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Abstract: Solar radio observation is an important way to study the Sun. Solar radio bursts contain
important information about solar activity. Therefore, real-time automatic detection and classification
of solar radio bursts are of great value for subsequent solar physics research and space weather
warnings. Traditional image classification methods based on deep learning often require considerable
training data. To address insufficient solar radio spectrum images, transfer learning is generally
used. However, the large difference between natural images and solar spectrum images has a large
impact on the transfer learning effect. In this paper, we propose a self-supervised learning method
for solar radio spectrum classification. Our method uses self-supervised training with a self-masking
approach in natural language processing. Self-supervised learning is more conducive to learning the
essential information about images compared with supervised methods, and it is more suitable for
transfer learning. First, the method pre-trains using a large amount of other existing data. Then, the
trained model is fine-tuned on the solar radio spectrum dataset. Experiments show that the method
achieves a classification accuracy similar to that of convolutional neural networks and Transformer
networks with supervised training.

Keywords: solar radio spectrum; deep learning; self-supervised learning; transfer learning

1. Introduction

Solar radio spectrum observations are an important tool for studying solar outbursts,
which contain important information about solar activity [1]. The solar radio spectra are
divided into various types, corresponding to different physical events [2,3]. With the
development of radio spectrometers and the massive observational data trend, manual
detection and classification of solar radio spectra can no longer meet the needs of research.
Therefore, it is important to automatically detect and classify solar radio bursts from this
massive information efficiently and rapidly for subsequent scientific research and space
weather warning and forecasting.

The solar broadband radio spectrometers (SBRS) at the National Astronomical Obser-
vatory of the Chinese Academy of Sciences were put into operation during the 23rd solar
activity cycle [4]. The devices have produced a large number of observations. However,
since solar radio bursts are a low-probability event, the observed spectra of solar radio
bursts are very small. Additionally, due to the presence of interference, the raw data are
not clearly characterized and it is difficult to quickly distinguish between different kinds
of data. This creates difficulties for subsequent astronomical studies [5]. Therefore, it is of
great help for solar physics research to classify solar radio spectra accurately, quickly and
automatically.

With the rapid development of hardware levels and artificial intelligence, an increas-
ing number of deep learning models and algorithms are used to solve tasks related to
natural language processing [6] and computer vision [7,8]. For astronomy problems, many
previous works were carried out on solar radio spectrum classification and these works
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have used image processing algorithms, neural network models and deep learning [9].
P. J. Zhang et al. designed an event recognition analysis system that can automatically
detect solar type III radio bursts. This system used Hough transform to recognize the
line segment associated with type III bursts in the dynamic spectra [10]. However, the
computational parameters of this method must be artificially designed and are not univer-
sally applicable. In recent years, with the development of convolutional neural networks
(CNN) [11,12], long short-term memory (LSTM) networks [13], and deep confidence net-
works [14], many of these methods were applied to the classification of solar radio spectra.
S. M. J. Jalali introduced LSTM [15], which was combined with a CNN to propose the CNN–
LSTM approach [16]. This method improves performance with similar time consumption.
B. Yan used a feature pyramid network (FPN) as a backbone network [17] and used ResNet
to extract features [18]. By simply connecting to the structure, FPN fuses features of dif-
ferent scales and different levels of semantics. The performance of detection is improved
without affecting the speed of detection. In other related studies, a classification algorithm
based on joint convolutional neural networks and transfer learning was proposed by using
the inherent correlation between natural datasets and astronomical datasets. In addition,
a cost-sensitive multiclassification loss function was proposed to make the network pay
more attention to categories with fewer samples during the training process and use the
meta-learning method to classify the solar radio spectrum with fewer samples. In addition,
H. Salmane et al. proposed automatic identification methods for specific types of solar
radio burst structures [19].

In current research on image classification, a large amount of training data is generally
needed. However, since solar radio bursts are low-probability events, there are few samples.
To solve the problem of fewer data, some studies have used transfer learning technology
and improved loss functions. However, the large difference between natural images and
solar radio spectrum images is not conducive to the application of transfer learning.

