form

Se f f =
1

16π
Im
∫

d4xd2θ τab(qi, UI)Wa
αWαb + · · · , (1)

where τ = (τab) with a, b = 1, · · · , r is the matrix of the effective holomoprhic gauge
couplings. Supersymmetry requires that τ must be holomorphic in all the holomorphic
coupling constants qi of the underlying microscopic theory and in the neutral chiral su-
perfields UI . Since the massless photons are subject to the electric-magnetic duality, any
Sp(2r,Z) transformation of τ leaves physics invariant. On the other hand, τ is not single-
valued, and can have nontrivial monodromies as one changes qi and UI along a closed
path. Hence, τ should be viewed as a section of an Sp(2r,Z) bundle over the parameter
space of qi and UI .
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Following [1–3], it is convenient to identify τ with a normalized period matrix of an
algebraic curve of genus r. This curve is called the IR N = 1 curve and in this paper we
will denote it by X . It is given by an equation in two complex variables x, y,

X : y2 = F(x; qi, UI , m f ) , (2)

where F(x; qi, UI , m) is a polynomial in x of degree 2r + 1 or 2r + 2, with the coefficients
depending on qi, UI , and masses m f . The matrix τ of the effective gauge couplings is then
computed from

τab

∮
βb

ωc =
∮

αa
ωc , (3)

where we have picked a symplectic homology basis
{

α1, · · · , αr; β1, · · · , βr} for X , and the
canonical basis of holomorphic differentials ωc = xc−1/y.

The N = 1 curve X should be compatible with all the global symmetries of the
theory, and becomes singular at the submanifolds of the moduli space where extra charged
particles become massless. One can determine the electric and magnetic charges of these
charged massless particles from the monodromies associated with the singularities. Only
if all charged massless particles are mutually local can the low energy effective theory be
a free field theory in an appropriate electric-magnetic duality frame. Otherwise, the low
energy effective theory will be an interacting N = 1 superconformal field theory.

The curve X varies at different points of CB. Therefore, it is useful to consider a family
of holomorphic curves X, which is the total space of holomorphic curves fibered over the
moduli space CB,

X =

X

CB

. (4)

There are major differences between the low energy solutions for genuine N = 1
theories and those for N = 2 theories. First of all, one does not have a complete solution
to the low-energy dynamics for a genuine N = 1 theory, since the Kähler potential is not
holomorphic and is therefore not protected from quantum corrections. Second, the N = 1
curve may be not accompanied by a meromorphic differential which encodes central
charges and masses of BPS states. To obtain the meromorphic differential, the string theory
or M-theory description is usually needed [5–10,31]. If the N = 1 theory is engineered
using M-theory on the geometry R3,1 × CY3 × S1, we can further use the holomorphic
three form

ω(3) = ds ∧ dz ∧ dw (5)

where the map between the M-theory coordinates s, z, w (with s = −RM ln t) and the IR
coordinates x, y will be specified in Section 4. The CY3 is locally comprised of two line
bundles fibered over the UV curve Lz ⊕Lw → C. For theories of class Sk, the first Chern
class c1(Lw) = 0, allowing us to select an meromorphic two form ω(2) ∈ Ω2,0(C),

ω(2) = dz ∧ ds = dω . (6)

As described in [15], we can eventually obtain ω ∈ Ω1,0(X ) after a parameter map which
will be presented in Section 4.

What is more, the moduli fields in N = 1 theories often satisfy intricate relations,
which are absent inN = 2 theories. Therefore, one has to take one more step in determining
the N = 1 curve, namely solving the relations among the moduli fields. Going to the
generalized Coulomb branch, as we will do in this paper, one can avoid this complication.
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2.2. Examples
2.2.1. Pure SU(2) N = 2 Gauge Theory

The first example is theN = 2 supersymmetric Yang-Mills theory, which is theN = 1
supersymmetric gauge theory with a massless adjoint chiral multiplet. The curve that
encodes the low-energy dynamics of the theory with gauge group SU(2) is given by [1,2]

y2 = x3 − ux2 +
Λ4

4
x , (7)

where u = 〈Trφ2〉 is a gauge-invariant order parameter of the Coulomb moduli space,
with φ the adjoint scalar field, and Λ is the dynamically generated scale.

2.2.2. N = 1 SU(2)× SU(2) Gauge Theory

Perhaps the most relevant example for us that has been studied in [3] is the N = 1
gauge theory with gauge group G = SU(2)1 × SU(2)2 and two chiral superfields Φia1a2
in the (2, 2) representation of G, labelled by a1, a2 = 1, 2 respectively. Notice that the
representation 2 of SU(2) is pseudo-real and therefore isomorphic to the 2̄. The theory
has an SU(2)F flavour symmetry Φi → fijΦj where fij ∈ SU(2)F. The theory can be
understood as a Z2 orbifold of the above N = 2 pure SU(2) gauge theory. Equivalently,
the theory can be obtained by compactifying the 6d (1, 0)A1 theory on a punctured Riemann
surface C of genus zero in the presence of a certain set of defect operators associated to so
called ‘wild’ punctures. As in [13], the N = 1 curve X is a double covering of C.