In natural language processing, self-supervised learning methods have become popu-
lar and these methods no longer require large amounts of labeled data in the training step.
Researchers can design some rules to let the data supervise their own training [20]. For
example, bidirectional encoder representations from Transformer (BERT) are designed as a
kind of fill-in-the-blank method by masking some words in a sentence and then letting the
network guess those words. In natural language processing, self-supervised learning is
usually based on autoregressive language modeling in generative pre-training (GPT) and
mask self-coding in BERT. Their basic principle is to delete some data and let the network
learn to predict the deleted content.

In this paper, a solar radio spectrum classification method based on self-supervised
learning is proposed. The method uses BERT to train the network to classify solar radio
spectrum images by randomly masking a portion of the solar radio spectrum images and
letting the network fill in the blank. The main contribution of this paper is that we apply
self-supervised learning to classify the solar radio spectrum for the first time. This method
is more conducive to using transfer learning. This paper can provide a reference for other
small sample data classifications in astronomy.

2. Solar Radio Spectrum Dataset and Its Preprocessing

The solar radio spectra are obtained from the solar broadband radio spectrometer
(SBRS) at the National Astronomical Observatory of the Chinese Academy of Sciences. The
raw data are stored in binary format and visualized to obtain the solar radio spectrum
images. The vertical axis of the solar radio spectrum image represents the frequency of the
spectrum, the horizontal axis represents the time, and each pixel value represents the radio
flux of the Sun at a certain time and frequency. When displayed as a grayscale image, white
indicates high solar radio flux, black indicates low solar radio flux, and the whole image
represents the solar radio flux at a frequency over a period of time. The solar radio spectra
are divided into three categories: burst, calibration and non-burst, as shown in Figure 1.
The classification tasks in this paper are aimed at these three categories.
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Figure 1. Solar radio spectrum data types. (a) Radio burst; (b) calibration; (c) non-burst.

The solar radio spectra images show that the original image is noisy and most of
the noise is transverse stripe noise. This noise will affect the subsequent classification
accuracy. The frequency channel normalization can reduce transverse stripe noise and
make its features obvious, and the calculation method is as follows:

p′(x, y) = p(x, y)− 1
n

n

∑
y=0

p(x, y) +
1

mn

m

∑
x=0

n

∑
y=0

p(x, y) (1)

where p(x, y) represents the radio intensity at time x and frequency y on the spectrum
and p′(x, y) is the radio intensity after channel normalization. The final result is shown in
Figure 2. The noise of the horizontal stripe is significantly reduced and the burst is more
obvious. It makes the features of the image more obvious and facilitates the learning of the
subsequent network.
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3. Method Section
3.1. Self-Supervised Learning

Self-supervised learning (SSL) is the main method used with the Transformer model
to learn from large-scale unlabeled datasets [21]. The basic idea of SSL is to fill in the gaps.
It masks or hides some parts of the input and uses observable parts to predict hidden
parts [22]. Another effective method of self-supervised learning is contrastive learning [23].
In this case, we usually learn the feature representation of samples by creating positive and
negative samples and comparing the data with positive samples and negative samples in the
feature space. The advantage of contrastive learning is that it does not need to reconstruct
pixel-level details to obtain image features but only needs to learn differentiation in the
feature space. However, the construction of positive and negative samples is a difficult
point in contrastive learning.

SSL provides a promising learning paradigm since it enables learning from a vast
amount of readily available nonannotated data. SSL is implemented in two steps. First, a
model is trained to learn a meaningful representation of the underlying data by solving a
pretext task. The pseudo labels for the pretext task are automatically generated based on
data attributes and task definition. Therefore, a critical choice in SSL is the definition of a
pretext task. Second, the model trained in the first step is fine-tuned on the downstream
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tasks using labeled data. The downstream tasks include image classification and object
detection [24,25].

3.2. Self-Supervised Learning with Self-Masking

Self-supervised learning methods are widely used in natural language processing.
However, due to the large difference between the CNN model in computer vision and
the Transformer used in natural language processing, the natural language processing
method cannot be effectively transferred to computer vision tasks. However, when Vision
Transformer (ViT) was proposed [26], the channel between computer vision and natural
language was opened [27–30].

We refer to the mask method used in the BERT and GPT in natural language and let
the model learn to restore sentences after covering some words. When the methods are
transferred to solar radio spectrum classification, the solar radio spectrum image is first
divided into blocks, which are equivalent to a word in a sentence. Then, these blocks are
masked randomly and sent to the network. The network is composed of the encoder and
decoder of ViT. After the image is restored through model learning, the trained encoder is
removed and connected to the fully connected layer for classification. The structure of the
self-mask model is shown in Figure 3.

Universe 2022, 8, x FOR PEER REVIEW 4 of 13 
 

 

learn differentiation in the feature space. However, the construction of positive and neg-
ative samples is a difficult point in contrastive learning. 

SSL provides a promising learning paradigm since it enables learning from a vast 
amount of readily available nonannotated data. SSL is implemented in two steps. First, a 
model is trained to learn a meaningful representation of the underlying data by solving a 
pretext task. The pseudo labels for the pretext task are automatically generated based on 
data attributes and task definition. Therefore, a critical choice in SSL is the definition of a 
pretext task. Second, the model trained in the first step is fine-tuned on the downstream 
tasks using labeled data. The downstream tasks include image classification and object 
detection [24,25]. 

3.2. Self-Supervised Learning with Self-Masking 
Self-supervised learning methods are widely used in natural language processing. 

However, due to the large difference between the CNN model in computer vision and 
the Transformer used in natural language processing, the natural language processing 
method cannot be effectively transferred to computer vision tasks. However, when Vi-
sion Transformer (ViT) was proposed [26], the channel between computer vision and 
natural language was opened [27–30]. 

We refer to the mask method used in the BERT and GPT in natural language and let 
the model learn to restore sentences after covering some words. When the methods are 
transferred to solar radio spectrum classification, the solar radio spectrum image is first 
divided into blocks, which are equivalent to a word in a sentence. Then, these blocks are 
masked randomly and sent to the network. The network is composed of the encoder and 
decoder of ViT. After the image is restored through model learning, the trained encoder 
is removed and connected to the fully connected layer for classification. The structure of 
the self-mask model is shown in Figure 3. 

 
Figure 3. Self-masking model structure. 

Compared with text, we can cover more parts due to the more redundant infor-
mation in the image. This not only saves space and improves the model speed but also 
helps the model learn more information from solar radio spectrum images. 

  

Figure 3. Self-masking model structure.

Compared with text, we can cover more parts due to the more redundant information
in the image. This not only saves space and improves the model speed but also helps the
model learn more information from solar radio spectrum images.

3.3. Encoder and Decoder

Our encoder is only derived from the ViT structure for visible unmasked blocks.
Similarly to standard ViT, our encoder embeds patches by adding a linear projection of
the positional embedding and then processes the dataset through a series of Transformer
blocks. However, our encoder only needs to work on a small subset (e.g., 25%), which
allows us to train very large encoders that require only a fraction of the computations and
memory. The complete dataset is processed by a lightweight decoder.

The input to the decoder is a complete token set consisting of encoded visible blocks
and mask tokens. Each mask token is a shared and learned vector that represents the
missing blocks to be predicted. We add a position to all tokens in this complete set. If we
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do not do this, mask tokens will not have information about their positions in the image.
The decoder also has another series of Transformer blocks.

The decoder is only used to perform image reconstruction tasks prior to training. Thus,
the decoder architecture can be designed in a flexible way, independent of the encoder
design. We experiment with very small decoders that are narrower and shallower than
the encoder. For example, our default decoder is 10% smaller in computations per token
than the encoder. In this asymmetric design, the complete set of tokens is processed by the
lightweight decoder only, which significantly reduces the pre-training time. The encoder
and decoder structures are shown in Figure 4.
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3.4. Data Enhancement