The theory has a three complex dimensional moduli space of supersymmetric vacua
parametrized by the gauge invariant quantities

Mij := det ΦiΦj =
1
2

Φia1a2 Φja′1a′2
εa1a′1 εa2a′2 , (8)

where the determinant is taken over G.
The classical scalar potential vanishes along the D-flat directions,〈

U−1
(

0 Φ1
Φ2 0

)
U
〉

=

(
v 0
0 −v

)
⊗
(

1 0
0 −1

)
, (9)

where U is a 4× 4 unitary matrix, and v is a complex number. Such field configurations do
not break supersymmetry, but break the gauge group G by the Higgs mechanism down to a
subgroup U(1)D ⊂ SU(2)D, where SU(2)D is a diagonal embedding of SU(2)1 × SU(2)2.
Therefore, the theory is in the abelian Coulomb phase with an one complex-dimensional
moduli space. Due to the constraint of symmetries, no superpotential can be dynamically
generated, and the classical vacuum degeneracy is not lifted quantum mechanically. Thus,
the quantum theory also has an one complex-dimensional abelian Coulomb moduli space
CB of vacua, parametrized by a single gauge and flavour singlet u = detij Mij.

The holomorphic effective gauge coupling is τ = τ
(
u, Λ4

1, Λ4
2
)
, where Λ4

i := µ4e−8π2/g2
i (µ)

are the dynamically generated scales. We may deduce the form of the curve describing
the moduli space by considering two different limits. Firstly consider the limit where Φ1
acquires a large diagonal vev but the vev of Φ2 is vanishing. The gauge group is broken to
SU(2)D, and Φ2 decomposes into 2⊗ 2→ 3⊕ 1 of SU(2)D. There is also a heavy singlet
field M11. If we decouple all the singlet fields, the theory is approximately pure N = 2
SU(2)D gauge theory, and the curve of that theory is

y2 = x3 − uDx2 +
1
4

Λ4
Dx , for large u (10)

where

uD = tr φ2
D =

2u
M11

, Λ4
D =

16Λ4
1Λ4

2
M2

11
. (11)
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After rescaling x and y, (10) becomes

y2 = x3 − ux2 + Λ4
1Λ4

2x , for large u. (12)

Then, using the analyticity, dimensional analysis, and the Z2 symmetry exchanging SU(2)1
and SU(2)2, we can determine the general form of the N = 1 curve,

y2 = x3 −
(

u− α(Λ4
1 + Λ4

2)
)

x2 + Λ4
1Λ4

2x , (13)

up to a numerical constant α. We see that the curve becomes singular when either Λ1 = 0
or Λ2 = 0.

To fix the remaining parameter α, we can take a decoupling limit, Λ2 � Λ1. The the-
ory in this limit is approximately an SU(2)1 gauge theory coupled to the adjoint field
φ̃ and three singlets det Φ2

1, det Φ2
2, tr Φ1Φ2. These fields satisfy the following quantum

constraint [32]
u + E2ũ = Λ4

2 , (14)

where E is a dimensionful normalization, and

ũ = tr φ̃2, φ̃ =
1
E

(
Φ1Φ2 −

1
2

tr Φ1Φ2

)
. (15)

Decoupling the singlets, the theory is approximately pure N = 2 gauge theory with
holomorphic scale Λ1. The low-energy dynamics is encoded in the curve

y2 = x3 − ũx2 +
1
4

Λ4
1x , (16)

which becomes singular at ũ = ±Λ2
1, or equivalently at u = Λ4

2± E2Λ2
1. On the other hand,

(13) is singular at u = α
(
Λ4

1 + Λ4
2
)
± 2Λ2

1Λ2
2. Thus, we find that α = 1, and therefore the

N = 1 curve X of this theory is given by

y2 = x3 − (u−Λ4
1 −Λ4

2)x2 + Λ4
1Λ4

2x . (17)

Interestingly, the solution of this SU(2)× SU(2) N = 1 gauge theory is isomorphic to that
of the SU(2) N = 2 gauge theory, with the isomorphism X ∼= XN=2

∼= H/Γ0(4) given by
the map f : (uN=2, ΛN=2) 7→

(
u−Λ4

1 −Λ4
2, Λ1Λ2

)
.

3. IR Curves of Class Sk Theories

In this section we derive the N = 1 curves for the ‘core theories’ of class Sk, namely
those associated to spheres with two maximal and `− 2 minimal punctures. See Figure 1
for the `− 2 = 4 example and notation.