Because solar bursts are low-probability events, the solar radio burst spectra observed
are not much. To improve the generalization ability and avoid the overfitting of the model,
we augment the spectrum of solar radio bursts. We adopt a simple and data-independent
augmentation method called mixup. Mixup can be implemented in only a few lines of
code. A virtual training sample is constructed with minimal computational overhead. In an
extensive evaluation, the results show that mixup improves the generalization error of the
most advanced models in ImageNet, CIFAR, voice and tabular datasets. In addition, mixup
helps to eliminate the memory of false labels, the sensitivity to confrontation samples
and the instability of confrontation training. The formula for mixup data enhancement is
as follows:

x̃ = λxi + (1− λ)xj (2)

ỹ = λyi + (1− λ)yj (3)

where xi and xj are two images randomly selected from the training set and yi and yj
are their corresponding one-hot tags, respectively. Prior knowledge indicates that the
linear interpolation of the sample images and the linear interpolation of the corresponding
one-hot labels correspond. Mixup constructs a new sample and its one-hot label x̃, ỹ based
on this prior knowledge. Among them, λ is obtained by the data distribution β(α, α), and
α is a super parameter.

By adjusting the super parameter α, we can adjust the proportion of interpolation
between images. The research also shows that there is no good method to set α at present
and the sensitivity to α is different in different datasets.

To further improve the generalization ability of the model and avoid overfitting,
dropout is also introduced in this model. In deep learning, if the amount of data is small
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and the model is complex, the trained model will easily overfit. Dropout can alleviate the
overfitting problem and achieve a regularization effect to a certain extent.

4. Experimental Dataset and Experimental Configuration
4.1. Experimental Dataset

A solar radio burst corresponds to a certain solar activity event, which is a low-
probability event. The calibration data are relatively small and a large number of solar
radio spectra are no-burst spectra. Therefore, there is an imbalance between the three types
of samples.

Since the solar radio spectrum has two parts, left-handed and right-handed polariza-
tion, we separated the two parts so that the burst and calibration data can be expanded.
The amount of solar radio data after amplification is shown in Table 1. The quantity of the
three types of spectra is roughly in a balanced state, which alleviates the data imbalance
problem. The experiment shows that the separation of these two parts has no effect on the
results of solar radio spectrum classification.

Table 1. Number of solar radio spectrum samples.

Type Training Set Testing Set Total

Non-burst 1648 412 2060
Burst 1476 369 1845

Calibration 1292 322 1614

After data enhancement, the total number of samples is 5519. We divided these
randomly according to a proportion of approximately 8:2; 4415 labeled images were used
as the training set and the remaining 1104 were used as the testing set. The specific number
of samples in each category of the dataset is shown in Table 1.

4.2. Experimental Configuration and Evaluation Index

The software environment for our experiments is Windows 10, the programming
platform is PyCharm, and the architecture is PyTorch. In the hardware device, the CPU
is an Intel Core i7-10700k, the memory is 32 GB, and the GPU is a NVidia GeForce RTX
2080Ti. For pre-training, the batch size is 16, the image size is 224 × 224, the epoch is set
to 300, the learning rate is 1.5 × 10−4, the warmup learning rate is 10−6, the warmup is
30 epochs, and the weight decay is set to 0.05. In the fine-tuning stage, the epoch is set to
50, the learning rate is 10−3, the warmup learning rate is 10−6, the warmup is five epochs,
and the other parameters are unchanged.

In practice, the burst class has greater research value and greater impact on daily life,
so we mainly focus on the burst class. The burst class is defined as a positive class, and the
other two classes are defined as negative classes. We define TP as the number of samples
that are positive and correctly classified as positive, FP as the number of samples that are
negative but wrongly classified as positive, TN as the number of samples that are negative
and correctly classified as negative, and FN as the number of samples that are positive
but classified as negative. The evaluation metrics used in the experiment are accuracy,
precision, recall, specificity, and F-score.

Accuracy refers to the proportion of the number of accurate samples classified by all
categories to the total number of samples. It is calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision refers to the proportion of the number of correctly predicted positive samples
to the total number of predicted positive samples. It is calculated as follows:

Precision =
TP

TP + FP
(5)



Universe 2022, 8, 656 7 of 13

Recall refers to the proportion of correctly predicted positive samples relative to all
actual positive samples. It is calculated as follows:

Recall =
TP

TP + FN
(6)

Specificity refers to the proportion of correctly predicted negative cases relative to all
actual negative cases. It is calculated as follows:

Speci f icity =
TN

TN + FP
(7)

The balanced F-score is used for the overall evaluation of precision and recall. It is
calculated as follows:

F1 = 2× Precision× Recall
Precision + Recall

(8)

5. Experimental Results and Discussion
5.1. Effect of Masking Rate on Classification Accuracy

When using the self-masking model structure for training, we divide the solar radio
spectrum image into blocks and then mask these blocks randomly and send them to the
network for training. We found that different masking rates affect training and classification
accuracy. After using different masking rates for the experiments, the influence of masking
rates on classification accuracy is shown in Figure 5.
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Figure 5. Influence of masking rate on classification accuracy.

In Figure 5, the experimental data show that a high masking rate corresponds to a high
accuracy. When the masking rate is between 60% and 75%, the classification accuracy is the
highest. The experimental results are counterintuitive. In natural language processing, the
best masking rate of the BERT method is about 15%. In our results, the optimal masking
rate is much higher. This may be because compared with text, images have more redundant
information, while text contains more dense information.

Therefore, masking more information in the image can remove much redundant
information unrelated to classification. This is more conducive to learning useful features
and more essential information from the image, which is conducive to subsequent transfer
learning. In this experiment, a random masking rate of 75% is finally selected and the
masking effect is shown in Figure 6.
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5.2. Pre-Training with Transfer Learning

After expanding the solar radio spectrum image dataset there are still few experimental
data, therefore, the effect of training the mask model with these data, as shown in Figure 3,
is poor. Therefore, we adopt the transfer learning training method. First, we train the mask
model on the large dataset ImageNet [31]. At this stage, we do not need to use the tags in
the ImageNet dataset. Then, we remove the encoder module and connect it to the fully
connected layer and transfer it to the small dataset of the solar radio spectra for fine-tuning.
An accuracy comparison using transfer learning is shown in Table 2.

Table 2. Transfer learning effect.

Method Accuracy (%)

Training from the beginning 70.60
Transfer learning 98.63

As seen in Table 2, the transfer learning ability of the model is very good, which greatly
improves the accuracy of the experiment. This is also because the Vision Transformer (ViT)
structure requires a large amount of training data. Although the ViT model achieves
good results, it is based on the use of a larger dataset than ImageNet. If only ImageNet is
used, the results of the ViT model are not better than those of the CNN structure model.
However, because the self-supervised method can learn more information about images
than the supervised method, the information contained in the image itself is also far greater
than the information contained in the label, therefore, the transfer learning effect of the
self-supervised model is very good.

5.3. Data Enhancement in Training

In the process of ViT training, to further alleviate overfitting and accelerate conver-
gence, we used many data enhancement methods. In our experiment, we tried color
change, random erasure, mixup, cutmix, and their combination. The experimental results
are shown in Table 3.

Table 2 shows that based on the accuracy of 98.63% after transfer learning, mixup and
cutmix improve the accuracy, the other two methods have no significant improvement
effect on the final accuracy, and changing the color even makes the accuracy decrease
slightly. Experiments were also conducted to determine how mixup generates virtual data.
The experiments were divided into four groups. The accuracy of the model is higher with
three interpolations plus the source of the same batch. Experiments were also conducted
for the source of cutmix data, which were divided into two groups. The experimental
results show that the results are better when the data come from the same batch. The final
combination of mixup and cutmix yielded an accuracy of 99.3%, as shown in Table 3.
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Table 3. Results of data enhancement experiments.