Before plunging into the details, a short review of a few facts and notations about class
Sk is in order. Theories of class Sk arise as twisted compactifications of the 6d N = (1, 0)
SCFT which is the worldvolume theory on N coincident M5-branes probing the transverse
Ak−1 singularity. As discussed in detail in [20] these compactifications enjoy an N = 1
u(1)r R-symmetry, which is given by the linear combination

r =
2
3
(2RN=2 − rN=2) , (18)

where {RN=2, rN=2} are the Cartan generators of the su(2)R ⊕ u(1)r N = 2 R-symmetry
algebra. Another independent linear combination

qt = RN=2 + rN=2 (19)
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generates the u(1)t symmetry inside the u(1)t ⊕ u(1)⊕k−1
β ⊕ u(1)⊕k−1

γ ‘intrinsic’ global
symmetry carried by all theories of class Sk [12]. We summarize the field content and the
transformation properties in Table 1.

i+ 1

i

i− 1

i

i− 1

i− 2

i

i− 1

i− 2

i− 1

i− 2

i− 3

i− 1

i− 2

i− 3

γi−1

γi

βi−2

βi−1

α1 α4

Φ(i,2)

Q̃(i,1)

Q(i,1)

Q̃(i,2)

Q(i−1,2)

n = 0 n = 1 n = 2 n = 3 n = 4

1

Figure 1. Quiver for a theory of class Sk. The gauge nodes are labelled by (i, n), where i = 1, . . . , k is
the index for the Zk orbifold, and n = 1, · · · , `− 3 is the label from the N = 2 mother theory. In this
example we set `− 2 = 4.

Table 1. Field content and transformation properties of a class Sk theory.

SU(N)(i,n−1) SU(N)(i,n) SU(N)(i−1,n) U(1)t U(1)αn U(1)βi+1−n U(1)γi

V(i,n) 1 Adj 1 0 0 0 0
Φ(i,n) 1 N N −1 0 −1 +1

Q(i,n−1) N N 1 +1/2 −1 +1 0
Q̃(i,n−1) N 1 N +1/2 +1 0 −1

For further details the reader is encouraged to look at [20], the notation in which we
closely follow.

3.1. Classical Analysis

The theory admits a rather intricate phase structure. However, different phases do
not mix because they may be differentiated using the U(1)t symmetry, as we have shown
in [20]. Thus, we may restrict our attention to the gemeralized Coulomb branch defined by
giving nonzero vevs to Φ’s while Q, Q̃ have vanishing vevs. Generically the gauge group
is spontaneously broken from SU(N)k` down to U(1)(N−1)`.

In terms of Φn := ∏k
i=1 Φ(i,n), the Coulomb branch may be parametrized by vevs of

the following gauge-invariant operators of dimension lk,

ulk,n :=

 1
l tr
(

Φn − 1
N tr Φn

)l
2 ≤ l ≤ N

tr Φn l = 1
(20)
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for each n = 1, · · · , `− 3, as well as the ‘baryonic’ gauge-invariant operators of dimen-
sion N,

Bi,n :=
1

(N!)2 εa1···aN εb1···bN Φa1
(i,n)b1

· · ·ΦaN
(i,n)bN

= det Φ(i,n) (21)

for each i = 1, · · · , k and n = 1, · · · , `− 3. We also introduce

(Mi+1,n)
a
c := Φa

(i,n)bΦb
(i+1,n)c . (22)

Classically these operators obey the relations

det Mi+1,n − Bi,nBi+1,n = 0 , (23)

which are modified quantum mechanically as [32]

det Mi+1,n − Bi,nBi+1,n = Λ2N
i+1,n . (24)

Here Λ2N
i+1,n is the dynamically generated holomorphic scale associated to the (i + 1, n)th

gauge group. Its expression in terms of the coupling constants q(j,n) and the mass parame-
ters will be discussed in detail later.

Note that there is an over-parametrization since the ulk,n and Bi,n are not all indepen-
dent but rather related by applying the Cayley-Hamilton theorem to the matrix Φn:

p(Φn) =
N

∑
l=1

cl,nΦl
n + (−1)N det ΦnIN = 0 , (25)

where cN,n = 1 and for l = 1, · · · , N − 1

cN−l,n =
(−1)l

l!
Bl

(
uk,n,−1!u2k,n, 2!u3k,n, · · · , (−1)l−1(l − 1)!ulk,n

)
, (26)

with Bl the lth complete exponential Bell polynomial. Here we have defined ulk,n := tr Φl
n,

which are related to ulk,n by

ulk,n =
1
l

l

∑
p=0

(
l
p

)(
− 1

N
uk,n

)p
u(l−p)k,n . (27)

Taking the trace of (25) implies, for generic Φ(i,c), a single relation between (20) and (21)

tr p(Φn) =
N

∑
l=1

cl,nulk,n + (−1)N N
k

∏
i=1

Bi,n = 0 . (28)

In particular, this implies that uNk,n can be completely written in terms of the Bi,n and
the ulk,n 1 ≤ l ≤ N − 1. Hence, the coordinate ring of the Coulomb branch for k ≥ 2 is
expected to be a freely generated ring of dimension (3g− 3 + `)(k + N − 1),

CB = C[ulk,n, Bi,n] ,

l ∈ {1, 2, · · · , N − 1} ,

i ∈ {1, 2, · · · , k} ,

n ∈ {1, 2, · · · , 3g− 3 + `} .

(29)

3.2. Mass Parameters

We may regard the masses corresponding to the flavour symmetries for U(N)(i,0) =
U(N)(i,L) and U(N)(i,`+1) = U(N)(i,R) as expectation values for background superfields
Φ(i,0) = ML

i , Φ(i,`+1) = MR
i . Hence we may construct flavour symmetry invariant combi-

nations of masses in the same fashion. We define
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µL
lk := tr

(
k

∏
i=1

ML
i

)l

, µR
lk := tr

(
k

∏
i=1

MR
i

)l

, (30)

JL
i := det ML

i , JR
i := det MR

i , (31)

for 1 ≤ l ≤ N. Moreover, ML/R
i may be diagonalized by SU(N) transformations such that

they take the form
ML/R

i = diag
(

mL/R
i,1 , . . . , mL/R

i,N

)
. (32)

Additionally, when ` = 1, the SU(N)2k flavour symmetry enhances to SU(2N)k and in
that case we find it convenient to combine the mass parameters as

Mi := ML
i ⊕MR

i := diag
(

m(i),1, . . . , m(i),2N

)
, (33)

and to write the invariants as

µlk := tr

(
k

∏
i=1

Mi

)l

, Ji := det Mi , (34)

where now 1 ≤ l ≤ 2N.

3.3. Curves for N = k = 2

For the sake of starting smoothly, we will first compute the curve for the simplest
example, namely the quiver with N = k = 2 and ` = 1. We will drop the index n for
compactness, e.g., here Φ(i) := Φ(i,n) = Φ(i,1).

3.3.1. Diagonal Limit

Initially let us consider the limit where, say, Φ(1) gets a large diagonal vev
〈

Φ(1)

〉
=

diag(a,−a). By examining the Lagrangian one sees that the gauge group is broken down to
a SU(2)D diagonal subgroup just as in [3], under which both bifundamentals decompose
into an adjoint and a singlet, among which the adjoint associated to Φ(1) becomes the
longitudinal modes of the massive (SU(2)(1) × SU(2)(2))/SU(2)D gauge bosons, while
the (anti)fundamentals of the SU(2)’s decompose into (anti)fundamentals of the SU(2)D.
The uneaten adjoint gives φ = Φ(2) − 1

2 tr Φ(2). Below the scale |a| the quarks Q(1,0), Q(2,1),
Q̃(1,0), Q̃(1,1) can be integrated out, and the superpotential (without the singlets) is then

“diagonal”1. In general there will also be a singlet u2 = tr Φ(1)Φ(2) associated to which
there can be a mass deformation to the diagonal superpotential WD,

WD →WD + msu2 . (35)

Then below |ms| the singlet u2 can be integrated out and can be neglected when we deal
with the low energy dynamics of gauge field [3,4,33]. Hence the low energy effective theory
is N = 2 QCD with N f = 4 flavors [34] whose solution is encoded in the curve [1,35]

y2 = (x2 − uD)
2 − 4qD

(1 + qD)2

4

∏
j=1

(
x + µ̃j −

qD
2(1 + qD)

4

∑
f=1

µ̃ f

)
. (36)
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Here the curve is written in the quartic form. We can express uD, µ̃j, and the exponentiated
coupling qD for the SU(2)D in terms of the parameters in the N = 1 theory as

uD :=
1
2

tr φ2 = u4/a2 = (u4 − u2
2)/2a2, (37)

µ̃j = m(1),jm(2),j/a, (38)

qD = e2πiτD = q(1)q(2). (39)

After rescaling x → x/a, y→ y/a2 and substituting in the above relations we have

y2 = (x2 − u4)
2 − 4q

(1 + q)2

4

∏
j=1

(
x + m(1),jm(2),j −

q
2(1 + q)

µ2

)
, (40)

where q := q(1)q(2) and µ2 is defined as in (34),

µ2 =
4

∑
j=1

m(1),jm(2),j . (41)

Now consider integrating out all of the flavours from this N = 2 curve, leaving us with
pure SU(2) N = 2 gauge theory. As indicated in [35], we should hold fixed the relation

Λ4
D =

4qD

(1 + qD)2

4

∏
j=1

µ̃j =
4q(1)q(2)

(1 + q(1)q(2))2

4

∏
j=1

m(1),jm(2),j

a
. (42)

On the other hand, we know from [3] that2

Λ4
D = 4

Λ4
(1)Λ

4
(2)

a4 (43)

should be held fixed. Equating them implies that

Λ4
(1)Λ

4
(2) =

qD

(1 + qD)2

4

∏
j=1

m(1),jm(2),j =
q(1)q(2)

(1 + q(1)q(2))2 J1 J2 (44)

should be held fixed in the limit, with Ji defined in (34). Because of the symmetry between
two gauge groups, we must have the matching condition

Λ4
(i) = ±

q(i)
1 + q(1)q(2)

Ji. (45)

Positivity of ReΛ4
(i) demands that we take the plus sign.