Mixing Method Accuracy (%) Recall (%)

Random Erasing 96.7 97.8

Color change 98.6 98.4

Mixup

+Quadratic interpolation +Random 98.7 97.3
+Triple interpolation +Batch 98.1 97.8

+Quadratic interpolation +Batch 98.7 98.4
+Triple interpolation +Random 98.9 97.6

Cutmix
+Batch 98.8 97.0

+Random 98.7 97.3
Mixup + Cutmix 99.3 98.4

5.4. Dropout

We conducted experiments on different dropout methods, including dropout, Drop-
Path, and DropAttention [32]. Dropout discards nodes in the network with a certain
probability, DropPath discards paths in the network, and DropAttention discards the atten-
tion weight in the Transformer with a certain probability. The three methods can prevent
overfitting, overcome network degradation and improve the network effect. The best
results are shown in Table 4. In the three dropout experiments, DropPath is relatively good
and the drop probability is 0.1.

Table 4. Results of dropout experiments.

Method Accuracy (%) Recall (%)

Dropout 98.8 97.8
DropPath 98.9 98.4

DropAttention 98.6 98.4

5.5. Final Classification Results

After integrating the above methods, the final results of the model and the change
curve of its loss are shown in Figure 7. The final accuracy of the model is 99.5%. Compared
with the results of some previous studies, it showed a good improvement effect and good
migration results are achieved. Although the final restored image is relatively fuzzy, the
restored image exhibits the characteristics of the solar radio burst images well. This shows
that the network learns the characteristics of solar radio burst spectrum images well.
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To measure the effectiveness of our model from various aspects, other indicators were
considered in the experiment to evaluate our model. First, the confusion matrices of the
three categories are calculated and the results are shown in Figure 8. Then, the confusion
matrix is used to calculate the precision, recall and specificity of each category. In addition,
the F1 score of each category is calculated. An F1 score of 1 is the best and 0 is the worst.
The results are shown in Table 5.
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Table 5. Experimental results of our model.

Type Precision (%) Recall (%) Specificity (%) F1 Score

Burst 99.5 98.9 99.7 0.992
Non-burst 99.0 99.8 99.4 0.994
Calibration 100 99.7 100 0.998

Our model is also compared with other models. The comparison model uses Vision
Transformer, Swin Transformer, VGG, GoogLeNet, MoblieNet, ResNet and DenseNet as the
core of the experimental network. For a fair comparison, other models are also migrated
to the solar radio spectrum image for fine adjustment after pre-training. The results are
shown in Table 6.
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Table 6. Comparison experiments.

Models Accuracy (%) Recall (%)

Vision Transformer 94.3 97.5
VGG16 96.0 98.4

Swin Transformer 99.0 99.1
Resnet 98.9 98.9

MobileNet 95.6 98.1
GoogLeNet 96.6 98.4
DenseNet 99.1 99.1

Ours 99.5 99.7

The self-supervision model can achieve the same accuracy as the current mainstream
CNN and Transformer models. At the same time, compared with Vision Transformer, the
accuracy of our model is obviously higher under the same transfer learning conditions.
This shows that self-supervised learning is indeed more conducive to transfer learning than
supervised learning.

For this application, we pay more attention to solar radio bursts that occurred with
low probability. It is more critical to find all solar radio bursts as far as possible. Therefore,
a high recall rate is important. Our method has achieved a 99.7% recall rate, which is better
than other models.

6. Conclusions

In this paper, we propose a solar radio spectrum classification method based on self-
supervised learning. By referring to the BERT method in natural language processing, it is
improved for solar radio spectrum classification. After randomly masking the solar radio
spectrum image, the method lets the model learn to restore the image to learn the image
features. This method uses the image itself as a label to enable the network to learn more
information, therefore, it is very suitable for transfer learning, thus addressing the issue of
fewer solar radio spectrum image datasets. This method can also obtain a good result on a
small dataset. Through experiments, an accuracy of 99.5% was achieved on the solar radio
spectrum dataset. Compared with other models, our model achieves better experimental
accuracy. However, our model has a larger number of parameters and requires more
training time. Therefore, we need to continue to study how to reduce the scale of the model.

According to the spectral morphology of solar radio bursts, they can be divided
into type I, II, III, IV, V and their associated fine structures. Different solar radio bursts
correspond to different solar physical phenomena. Next, we will further subdivide and
label the burst samples and use the fine-grained method to classify type I, II, III, IV, V bursts.
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