Now we can write down the most general ansatz for the curve, which is both polyno-
mial in masses and Coulomb moduli, and is compactible with all of the symmetries and
the diagonal limit,

y2 =
(

x2 − u4 + a12 J1 + a21 J2 + bµ2
2 + cµ2u2 + dµ4

)2

−
4q(1)q(2)

(1 + q(1)q(2))2

4

∏
j=1

(
x + m(1),jm(2),j −

q(1)q(2)
2(1 + q(1)q(2))

µ2

)
,

(46)

where a12 := a(q(1), q(2)), a21 := a(q(2), q(1)), and b, c, d are all symmetric functions in
q(1), q(2). Note however that we may immediately restrict the dependence of b, c, d on
q(1), q(2) by demanding agreement with the curves [3,36] upon integrating out some of the
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flavours. To have a well defined limit, b, c, d must be power series in q(1)q(2) with vanishing
constant term.

3.3.2. q(2) � q(1) Limit

Analogous to the treatment in [3], we now consider a decoupling limit, q(2) � q(1).
The low energy effective theory in this limit is described by an SU(2) gauge theory with an
adjoint field φ̃ = 1

E (Φ1Φ2 − 1
2 tr Φ1Φ2) and three singlets B1, B2 and u2. Here E is a chosen

energy scale. There are also singlets involving fundamental Q, Q̃’s which do not appear
in the curve for reasons discussed earlier. If we are only interested in the effective gauge
coupling in the Coulomb phase, we can neglect these singlets and the theory in this limit is
approximately an N = 2 SU(2)1 N f = 4 gauge theory with the exponentiated coupling
q(1) and mass matrix M1. The fields are constained, implementing the matching relation,
by the quantum relation [32]

u− E2ũ =
q(2)

1 + q(1)q(2)
J2 , (47)

with ũ = 1
2 tr φ̃2 .

To fix a12 and a21, we need only consider the mass configurations M1 = 0, M2 ∼ EI4.
Then the N = 2 theory has an order 4 singularity, associated to the quarks becoming
massless, when ũ = 0. For these mass configurations the discriminant of (46) has a point of
vanishing order 4 at

u4 =
q(2)

1 + q(1)q(2)
J2 , (48)

which implies that

a21 ≡
q(2)

1 + q(1)q(2)
, a12 ≡

q(1)
1 + q(1)q(2)

. (49)

The remaining functions b, c, d can be fixed by considering the limit

q(1) → ∞, q(2) → 0, m(2),j → ∞ , (50)

while holding q(1)q(2) ∝ 1 and the matching condition (45) fixed. Then we can integrate out
all the massive modes and arrive at theN = 1 SU(2)1× SU(2)2 quiver theory with 2 chiral
multiplets and 2 anti-chiral multiplets in (2, 1), and a chiral multiplet and an anti-chiral
multiplet in (2, 2). The resulting curve is well defined only when b = c = d = 0.3

Hence, the curve is

y2 =

(
x2 − u4 +

q(1)
1 + q(1)q(2)

J1 +
q(2)

1 + q(1)q(2)
J2

)2

−
4q(1)q(2)

(1 + q(1)q(2))2

4

∏
j=1

(
x + m(1),jm(2),j −

q(1)q(2)
2(1 + q(1)q(2))

µ2

)
,

(51)

or by substituting the relations

Ji = det Mi =
4

∏
j=1

m(i),j , µ2 = tr M1M2 =
4

∑
j=1

m(1),jm(2),j , (52)
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we have

y2 =

(
x2 − u4 +

q(1)
1 + q(1)q(2)

4

∏
j=1

m(1),j +
q(2)

1 + q(1)q(2)

4

∏
j=1

m(2),j

)2

(53)

−
4q(1)q(2)

(1 + q(1)q(2))2

4

∏
j=1

(
x + m(1),jm(2),j −

q(1)q(2)
2(1 + q(1)q(2))

4

∑
j=1

m(1),jm(2),j

)
. (54)

3.3.3. Checks

It can be immediately verified that our curve (51) reproduces those of [3,36]. It is
illustrative to consider the limit q(2) � q(1) and check consistency for a few choices of
mass deformations:

Mi = diag(m,−m, m,−m), M2 ∼ EI4

In this configuration the adjoint field of SU(2)1 is singular at the order 4 quark
singularity ũ = m2 whilst the corresponding vanishing order 4 point of (51) is at

u4 = m2E2 +
q(1)

1 + q(1)q(2)
m4 +

q(2)
1 + q(1)q(2)

E4

≈ m2E2 +
q(2)

1 + q(1)q(2)
E4 ,

(55)

which agrees nicely with (47).

M1 = diag(m, m, m, 0), M2 ∼ EI4

TheN = 2 curve has an order 3 quark singularity at 4ũ = m2(2− q(1))2/(1+ q(1))2 =

4m2 +O(q(1)). On the other hand (51) has a vanishing order 3 point at

u4 =
q(2)

1 + q(1)q(2)
E4 + E2m2 +

3(1− q(1)q(2))
1 + q(1)q(2)

≈
q(2)

1 + q(1)q(2)
E4 + 4E2m2 ,

(56)

which is in agreement with (47).

M1 = diag(m, m, m, m), M2 ∼ EI4

The N = 2 curve has an order 4 quark singularity at ũ = m2(1− q(1))2/(1 + q(1))2 =

m2 +O(q(1)). The discriminant of (51) has a zero of degree 4 located at

u4 =
q(1)

1 + q(1)q(2)
m4 +

q(2)
1 + q(1)q(2)

E4 +
(1− q(1)q(2))2

(1 + q(1)q(2))2 m2E2

≈
q(2)

1 + q(1)q(2)
E4 + m2E2 ,

(57)

which is again in agreement with (47).

3.4. Curve for k = 2 General N

The generalization from N = 2 to general N is rather straightforward. We again
consider the diagonal limit and the limit q(2) � q(1).
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3.4.1. Diagonal Limit

The same diagonal limit is reached by giving diagonal vev. In this limit the theory is
again approximately N = 2 SU(N) gauge theory with N f = 2N flavours and the adjoint
field is φ = Φ(2) − 1

N tr Φ(2). The curve of that theory is given by [35]

y2 =

(
xN −

N

∑
l=2

uD,l xN−l

)2

− 4qD

(1 + qD)2

2N

∏
j=1

(
x + µ̃j −

qD
N(1 + qD)

2N

∑
m=1

µ̃m

)
,

(58)

where µ̃j = m(1),jm(2),j/a, uD,l := 1
l tr φl = u2l/al , and qD = q(1)q(2) is associated to the

coupling for SU(2)D. After rescaling x → x/a, y→ y/a2N , and substituting in the above
relations we have

y2 =

(
xN −

N

∑
l=2

u2l xN−l

)2

−
4q(1)q(2)

(1 + q(1)q(2))2

2N

∏
j=1

(
x + m(1),jm(2),j −

q(1)q(2)
N(1 + q(1)q(2))

µ2

)
.

(59)

Now consider integrating out all of the flavours from this N = 2 curve to obtain pure
SU(2) N = 2 gauge theory, holding fixed the relation [35]

Λ2N
D =

4qD

(1 + qD)2

2N

∏
j=1

µ̃j =
4q(1)q(2)

(1 + q(1)q(2))2

2N

∏
j=1

m(1),jm(2),j

a
. (60)

Meanwhile, we should also hold fixed [33]

Λ2N
D = 4

Λ2N
(1)Λ

2N
(2)

a2N . (61)

Equating them implies that

Λ2N
(1)Λ

2N
(2) =

q(1)q(2)
(1 + q(1)q(2))2 J1 J2 (62)

should be held fixed under the limit, with Ji defined in (34). Due to the symmetry between
two gauge groups, we must have that

Λ2N
(i) = ±

q(i)
1 + q(1)q(2)

Ji , (63)

and we should pick the plus sign if we want to have ReΛ2N
(i) > 0.

The most general ansatz for the curve takes the form

y2 =

(
xN −

N

∑
l=2

[
u2l + fl

(
un, µm; q(1)q(2)

)]
xN−l + a12 J1 + a21 J2

)2

−
4q(1)q(2)

(1 + q(1)q(2))2

2N

∏
j=1

(
x + m(1),jm(2),j −

q(1)q(2)
N(1 + q(1)q(2))

µ2

)
,

(64)

where fl

(
u2n, µm; q(1)q(2)

)
is a function with mass dimension (or equivalently R-charge) 2l

and satisfies limµm→0 fl

(
u2n, µm; q(1)q(2)

)
= 0. In other words fl is always subdominant
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compared to u2l in the large u2l limit. Following the same argument as before, we know
that the dependence of fl on the holomorphic couplings can only be of the combination
q(1)q(2).

3.4.2. q(2) � q(1) Limit

To determine the remaining parameters in (64), we again consider the limit q(2) � q(1).
In that limit, the theory is approximately N = 2 SU(N)1 gauge theory with N f = 2N
fundamental hypermultiplets and the exponentiated coupling q(1). There is an adjoint field

φ̃ = 1
E

(
Φ(1)Φ(2) − 1

N tr Φ(1)Φ(2)

)
. There is also a quantum modified constraint on moduli

space [32]

det Φ(1)Φ(2) − B1B2 =
q(2)

1 + q(1)q(2)
J2 . (65)

This is implemented on the curves by

ũl =


u2l
El l 6= N
1
El

(
u2N +

q(2)
1+q(1)q(2)

J2

)
l = N

. (66)

Now we may fix a12(q(1), q(2)) = a21(q(2), q(1)). The massless M1 = 0 N = 2, N f = 2N
theory is singular when ũl = 0. On the other hand, our curve (64) with M1 = 0 is
singular when

u2l =

{
0 l 6= N
a21 J2 l = N

. (67)

Comparison with (66) implies a21 =
q(2)

1+q(1)q(2)
. We may then follow the argument that we

used below equation (48) to immediately set fl ≡ 0 for all l. Hence the curve is

y2 =

(
xN −

N

∑
l=2

u2l xN−l +
q(1)

1 + q(1)q(2)
J1 +

q(2)
1 + q(1)q(2)

J2

)2

−
4q(1)q(2)

(1 + q(1)q(2))2

2N

∏
j=1

(
x + m(1),jm(2),j −

q(1)q(2)
N(1 + q(1)q(2))

µ2

)
.

(68)

3.5. Curve for General N & k

The generalization to arbitrary k is largely the same. It is the extension of [33] to
include flavours. The only new phenomena is the implementation of the quantum relation
(65) for the quiver. We will simply state the result. The curve may be written as

y2 =

(
N

∑
l=1

clulkxN−l + (−1)N
k

∏
i=1

Bi +

[
BiBi+1 →

qi+1

1 + q
Ji+1

])2

− 4q
(1 + q)2

2N

∏
j=1

(
x + mj −

q
N(1 + q)

µk

)
,

(69)

where the cl are defined by (25), q := ∏k
i=1 q(i), mj := ∏k

i=1 m(i),j. Finally the brackets [·]
mean to replace the pairs BiBi+1 appearing in (−1)N ∏k

i=1 Bi with the corresponding mass
condition in all possible ways. For example at k = 4 the brackets should be read as

(−1)N
(

BiBi+1 → Λ2N
i+1

)
=Λ2N

2 B3B4 + B1Λ2N
3 B4 + B1B2Λ2N

4

+ Λ2N
1 B2B3 + Λ2N

2 Λ2N
4 + Λ2N

1 Λ2N
3 ,

(70)

where we used Λ2N
i = qi Ji/(1 + q).
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4. UV Curves of Class Sk Theories

In this section we will derive the UV curves by rewriting our IR curves following the
procedure introduced by Gaiotto [13]. Then we will compare our results with the results
obtained in [15] which are valid only at the orbifold point of the conformal manifold.

4.1. Review of UV Curves of Class S Theories

Let us begin by reviewing the manipulation needed for class S theories. The Seiberg-
Witten curve of N = 2 SU(N) gauge theory with N f = 2N flavors reads [35]

y2 =

(
xN −

N

∑
l=2

ul xN−l

)2

− 4q
(1 + q)2

2N

∏
j=1

(
x−mj

)
, (71)

with mj given in terms of the masses mj as

mj = −mj +
q

N(1 + q)

2N

∑
f=1

m f . (72)

The dimensions of (x, y), which are minus the U(1)rN=2 charges, are (1, N). After making
a change of variables

y = − 2t
1 + q

N

∏
j=1

(
x−mj

)
+

(
xN −

N

∑
l=2

ul xN−l

)
, (73)

we obtain

N

∏
i=1

(x−mL
i )t

2 − (1 + q)

(
xN −

N

∑
l=2

ul xN−l

)
t + q

N

∏
i=1

(x−mR
i ) = 0 , (74)

which is the natural expression obtained by lifting the Type IIA string theory construction
using the D4/NS5 brane system to M-theory [37]. If we write x = tz, this curve is brought
to the canonical form introduced by Gaiotto [13],

zN +
N

∑
i=1

zN−lφl(t) = 0 , (75)

where φl(t)dtl are degree l differentials on the Riemann surface C 1:N←−− X , t is a local
coordinate on C and (z, t) on T∗C. In the massless case, mi = 0, the curve is

zN +
N

∑
l=2

zN−l (1 + q)ul

tl−1(t− 1)(t− q)
= 0 . (76)

In the massive case, we have

zN +
N

∑
l=1

zN−l t2 fl(m
L) + t(1 + q)ul + q fl(m

R)

tl(t− 1)(t− q)
= 0 , (77)

where u1 = 0 and fl(m
L/R) is given by the expansion

N

∏
i=1

(x−mL/R
i ) = xN +

N

∑
l=1

xN−l fl(m
L/R) . (78)
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Accordingly, the differentials are

φl(t)dtl =
t2 fl(m

L) + t(1 + q)ul + q fl(m
R)

tl(t− 1)(t− q)
dtl . (79)

Notice that at t = 0 and t = ∞, φl has poles of order l. These are interpreted as maximal
punctures. On the other hand, φl has simple poles at t = 1, q, and these are the locations of
the minimal punctures. This is in complete agreement with the findings of [15].

4.2. Class Sk

Let us extend the above manipulations to the theories of class Sk. We first consider
the case when k = 2. Recall that the curve (68) is given by

y2 =

(
xN −

N

∑
l=2

u2l xN−l +
q(1)

1 + q(1)q(2)
J1 +

q(2)
1 + q(1)q(2)

J2

)2

−
4q(1)q(2)

(1 + q(1)q(2))2

2N

∏
j=1

(
x + m(1),jm(2),j −

q(1)q(2)
N(1 + q(1)q(2))

µ2

)
.

(80)

The dimensions of (x, y) are (2, 2N). If we perform the change of variables

y = − 2t
1 + q

N

∏
j=1

(
x−mj

)
+

(
xN −

N

∑
l=2

u2l xN−l +
2

∑
i=1

q(i)
1 + q

Ji

)
, (81)

with
q = q(1)q(2), mj := −m(1),jm(2),j +

q
N(1 + q)

µ2 , (82)

the curve becomes

N

∏
i=1

(x−mL
i )t

2 − (1 + q)
(

xN −
N

∑
l=2

u2l xN−l +
2

∑
i=1

q(i)
1 + q

Ji

)
t + q

N

∏
i=1

(x−mR
i ) = 0 . (83)

Following the analysis of class S theories, we can bring the curve to the canonical form by
writing x = tz2,

z2N +
N

∑
l=1

z2(N−l)φ2l(t) = 0 , (84)

where

φ2l(t) =


t2 f1(m

L)+q f1(m
R)

t(t−1)(t−q) l = 1 ,
t2 fl(m

L)+t(1+q)u2l+q fl(m
R)

tl(t−1)(t−q) 1 < l < N ,

− q(1) J1+q(2) J2

tN−1(t−1)(t−q) l = N ,

(85)

and fl is given by (78). We see that (z, t) have dimensions (1, 0). We can interpret (z, t) as
local canonical coordinates in the cotangent bundle T∗C of a punctured Riemann surface C.

It is then straightforward to generalize our discussion to arbitrary k. The IR curve
is given by (69), with the dimensions of (x, y) being (k, Nk). We can again obtain the
canonical form of the curve from (69) by first changing of variables from (x, y) to (x, t) and
then write x = tzk. The resulting curve takes the form

zkN +
N

∑
l=1

zkN−klφkl(t) = 0 , (86)
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where

φkl(t) =


t2 f1(m

L)+q f1(m
R)

t(t−1)(t−q) l = 1 ,
t2 fl(m

L)+t(1+q)ukl+q fl(m
R)

tl(t−1)(t−q) 1 < l < N ,

− q(1) J1+q(2) J2

tN−1(t−1)(t−q) l = N .

(87)

Here (z, t) are again local canonical coordinates in the cotangent bundle T∗C of a punctured
Riemann surface C, and

q :=
k

∏
i=1

q(i) . (88)

Notice that, as discussed in [15], φkl has order l poles at t = 0, ∞ and simple poles at t = 0, q.
These signify the locations of the maximal and minimal punctures, respectively. The curve
simplifies in the absence of mass deformations, and becomes

zkN +
N

∑
l=2

zk(N−l) (1 + q)ukl

tl−1(t− 1)(t− q)
= 0 . (89)

At the orbifold points of the conformal manifold, q(1) = · · · = q(k), (86) and (87)

become those found in [15].4

5. Conclusions

In this paper we apply the techniques of Intriligator and Seiberg [3] to derive the IR
curves encoding the low energy dynamics ofN = 1 theories of class Sk on their generalized
Coulomb branch. We then bring these curves to the Gaiotto form, obtaining the UV curve
C. We interpret C as a punctured Riemann surface embedded in T∗C, and the class Sk
theory arises from the compactification of the 6D (1, 0)Ak−1 SCFT on C. The final forms
(86) and (87) can be directly compared to the expressions derived in [15], which is from
M-theory and is valid only at the orbifold point of the conformal manifold. We also analyze
the meromorphic differentials.

In the case of the a four-punctured sphere, the positions of the poles of the meromor-
phic differentials are identical (t = 0, 1, q, ∞) to the ones in [15], but now with q = ∏k

i=1 q(i),
being interpreted as the “average coupling”. As we move away from the orbifold point,
the novelty is that the mass parameters change as functions of the marginal couplings q(i),
in a way we can compute.

In this paper we concentrated on four-punctured spheres with two maximal and two
simple punctures. The curves of other theories with a Lagrangian description of class Sk
should be easy to obtain as well as non-Lagrangian theories which are obtained as strong
coupling limit (pants decompositions) of Lagrangian ones. What is more, it would be very
interesting to study what are the possible punctures (classification) in class Sk.

The curves, while not encoding enough information to ‘solve’ the low energy effective
theory due to the Kähler part of the action being unconstrained by holomorphicity, still
encode a large amount of information regarding the theory. In particular, they may prove
invaluable for deriving new theories and dualities, as was performed for class S in [13]. We
even believe that through their M-theory interpretation they may even allow us to compute
the low energy BPS spectrum.

It is well known that the techniques of instanton counting provide a purely field
theoretical derivation of Seiberg-Witten curves of 4D N = 2 supersymmetric gauge theo-
ries [38–41]. In a separate paper, we will extend this approach to N = 1 theories realized
by brane box models [42,43]. These theories can be formulated in the N = 1 version of
the Ω-background, and the partition function on the generalized Coulomb branch can be
exactly computed. We can then determine the curves from the partition function in the flat
space limit. This is work that will appear.
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Finally, very interestingly, our work can be used to study fractons [44], emergent
topological quasiparticles, through the recent relation discovered in [45]. See also [46–50].
As discovered in [45] the fracton excitations live on C which we are now able to compute.
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Notes
1 The “diagonal” quark masses can be calculated by solving the F-term’s for Q(1,0), Q(2,1), Q̃(1,0), Q̃(1,1).
2 Note that to save on various factors of

√
2 we define uD = 1

2 tr φ2 instead of uD = tr φ2, accounting for factor 4 instead of 16.
3 For example the term b(q(1)q(2))µ4 → b(1)∞2 explodes unless b ≡ 0.
4 Notice that the definition of ukl in this paper differs from that in [15] by 1 + q and fl(m

L/R) = (−1)lc
(l,k)
L/R.
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